
July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 489

Chapter 22

Introduction to NP-Completeness

Some problems have polynomial algorithms, and such problems are considered
“easy,” in the sense that they have e�cient solutions. At the other extreme are
problems (like the halting problem) that are unsolvable by any algorithm. Between
these two extremes is a mysterious class of problems called NP-complete problems.
Such problems are on the cusp between polynomial and non-polynomial.

Being able to understand this class and detect when a problem is in it is useful.
Imagine you are setting out to write an algorithm that solves a particular problem.
Your aim is to write an algorithm that is is e�cient, that is, polynomial (of the
lowest degree possible). But if you discover that the problem is NP-complete, then
any e↵ort to write a polynomial algorithm is all but certain to be wasted.

It is fitting to end our discussion of algorithm complexity here, on the horizon of
what is comfortably computable. Sections 22.1 and 22.2 give background on prob-
lems, while sections 22.3 and 22.4 develop the notion of an NP-complete problem.
Section 22.5 indicates how to show that a particular problem in NP-complete.

22.1 Decision Problems: SAT, 3SAT and Others

In the beginning, we need to specify what the word “problem” means in our present
discussion. In doing so, we will be careful, but not too careful. Complete formality
(which is necessary for deeper investigations) would mire us in myriad definitions,
details and theorems. Our goal is a quick bird’s-eye view, so a degree of informality
is appropriate.

Informally, by problem we mean the type of question for which an algorithm
might be designed to answer. So a problem might be something like list sorting,
list searching, finding a shortest route between two locations, graph coloring, and
so on. True, there are some problems (like the halting problem) that cannot be
solved by algorithms. While we acknowledge their existence, our focus will be on
problems solvable by algorithms.1

1Other problems, like, say, money, romantic or relationship problems, are outside of our scope.
While it may be important to learn to solve these, you’ve been reading the wrong book! (But read
the last two sentences of page 496.)

489

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 490

490 Discrete Math Elements

To simplify the discussion we will for the remainder of this chapter restrict our
focus to problems whose solutions are simply answers of “Yes” or “No”. A problem
of this type is called a decision problem. For example, the following are decision
problems: “Is a particular integer n prime?” “Is a given graph G bipartite?” “Does
a particular program halt?” and “Does a list X contain a particular entry x?

This remainder of this section is a sequence of examples that introduce various
conventions, notations and lexicon used in discussing problems. Most especially,
the examples call attention to the notion of an instance of a problem. An instance
of a problem is a specific structure to which the problem applies.

By convention, specific problems are given all-cap names. For instance, we will
call the problem of searching a list SEARCH. That is our first example.
Example 22.1. List searching (SEARCH). SEARCH is the problem of deciding
whether a specific item is on a given list. An instance of SEARCH is a pair (x,X)
where x is some entity and X is a list that could potentially contain x as an entry.
A solution for the instance is either “Yes” or “No” depending on whether or not x
appears in X. (Obviously Yes/No could be replaced with T/F, 1/0, etc.)

So
�
2, (5, 1, 7, 2, 3, 9, 2)

�
is an instance of SEARCH, and its solution is “Yes.”

Another instance is
�
8, (1, 2, 3, 4, 5, 6, 7, 9)

�
, and its solution is “No.”

We know an algorithm for SEARCH, namely SequentialSearch. Algorithms
that solve decision problems are best thought of as procedures that take problem
instances as input and return “Yes” or “No”. So SequentialSearch

�
2, (2, 3, 9, 2)

�

returns “Yes,” while SequentialSearch
�
8, (5, 6, 7, 9)

�
returns “No.”

Please note that a problem is not the same thing as an algorithm that solves it,
just as traveling from Albany to Boston is not the same thing as a car or a train.
Here SEARCH is the problem and SequentialSearch is an algorithm that solves
it. We might also have used BinarySearch.

An instance of a decision problem that results in an answer of Yes is called a
yes-instance of the problem. An instance that results in an answer of No is called
a no-instance, For example,

�
2, (5, 1, 7, 2, 3, 9, 2)

�
is a yes-instance of SEARCH,

while
�
2, (5, 6, 7, 9)

�
is a no-instance.

In the event of a yes-instance, we often want more information about just why
or how the answer is Yes. A witness to a yes-instance of a problem is additional
information that fulfills the promise that the answer is Yes. For example, given the
yes-instance

�
2, (5, 1, 7, 2, 3, 9, 2)

�
of SEARCH, a witness would be the information

“Entry 4” (or just “4”) because with this information we could go straight to the
fourth list entry and see that it is indeed 2. Another witness is “Entry 7.”
Example 22.2. Graph k-colorability (k-COLOR). For a given positive integer k,
the problem k-COLOR asks whether a given graph has a proper k-coloring. Take for
example the graph G =

�
{a, b, c, d, e}, {ab, bc, ca, bd, de, ec}

�
in Figure 22.1. This

is a yes-instance of 3-COLOR because it can be properly 3-colored. A witness
appears on the right, namely a proper 3-coloring by white, black and gray. This
witness could be encoded as

�
{a}, {b, e}, {c, d}

, which lists the color classes of the

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 491

Introduction to NP-Completeness 491

3-coloring. Another witness is
�
{a, e}, {b}, {c, d}

.

a

b c

d e

G G

Fig. 22.1 Left: The graph G is a yes-instance of 3-COLOR. Right: A witness to this yes-instance.

The graph K4 is a no-instance of 3-COLOR, and consequently there is no wit-
ness. But K4 is a yes-instance of 4-COLOR. Any coloring where all four vertices
are colored di↵erently is a witness.

