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Chapter 20

Review of Real-Valued Functions

In Chapter 8 we saw how the e�ciency of algorithms is measured by functions of
the size of their inputs. For example, the sequential search algorithm (page 224)
needs f(n) = 2 + 2n steps (in the worst case) to search a list of length n. Binary
search (page 226) needs only g(n) = 3 + 2 log

2
(n) steps.

Using functions of input size to study algorithms performance is important in
computer science, and is a key ingredient of the final chapters of this book. This
chapter’s purpose is to review the basic properties of functions that arise most
naturally in this context, namely polynomial, exponential and logarithm functions.
There is nothing really new here; you have studied such functions for years. But
if you are a bit rusty with, say, exponents and logarithms, then this chapter is a
refresher. You can skip it if you already have a good grip on the algebra of functions.

Chapter 18 developed a theory of functions f : A ! B from one set to another.
Here we deal with functions f : R ! R, where A and B are the set R, or perhaps
intervals on the real line, as in f : R ! [0,1). Actually, for the uses to which we
will later apply such functions, the domain is input size (a positive integer) and
the co-domain is is the number of steps executed by an algorithm (also a positive
integer). In this context, they are properly viewed as functions f : N ! N. However,
because N ✓ R, we typically view the domain co-domain as sets of real numbers.

Topics from Chapter 18 that play a role in this chapter include domain, range,
co-domain, as well as injective, surjective, bijective and inverse functions.

Let us begin with exponents.

20.1 Exponent Review

We start at the beginning. In an expression like an, where a is raised to the nth
power, a is called the base and n is the exponent. If n is a positive integer, then

an = a · a · a · · · a| {z }
n times

.

This would be too elementary to mention except that every exponent property
flows from it. For example,

449
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(ab)n = (ab) · (ab) · (ab) · · · (ab)| {z }
n times

= a · a · a · · · a| {z }
n times

· b · b · b · · · b| {z }
n times

= anbn.

Therefore (ab)n = anbn . Also,
�
a
b

�n
= a

b · a
b · · ·

a
b = an

bn , so
�
a
b

�n
= an

bn . And

aman = am+n because aman = a · a · a · · · a| {z }
m times

· a · a · a · · · a| {z }
n times

= am+n.

Assuming for the moment that m > n, we have

am

an
=

m timesz }| {
a · a · a · a · a · · · a

a · a · a · · · a| {z }
n times

= a · a · · · · a| {z }
m� n times

= am�n

because the a’s on the bottom cancel with a’s on top, leaving m�n a’s on top. Also

notice that (an)m = anm because

(an)m =

m groups of n a’s
z }| {
(a · a · a · · · a| {z }

n times

) · (a · a · a · · · a| {z }
n times

) · · · (a · a · a · · · a| {z }
n times

) = anm.

We have just verified the following fundamental Laws of exponents.

Fact 20.1. Basic Laws of Exponents

a1 = a (ab)n = anbn
⇣a
b

⌘n
=

an

bn

aman = am+n am

an
= am�n (an)m = amn

So far we have assumed n is a positive integer because in an = a·a · · · a we cannot
multiply a times itself a negative or fractional number of times. Still, an makes sense
for n zero, negative or fractional. Trusting the above property am�n = am

an yields

a0 = a1�1 =
a1

a1
= 1, (provided a 6= 0)

a�n = a0�n =
a0

an
=

1

an
.

Notice 00 is undefined because 00 = 01�1 = 0
1

01
= 0

0
, which is undefined. But we

can find an when n is 0 (and a 6= 0) or negative, as in 2�3 = 1

23
= 1

8
. In essence we

just multiplied 2 times itself �3 times! Also note a�1 = 1

a .
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What about fractional powers, like am/n or a1/n? Trusting (an)m = anm yields
⇣
a

1
n

⌘n
= a

1
n ·n = a1 = a.

In words, a
1
n is a number that, if raised to the power of n, results in a.

This means a1/n = n
p
a. For example, 161/4 = 4

p
16 = 2 and 21/2 =

p
2.

Further, a
m
n = a

1
nm =

⇣
a

1
n

⌘m
= n

p
a
m

= n
p
am. Let’s summarize all of this.

Fact 20.2. Laws of zero, negative and rational exponents

a0 = 1 (if a 6= 0) a�n =
1

an
a�1 =

1

a

a
1
n = n

p
a a

m
n = n

p
a
m

= n
p
am

The boxed equations hold for any rational m and n, positive or negative.

Example 20.1. Knowing the above laws of exponents means we can evaluate many
expressions without a calculator. Suppose we are confronted with 16�1.5. What
number is this? We reckon as follows

16�1.5 = 16�3/2 =
1

163/2
=

1
p
16

3
=

1

43
=

1

64
.

For another example, 8�1.5 = 8�3/2 =
1

83/2
=

1
p
8
3
=

1

(2
p
2)3

=
1

23
p
2
3
=

1

16
p
2
.

Also, (�8)5/3 = 3
p
�8

5

= (�2)5 = (�2)(�2)(�2)(�2)(�2) = �32.

Exercises for Section 20.1

Work the following exponents with pencil and paper alone. Then compare your
answer to a calculator’s to verify that the calculator is working properly.

251/21. 41