Example 22.3. Boolean satisfiability (B-SAT). This problem asks whether an
expression involving finitely many boolean variables and symbols _,^,¬,),, (and
possibly parentheses) is satisfiable, that is, whether there exists an assignment of
T/F values to the variables that makes the expression true. For example, the
following expression is an instance of B-SAT using variables X, Y and Z.

(X _ ¬Y)) (X ^ Z).

This is a yes-instance of B-SAT because the assignment (X,Y, Z) = (T, T, T) is a
witness. The assignments (X,Y, Z) = (F, T, F) and (X,Y, Z) = (F, T, T) are two
other witnesses. By contrast, the expression

(X _ Y) ^ (¬X _ Y) ^ (X _ ¬Y) ^ (¬X _ ¬Y)

is a no-instance of B-SAT, because there is no witness. The expression is never true,
no matter the values of the variables.

It would be easy to write a procedure that decides if any instance of B-SAT is
satisfiable (that is, if it is a yes-instance). Just step through all the possible T/F
assignments for the variables, and check to see if any of them make the expression
true. But if there are n variables, then there are 2n di↵erent T/F assignments. So
such an algorithm could be at worst ⇥(2n). It is a sobering fact that no polynomial
algorithms for B-SAT are known.

The next two problems are very important in the theory of NP-completeness.
They involve some new definitions. A literal is a boolean variable or the negation of
a boolean variable. For instance, the literals in the expression (X_¬Y)) (¬X^Z)
are X, ¬Y , ¬X and Z. For the remainder of this chapter, a boolean expression
consisting of one or more literals joined together by _ will be called a clause. For
example, (X _ ¬Y _ Z _ ¬X) is a clause, as are (¬X _ ¬Y) and (X _ Y _ Z _X).
To be uniform and consistent, we enclose our clauses in parentheses, even when it
is not technically necessary. Clauses can even be single literals, like (X) and (¬X).

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 492

492 Discrete Math Elements

The joining of boolean expressions with _ is sometimes called a disjunction, so
we could also describe a clause as a disjunction of one or more literals.

A boolean expression is said to be in conjunctive normal form if it consists of
one or more clauses joined by ^. Thus the expression (X_¬Y)^(W _X_¬Z)^(Y)
is in conjunctive normal form, as are (W _Y)^ (X _¬Y)^ (X _Z)^ (X _W) and
(W _X _ ¬Z) and (W) ^ (X) ^ (¬Z). The joining of boolean expressions with ^
is sometimes called a conjunction, so an expression in conjunctive normal form is
a conjunction of one or more clauses.
Example 22.4. Satisfiability (SAT). The problem SAT asks whether an expres-
sion in conjunctive normal form is satisfiable. For example, (X_¬Y)^(W_X_¬Z)^
(Y) is a yes-instance of SAT because the assignment (X,Y, Z,W) = (T, T, T, T)
makes it true (and is thus a witness). The assignment (X,Y, Z,W) = (T, T, F, F)
is another witness. By contrast, (X _ Y) ^ (¬X _ Y) ^ (X _¬Y) ^ (¬X _¬Y) is a
no-instance of SAT because it is not satisfiable.

There is no known polynomial algorithm for solving SAT, and, as we will see
later, it is doubtful that one will ever be found.

Example 22.5. 3-Satisfiability (3-SAT). This is a simplified version of SAT in
which every clause has exactly three literals. Thus (X _ ¬Y _ Y) ^ (W _X _ ¬Z)
and (U _W _X) ^ (¬W _X _ Z) ^ (¬X _X _ Z) ^ (U _ Y _W) are instances of
3-SAT, but (X _ ¬Y _ Z) ^ (W _X _ ¬Z ^ Y) is not.

The decision problem 3-SAT asks whether an arbitrary boolean expression in
conjunctive normal form with three literals per clause is satisfiable.

Because instances of 3-SAT are in general simpler than instances of SAT, it is
tempting to believe that 3-SAT may be an easier problem than SAT. We will see
in Section 22.2 that this is not so. The two problems are of equal di�culty.

22.2 Polynomial Reductions of Problems

It can happen that the ability to e�ciently solve one problem implies the ability to
e�ciently solve another. We now explore this important idea.

To start the discussion, take two decision problems A and B. Suppose there
exists a procedure A2B that converts any instance I of A to an instance A2B(I) of
B, in such a way that I is a yes-instance (or no-instance) of A if and only if A2B(I)
is a yes-instance (or no-instance) of B.

Say we have procedure SolveB that solves B. That is, SolveB(J) returns “yes”
if and only if J is a yes-instance of B. (Otherwise it returns “No.”)

Under these circumstances, I will be a yes-instance of A if and only if
SolveB

�
A2B(I)

�
returns “Yes.” This means SolveB can be used to solve A: Just

use A2B to convert any instance of A to an instance of B, and then apply SolveB to
the result. We have thus transformed A to B in such a way that solving A reduces
to the problem of solving B.

Now suppose further that A2B is polynomial. To be precise, say A2B is O(nk).

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 493

Introduction to NP-Completeness 493

(This means that A2B executes O(nk) steps when processing an input I of size n.)
It follows that if an instance I of A has size n, then the corresponding instance
J = A2B(I) of B has size no greater than O(nk), because A2B can’t expend more
than O(nk) steps in generating the output J .

Finally, suppose that the procedure SolveB for B is also polynomial. Say it is
O(m`) for some positive integer `, so SolveB executes O(m`) steps when processing
an input of size m. Now, if an instance I of A has size n, then A2B(I) has size
O(nk), so running SolveB

�
A2B(I)

�
uses O

��
nk
�m�

= O
�
nk`

�
steps. So solving A

by applying SolveB to A2B is O(nk`), that is to say, polynomial.
All of this is summarized in the box below. But first, a minor point about

notation. In SolveB
�
A2B(I)

�
, the procedure SolveB accepts the output of A2B(I).

This is like the composition of two functions, so we agree to write SolveB
�
A2B(I)

�

as SolveB � A2B(I), and we use SolveB � A2B as a name for the procedure defined
by first running A2B and then applying SolveB to its output.

Fact 22.1. Consider two decision problems, A and B. Say there is a polynomial
procedure A2B that converts all yes-instances of A to yes-instance of B (and all
no-instances of A to no-instance of B).

Under these circumstances, given a polynomial procedure SolveB for B, the
composition SolveB � A2B is a polynomial procedure that solves A.

This gives the context for the main idea of this section.

Definition 22.1. A decision problem A can be polynomially reduced to a
decision problem B if there is a polynomial procedure that converts yes-instances
of A to yes-instances of B, and no-instances of A to no-instances of B.

So if A can be polynomially reduced to B, and there is an e�cient way to solve B,
then there is an e�cient way to solve A. Thus the statement “A can be polynomially
reduced to B” can be taken to mean “A is no harder than B” in the sense that if
you can find a good algorithm for B, then you can find a good algorithm for A. We
might even express this informally as A B. (Unfortunately, the word “reduced”
may suggest that B may be easier than A, when the opposite is true. It would be
better to say “A can be polynomially embedded in B.” But unfortunately the lexicon
is very entrenched.)

The next example shows SAT 3-SAT, which may seem surprising because
SAT seems more complicated than 3-SAT.

Example 22.6. A polynomial reduction of SAT to 3-SAT. Recall the problem
SAT (Example 22.4) asks if a boolean expression in conjunctive normal form is
satisfiable. The problem 3-SAT (Example 22.5) asks the same question, but in the
circumstance where each clause has three literals.

There is an easy way to reduce an instance I of SAT to an instance of 3-SAT.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 494

494 Discrete Math Elements

First, any clause (L1) of I having just one literal can be replaced by the logically
equivalent clause (L1_L1_L1). (Here L1 stands for either a boolean variable or its
negation.) Likewise a clause (L1 _ L2) in I with two literals can be replaced with
(L1 _ L2 _ L2).

Now suppose an I has a clause with four literals, like (L1_L2_L3_L4). Let V1 be
a new variable that does not appear in I. Check that (L1_L2_L3_L4) is satisfiable if
and only if (L1_L2_V1)^(¬V1_L3_L4) is satisfiable. So the clause (L1_L2_L3_L4)
in I can be replaced by the conjunction (L1 _ L2 _ V1) ^ (¬V1 _ L3 _ L4).

For example, the following instance I of SAT converts to an instance I 0 of 3-SAT
such that I is satisfiable (is a yes-instance of SAT) if and only if I 0 is satisfiable (is
a yes-instance of 3-SAT).

I = (L1 _ L2 _ L3 _ L4) ^ (L5 _ L6) ^ (L7 _ L8 _ L9 _ L10)

I 0 = (L1 _ L2 _ V1) ^ (¬V1 _ L3 _ L4) ^ (L5_L6_L6) ^ (L7 _ L8 _ V2) ^ (¬V2 _ L9 _ L10)

But how would we handle instances I of SAT that have clauses with more than
four literals? Consider a clause with n � 4 literals, like

(L1 _ L2 _ L3 _ L4 _ · · · _ Ln). (22.1)

Let V1, V2, . . . Vn�3 be new variables, and check that the following conjunction of
3-literal clauses is satisfiable if and only the clause (22.1) is satisfiable:

(L1 _ L2 _ V1)^
(¬V1 _ L3 _ V2)^
(¬V2 _ L4 _ V3)^
(¬V3 _ L5 _ V4)^

...
(¬Vn�4 _ Ln�2 _ Vn�3)^
(¬Vn�3 _ Ln�1 _ Ln).

(22.2)

So we have seen that any instance I of SAT can be reduced to an instance I 0 of
3-SAT by replacing its clauses with conjunctions of 3-literal clauses.

It is easy to imagine harnessing this scheme to a polynomial procedure SAT23SAT
that inputs instances I of SAT and returns corresponding instances I 0 of 3-SAT.
The procedure simply scans the clauses of I. It replaces each (Li) with (Li_Li_Li),
and each (Li _ Lj) with (Li _ Lj _ Lj). And each time a clause of form (22.1) is
found, the procedure generates n�3 new variables Vi and replaces the clause (22.1)
with the conjunction (22.2). The resulting instance I 0 of 3-SAT is satisfiable if and
only if I is satisfiable.

In this way, SAT can be polynomially reduced to 3-SAT.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 495

Introduction to NP-Completeness 495

22.3 The Classes P and NP

The time has come to describe two broad classes of problems called P and NP. The
class P consists of all decision problems that are solvable by polynomial procedures.
Let’s record the definitions carefully, beginning with P.

Definition 22.2. The class P consists of all decision problems that can be decided
with polynomial procedures.

In other words, a problem A belongs to P if a polynomial procedure SolveA can be
written such that SolveA(I) returns “Yes” for every yes-instance I of A, and “No”
for every no-instance I of A. Thus SEARCH 2 P because this problem is solved by
the polynomial procedure SequentialSearch. (See Example 22.1.)

So A 2 P means that problem A can be decided with a polynomial procedure.
This is so even if no such procedure is known. The statement A 2 P means that it
is possible to find a polynomial procedure for deciding A. To prove A 2 P it su�ces
to write a procedure SolveA that decides A, prove that SolveA really does decide
A, and then prove that SolveA is polynomial.

The class P is very natural. It consists of all the “good” decision problems that
can be decided with e�cient algorithms. When you set out to write an algorithm,
you are aiming for a polynomial algorithm. You are hoping your problem is in P.

Before defining the class NP, a little context may be helpful. In the early days
of computers (the 1950s and 1960s), computer scientists noticed that there are a
great many problems that that have no known polynomial algorithm, but yet the
truth of a witness—if given—can be checked in polynomial time.

One example of such a problem is 3-SAT. Given an instance of 3-SAT, like
I = (X1 _X2 _¬X3)^ (X4 _¬X5 _X6)^ . . ., we could decide if it is satisfiable by
trying every possible T/F combination of the variables X1, X2, X3 . . . and stopping
as soon as (or if) a combination results in I being true. At that point we’ve found
a witness W = (W1,W2, . . .), if one exists. (Here Wi 2 {T, F} is the value of Xi.)
But if I has n variables, then there are 2n possible T/F combinations for them, so
an algorithm that takes this approach has exponential complexity. But if someone
presented us with a W = (W1,W2 . . .) and claimed it were a witness to I, then this
claim could be checked in polynomial time. (Start with the left-most clause of I,
plug in the T/F values from W , check that this makes at least one literal of the
clause true, then move on to the next clause, etc.)

So 3-SAT is a problem for which a witness can be checked in polynomial time.
There are many problems of this type, and the class NP is designed to contain them.

Definition 22.3. The class NP consists of decision problems of the following type.
A problem is in NP provided there is a procedure CheckAnswer(I,W) with the
property that for any instance I of the problem and string W , CheckAnswer(I,W)
returns “Yes” in polynomial time if W is a witness to I.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 496

496 Discrete Math Elements

One example of a problem in NP is 3SAT. The reason is the (as noted on
the previous page), a potential witness to an instance of 3-SAT can be checked
in polynomial (in fact linear) time. One could certainly write a procedure
CheckAnswer3SAT(I,W) that returns “Yes” in polynomial time if W is a witness to
the instance I of 3SAT. Likewise, B-SAT and SAT belong to NP, as you can check.

Read Definition 22.4 carefully. It stipulates only that CheckAnswer(I,W) re-
turns “Yes” in polynomial time if W is a witness to I. All bets are o↵ if W is not a
witness to I (which could happen if I is a no-instance, or if W is a “garbage” string).
In that case it is possible that CheckAnswer(I,W) could return “No” in polynomial
time, but it would not violate the definition if it returned “No” in non-polynomial
time, or even if it halted and returned no output at all – or even if it looped forever.
Because such lax demands are placed on CheckAnswer, it would seem that NP is a
is truly a vast class of decision problems.

It is a fundamental fact that P ✓ NP. To prove this, assume A 2 P. This
means that there is a polynomial procedure SolveA(I) that decides A. We need
to show A 2 NP, which (by Definition 22.4) amounts to describing a procedure
CheckAnswer(I,W) with the property that for any instance I of A, and string W ,
CheckAnswer(I,W) returns “Yes” in polynomial time if W is a witness to I. To
do this, just arrange CheckAnswer(I,W) to ignore W and run SolveA(I). If W is
a witness to I, then I is a yes-instance, so SolveA(I) returns “Yes” in polynomial
time. Consequently CheckAnswer(I,W) returns “Yes” in polynomial time.

Three final remarks before moving on. First, we defined P and NP to be a
classes (or sets) of problems. Admittedly, this is vague because we haven’t said just
what kind of mathematical entity a “problem” is. That is, if asked what exactly an
element of P is, we might be hard-pressed to say. Nothing can be really proved in
the presence of such murkiness. Careful treatments of P and NP codify problems
as mathematical structures called languages, which are certain sets of strings of
symbols. In such a setting, P is a set of languages. Though this has the advantage
of precision, it also involves a lot of preliminary theory about languages. This book
takes an informal approach and relies on your intuitive sense of what a problem is.
This allows us to cover a lot of ground, but nothing will be completely proved.

Second, our focus on decision problems is not as limiting as it seems, because
decision problems are benchmarks that measure the di�culty of problems in general.
For example, let Problem A be “Is the integer n prime?” and let B be “Find the
prime factorization of n.” If it turns out that the decision problem A is problematic
(which it is), then the non-decision-problem B will problematic too, because solving
B would decide A.

Third, we showed above that P ✓ NP. But presently it is not at all clear that
NP is any bigger than P, that is, it is not known whether or not P = NP. Most
computer scientists think it’s more likely that P ⇢ NP, but no one knows for sure.
This is probably the most significant unsolved problem in computer science today.
The Clay Institute o↵ers a prize of one million US dollars to anyone resolves it.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 497

Introduction to NP-Completeness 497

22.4 Cook’s Theorem and NP-Completeness

We are ready to understand a major idea in computer science and complexity theory.
Take two problems A,B 2 NP. In Section 22.2 we saw that if A can be polynomially
reduced to B, then B is harder than (or as hard) as A, in the sense that any
procedure that decides B is also powerful enough to decide A.

It is a startling fact that, in this sense, some problems in NP are the absolute
hardest problems in NP. Such problems called NP-complete problems.

Definition 22.4. A problem is NP-complete if it is in NP, and any other prob-
lem in NP can be polynomially reduced to it.

The fact that NP-complete problems exist is astonishing. Think of it this way:
There is no biggest integer in Z. But NP is di↵erent. There are hardest problems
in NP. An NP-complete problem is as hard as it gets.

How do we know that NP-complete problems even exist? A major theorem by
Stephen Cook says that the boolean satisfiability problem SAT is NP-complete.

Theorem 22.2. (Cook) The satisfiability problem SAT is NP-complete.

The “proof” given below is not a real proof, but just an informal explanation
of why Cook’s theorem is plausible. Careful proofs of Cook’s theorem use formal
models of problems and computation called languages and Turing machines,
which—in the interest of brevity and clarity—we have not developed. Still, the
“proof” given below does capture the gist of a real proof.

Proof. We want to show that SAT is NP-complete. By Definition 22.4, we need to
show that for any arbitrary problem A 2 NP, any instance I of A can be polynomi-
ally reduced to an instance I 0 of SAT. The basic idea is that if A 2 NP, then there
is a polynomial procedure that either decides whether I is a yes-instance, or checks
the validity of a witness to I. Below we will see how the running of the procedure on
I is mirrored by a certain instance I 0 of SAT. We will show that I is a yes-instance
of A, if and only if the procedure returns “Yes,” if and only if I 0 is satisfiable.

For simplicity, we will work out the details with one particular problem in NP.
(A real proof would show the approach works for any particular problem in NP.)
The problem we will pick is that of deciding if a non-negative integer n is even.
Call this problem PARITY. An instance of of PARITY is an integer n � 0. It is
a yes-instance if n is even, and a no-instance if n is odd. We need to show how to
convert the instance n of PARITY to an instance I 0 of SAT, such that n is even if
and only if I 0 is satisfiable.

It is easy to write a polynomial procedure that decides if n is even. Here is one
called EvenTest. It keeps subtracting 2 from x := n until getting 0 or 1. If 0, then
n is even (so “True” is returned). If 1, then n is odd (so “False” is returned).

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 498

498 Discrete Math Elements

Procedure: EvenTest(n) Input: An integer n � 0.
Returns: True if n is even; otherwise False.

begin
x := n
while x � 2 do

x := x� 2
end
if x = 0 then Ans := True
if x = 1 then Ans := False
return Ans

end

EvenTest has just two variables, x and Ans. Initially x := n. Call this Step 0.
Then the while loop executes steps 1, 2, 3, . . ., in which x takes on values n�2,
n�4, n�6, . . ., respectively. In all, the loop executes bn/2c steps, so EvenTest does
1+bn/2c+2 steps. Hence its complexity is O(n).

Take an instance n of PARITY. We will now reduce n to an instance I 0 of SAT.
(Recall: this means n is even if and only if the boolean expression I 0 is satisfiable.)
This will be done by building I 0 so that it mimics the running of EvenTest(n). First,
translate the integer variable x in EvenTest to the following boolean variables:

X0,0 X1,0 X2,0 X3,0 . . . Xn,0

X0,1 X1,1 X2,1 X3,1 . . . Xn,1

X0,2 X1,2 X2,2 X3,2 . . . Xn,2

...
...

...
...

...
X0,n X1,n X2,n X3,n . . . Xn,n

The intended meaning is that Xj,k is true if x = j in step k of EvenTest(n).
Otherwise Xj,k is false. Notice that if bn/2c k n, then EvenTest never even
gets to step k, so some of these variables (like those in the last row) are unnecessary.
They can be regarded as false.

The variable Ans in EvenTest is already boolean; it will also be a variable in I 0.
Notice that EvenTest’s initial assignment of x := n can be mirrored by the

assertion that Xn,0 is true. Now imagine that EvenTest has just completed step k,
at which point x has some value m � 2. Then in the next (k+1)th step, x will take
on the value m � 2. This fact can be captured by the assertion that the following
boolean expression is true:

Xm,k) Xm�2,k+1. (22.3)

As 2 m n and 0 k n�1, there are (n� 1)n = n2 � n of these expressions.
If x attains the value 0 in some step k of EvenTest, then EvenTest assigns

Ans := True, which amounts to asserting that this boolean expression is true:

X0,k) Ans. (22.4)

But if x = 1 at step k, then EvenTest assigns Ans := False, and this is true:

X1,k) ¬Ans. (22.5)

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 499

Introduction to NP-Completeness 499

There are n+1 expressions of form (22.4), one for each possible value of k. Likewise
there are n+ 1 expressios of form (22.5).

Boolean expressions (22.3), (22.4) and (22.5) reflect the running of EvenTest(n),
with one exception. Obviously, at any step k of EvenTest(n), the variable x has
only one value. But we have so far left open the possibility that two variables Xi,k

and Xj,k could both be true, which would mean x = i and x = j at step k. To
preclude this absurdity, we could demand that the following expressions are all true:

¬(Xi,k ^Xj,k) (22.6)

where 0 i < j n and 0 k n. By the multiplication principle, there are�n
2

�
(n+ 1) expressions of form (22.6).
Tallying (22.3), (22.4), (22.5) and(22.6), we can say that EvenTest(n) returns a

value of “True” if and only if all expressions in the following table are true.

clause meaning quantity

(Xn,0) Variable x initially equals n. 1
(Xm,k) Xm�2,k+1) If x=m in step k, then x=m�2 in step k+1. n(n� 1)
(X0,k) Ans) If x = 0 at some step k, then Ans = True. n+ 1
(X1,k) ¬Ans) If x = 1 at some step k, then Ans = False. n+ 1
¬(Xi,k ^Xj,k) At step k, variable x never has two values. (n+1)

�n
2

�

(Ans) EvenTest returns “True” (i.e., n is even) 1

Because P) Q is logically equivalent to ¬P _ Q, and DeMorgan’s law says
¬(P ^Q) = ¬P _ ¬Q, this table can be rewritten as a collection of disjunctions:

clause meaning quantity

(Xn,0) Variable x initially equals n. 1
(¬Xm,k _Xm�2,k+1) If x=m in step k, then x=m�2 in step k+1. n(n�2)
(¬X0,k _Ans) If x = 0 at some step k, then Ans = True. n
(¬X1,k _ ¬Ans) If x = 1 at some step k, then Ans = False. n
(¬Xi,k _ ¬Xj,k) At step k, variable x never has two values. n ·

�n
2

�

(Ans) EvenTest returns “True” (i.e., n is even) 1

Now let I 0 = (Xn,0) ^ (¬X2,0 _ X0,1) ^ (¬X3,0 _ X1,1) ^ . . . ^ (Ans) be the
conjunction of all clauses in the above table. This is an instance of SAT, and we
have shown that n is a yes-instance of PARITY, if and only if EvenTest(n) = True,
if and only if I 0 is satisfiable.

Further, notice that the number of clauses in I 0 is a polynomial of degree 3, so
I 0 can be built from n in a polynomial number of steps. Thus we have the desired
polynomial reduction of PARITY to SAT.

A careful proof of Cook’s theorem uses this approach to show that any problem
in NP has a polynomial reduction to SAT. As we mentioned, the details involve
development of some preliminary machinery, but the main idea is identical to what
we have done above.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 500

500 Discrete Math Elements

The implications of Cook’s theorem are staggering. For one, it says that no
problem in NP is harder than SAT, in the sense that a polynomial procedure for SAT
would apply to any other problem in NP, because any other problem is polynomially
reducible to SAT. So if there were a polynomial algorithm for SAT, then every
problem in NP would also be in P, and we’d conclude P = NP. Is there a polynomial
algorithm for SAT? Does P = NP? No one knows.

What is known is that there are a great many NP-complete problems. We will
encounter some in the next section. Keep in mind that if a polynomial procedure
could be found for any single NP-complete problem, then every problem in NP
would be solvable by a polynomial procedure, so P = NP. For this reason it is
widely believed (but not known for certain) that NP-complete problems cannot be
decided with polynomial algorithms.

22.5 Proving Problems are NP-Complete

Let’s highlight the main points of this chapter so far.

• A decision problem is in P if some polynomial procedure can decide it.
• A decision problem is in NP if some polynomial procedure can check the va-
lidity of any proposed witness. (That is, for any witnessW of a yes-instance,
the procedure confirms thatW is indeed a yes-instance in polynomial time.)

• A decision problem is NP-complete if it is in NP, any other problem in NP
can be polynomially reduced to it.

• The problem SAT is NP-complete (Cook’s Theorem).

As it turns out, SAT is not the only NP-complete problem. There are many. This
section explains how to show that a particular decision problem in NP-complete.
The general strategy for doing this is simple. Suppose we want to prove that some
problem A is NP-complete. By the definition of NP-complete, this means that we
need to show two things: First, A 2 NP. Second, we must show that any problem
in NP can be polynomially reduced to A.

The second step is not has hard as you may expect. Suppose there is another
problem B that is known to be NP-complete. All we need to do is show that B is
polynomially reducible to A. Then, since any problem in NP can be polynomially
reduced to B, and B can be polynomially reduced to A, it follows that any problem
in NP can be polynomially reduced to A.

In summary, here is the procedure for showing a problem A is NP-complete.

How to show that a problem A is NP-complete
1. Show A 2 NP.
2. Show a known NP-complete problem can be polynomially reduced to A.

Our first example will carry out this process to show that 3-SAT is NP-complete.
This will expand our list of known NP-complete problems to two: SAT and 3-SAT.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 501

Introduction to NP-Completeness 501

Example 22.7. The problem 3-SAT is NP-complete.

The first step is to show that 3-SAT is in NP. Recall that this means that we
must show that the validity of a proposed witness to an instance of 3-SAT can be
confirmed in polynomial time. So let I be an instance of 3-SAT. Say I consists of
n clauses, containing variables X1, X2, Let W = (W1,W2, . . .) be a potential
witness to I. (Each Wi is a T/F value, standing for the truth assignment for the
variable Xi.) A procedure can be written that scans the clauses of I, checking that,
under the truth assignments W , each clause contains at least one true literal. As
each clause has three literals, this involves checking a total of 3n literals. Thus such
a procedure has complexity O(n), which is polynomial.

The second step is to display a polynomial reduction of the NP-complete problem
SAT to 3-SAT. This was done in Example 22.6. Thus 3-SAT is NP-complete.

So now we know two NP-complete problems, SAT and 3-SAT. Next we come
to a third NP-compete problem, that of finding cliques in graphs. A k-clique in
a graph is a subset X of its vertices such that any two vertices in X are adjacent.
(Thus X induces a complete Kk subgraph.) For example, the graph G below has
eight 2-cliques, namely {a, b}, {a, e}, {a, c}, {a, d}, {c, d}, {c, e}, {d, e} and {b, e}. It
has four 3-cliques {a, b, e}, {a, c, e}, {a, d, c} and {d, c, e}. It also has one 4-clique,
{a, c, d, e}. Note that G has no 5-clique.

G

a b

c

d e

Given an integer k and a graph G, we can ask whether or not G has any k-
cliques. Let’s call this decision problem CLIQUE. An instance of CLIQUE can be
thought of as a pair (k,G) where k is an integer and G is a graph. The pair (k,G)
is yes-instance if G has a k-clique, otherwise it is a no-instance. Although this may
seem an innocent enough problem, it is, in fact, NP-complete.

Example 22.8. The problem CLIQUE is NP-complete.

The first step is to show that CLIQUE is in NP. To do this we need to show that
a proposed witness to an instance (k,G) can be verified in polynomial time. A
proposed witness is a set W = {v1, v2, . . . , vk} ✓ V (G) of k vertices that could
potentially be a clique in G. To check that this is really a clique, one would have to
investigate all 2-element subsets {vi, vj} of W and confirm each is a pair of adjacent
vertices in G. Since there are

�n
2

�
= n(n� 1)/2 pairs to check, this can be done in

O(n2) time. Thus CLIQUE is in NP.
In the second step we demonstrate a polynomial reduction of 3-SAT (which

is NP-complete by Example 22.7) to CLIQUE. Doing this involves transforming
any instance I of 3-SAT to an instance I 0 = (k,G) of k-clique, such that I is a

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 502

502 Discrete Math Elements

yes-instance of 3-SAT (i.e., is satisfiable) if and only if (k,G) is a yes-instance of
CLIQUE (i.e., the graph G has a k-clique).

We will illustrate this with an example, from which the general procedure will
be clear. Consider the following instance of 3-SAT.

I=(X1_X2_¬X4)^(¬X1_X3_X4)^(X4_¬X3_X2)^(X2_X4_X3)^(¬X2_X3_X4)

This instance of 3-SAT has 5 clauses. Our desired instance of CLIQUE will have the
form (k,G), where k = 5 is the number of clauses in I. Make the graph G as follows.
For each clause in I, G has three vertices, labeled by the literals in the clause. This
is illustrated in Figure 22.8 (left), where the three vertices corresponding to di↵erent
clauses in I fall within di↵erent gray regions. An edge connects any pair of vertices
from di↵erent clauses, provided that the pair does not consist of a variable and its
negation. (For example, in Figure 22.8 (left), there is an edge from the X1 in C1 to
the X3 in C2, but there is no edge joining X1 to ¬X1.)

C1

C2

C3C4

C5

X1 X2¬X4

¬X1

X3

X4

X4

¬X3
X2X2

X4

X3

¬X2

X3

X4

C1

C2

C3C4

C5

X1 X2¬X4

¬X1

X3

X4

X4

¬X3
X2X2

X4

X3

¬X2

X3

X4

Fig. 22.2 Left: The graph G in the instance (5, G). Right: A 5-clique in G.

Because no two vertices in a single gray region are adjacent, any 5-clique in
G has one vertex from each of the five gray regions. For example the 5-clique in
Figure 22.8 (right) has vertices labeled by ¬X1, X2 and X3, one per gray region
(i.e., one per clause in I). Consequently, if in I we set X1 = F , X2 = T and X3 = T
(and give the other variables arbitrary assignments), then I will be satisfied.

In fact, any 5-clique K in G consists of five vertices labeled with literals from I,
one literal per clause. No two of these are labeled by a variable Xi and its negation
¬Xi, because by definition no edge in G joins two such vertices. Therefore no
conflict can arise by setting each literal in K equal to T, and doing so results in a
a truth assignment that satisfies I.

Conversely, given a truth assignment that makes I true, there is a 5-clique K in
G got by selecting a true literal in each clause of I and using it as a vertex in K.

Consequently, I is satisfiable if and only if G has a 5-clique. In other words, I
is a yes-instance of 3-SAT if and only if (5, G) is a yes-instance of CLIQUE.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 503

Introduction to NP-Completeness 503

This same procedure works not just for the specific I above, but any instance
I of 3-SAT. From I, generate the instance (k,G) by scanning through the clauses
of I. For each clause Ci, generate three new vertices for G and label them with the
literals in Ci. Then scan through the clauses of I again. For each vertex v labeled
by a literal in Ci, connect it by an edge to all other vertices corresponding to the
clauses Cj with i 6= j, except those whose label is the negation of the label of v. Let
k be the number of clauses in I. Then, as above, I is satisfiable if and only if (k,G)
is a yes-instance of CLIQUE, that is, if and only if G has a k-clique.

If I has n clauses, then building G involves generating 3n vertices, then adding
in no more than 3n(n�1)/2 edges. Thus building G can be done in O(n2) steps, so
constructing the instance (k,G) is O(n2). Thus we have built a polynomial reduction
of 3-SAT to CLIQUE. This completes the proof that CLIQUE is NP-complete.

Our next example concerns graph coloring.

Example 22.9. Deciding if an arbitrary graph can be 3-colored is NP-complete.

Recall that a graph can be 3-colored if its vertices can be colored with three colors, in
such a way that any two adjacent vertices have di↵erent colors. Given an arbitrary
graph, one can ask whether or not it can be 3-colored. Let’s call this decision
problem 3COLOR. An instance of 3COLOR is a graph G. It is a yes-instance if it
can be 3-colored; otherwise it is a no-instance. The problem 3COLOR is that of
deciding whether an arbitrary instance G is a yes- or no-instance.

The first step in showing 3COLOR is NP-complete is to confirm that it is in NP.
A witness to an instance G is an assignment three colors {1, 2, 3} to the vertices of
G, that is, a witness to G is a function f : V (G) ! {1, 2, 3}. Say G has n vertices.
We can check if f is a valid coloring by examining all

�n
2

�
= n(n � 1)/2 pairs u, v

of G’s vertices, and confirming that f(u) 6= f(v) when uv 2 E(G). This process
involves O(n2) steps, so the problem of checking the witness is polynomial in the
size of G. Hence 3COLOR 2 NP.

For the second step we describe a polynomial reduction of 3SAT to 3COLOR:
For any instance I of 3SAT, we will construct a graph GI with the property that I
is satisfiable if and only if GI can be 3-colored.

We illustrate this with a specific instance I of 3SAT. (Our construction of GI

will indicate a general recipe for converting any arbitrary I to a corresponding GI .)
So for the remainder of this example, let’s consider the following instance I of 3SAT:

I=(X1_X2_¬X4)| {z }
C1

^(¬X1_X3_X4)| {z }
C2

^(X4_¬X3_X2)| {z }
C3

^(X2_X4_X3)| {z }
C4

^(¬X2_X3_X4)| {z }
C5

.

This instance has four variables X1, . . . , X4 and five clauses C1, . . . , C5. We now
build a graph GI whose 3-colorability mirrors the satisfiability of I. We build GI

in stages. The first piece GT
I of GI is shown below. It has a triangle at the top,

plus eight vertices labeled by the four variables in I, along with their negations.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 504

504 Discrete Math Elements

GT
I

X1 ¬X1 X2 ¬X2 X3 ¬X3 X4 ¬X4

N

F T

This graph GT
I can certainly be 3-colored with “colors” {T,F,N}, which you

should think of as standing for “True,” “False” and “Neutral.” The three vertices
of the top triangle necessarily get di↵erent colors. Let’s agree that its bottom vertex
is colored N, as indicated. With this agreement, any vertex labeled Xi or ¬Xi must
be colored T or F. Further, because each vertex pair {Xi,¬Xi} is adjacent, Xi, and
¬Xi have opposite T/F colors. So if the top triangle is colored as indicated, GT

I has
24 = 16 di↵erent 3-colorings, and each one corresponds to a particular True/False
assignment to the variables in I. Thus 3-colorings of GT

I model and mirror the ways
that the variables in I can be instantiated. (In general, this kind of construction is
sometimes called a truth-setting gadget.)

Some 3-colorings of GT
I may correspond to True/False assignments that make

I true, and others may make it false. The next step in constructing GI is to add
to GT

I a mechanism that models the fact that each clause Ci in I is required to be
true. This is accomplished by adding to GT

I five new vertices labeled C1, . . . , C5,
each joined to the vertices at the top that are colored N and F, as shown below.
Therefore each vertex Ci must be colored T. The intended meaning is that each
clause Ci is true.

X1 ¬X1 X2 ¬X2 X3 ¬X3 X4 ¬X4

C1T C2T C3T C4T C5T

N

F T

GC
I

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 505

Introduction to NP-Completeness 505

Of course this new graph GC
I is still 3-colorable, as there are still 24 = 16 ways

to color the vertices labeled Xi and ¬Xi with the colors T/F. We are next going
to add mechanisms that make the graph 3-colorable if and only if the instance I is
satisfiable. This will be done by inserting subgraphs � of the following form.

↵ � �

CiT

�

Please check that if the bottom vertex Ci of � is colored T, and each vertex ↵,�, �
is colored T or F, then in any 3-coloring of � (with colors T,F,N), at least one of
↵,�, � must also be colored T. Conversely, if ↵,�, � are assigned T/F colors and at
least one of them is T, then this extends to a coloring of � with Ci colored T. Thus
� is a type of “or” gate. If vertex Ci is T, then ↵ or � or � is T.

Now, the first clause C1 of our instance I is C1 = (X1 _X2 _¬X4). Add to the
previous graph GC

I a copy of � for which the bottom vertex coincides with C1, and
the top three vertices (↵,�, �) attach to X1, X2 and ¬X4, as indicated below.

X1 ¬X1 X2 ¬X2 X3 ¬X3 X4 ¬X4

C1T C2T C3T C4T C5T

N

F T

Note that in any 3-coloring of this graph, at least one vertex X1, X2 and ¬X4

must be colored T. This corresponds to an assignment of True/False to the literals
in C1 = (X1 _X2 _¬X4) (and hence the variables X1, X2, X4) that makes C1 true.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 506

506 Discrete Math Elements

Finally, in a like fashion, insert copies of � for the remaining clauses C2, . . . , C5,
as follows. This is our final graph GI that corresponds to the instance I.

X1 ¬X1 X2 ¬X2 X3 ¬X3 X4 ¬X4

C1T C2T C3T C4T C5T

N

F T
GI

By construction, the instance I of 3-SAT is satisfiable if and only if the graph
GI is 3-colorable. Although this was carried for a specific I, the recipe would apply
to any instance I of 3-SAT. We thus have described a reduction of 3-SAT to 3-color.

But remember, our goal is a polynomial reduction of 3-SAT to 3-color. So it
remains to verify that the process described above can be carried out in f(n) steps,
where f is a polynomial and n is the size of the 3-SAT instance I. Let’s say n is
the number of clauses in I. (This is somewhat arbitrary. We might also take n to
be the total number of literals, which is three times the number of clauses.)

The first step of constructing GI is to create its top triangle, which can be done
in six steps (create the three vertices, add the three edges). There can be no more
than 3n variables Xi, so the remainder of the truth-setting component can be built
in no more than 2·3n + 3·3n steps (add two vertices for each variable, and then
three edges for each variable). Then at the bottom we add n vertices labeled by
the n clauses in I (n steps) and two connect edges from each one to N and F at the
top (2n steps). Finally, each “or” gate has five vertices and 10 edges, so inserting
them one-per-clause takes 15n steps. Thus the total number of steps required to
build GI from I is no more than 6 + 2·3n+ 3·3n+ n+ 2n+ 15n = 6 + 36n. So GI

is built in O(n) steps, which is very fast, and certainly polynomial.
In summary, we have shown that 3COLOR is in NP, and we have described a

polynomial reduction of the NP-complete problem 3-SAT to 3COLOR. Therefore
3COLOR is NP-complete.

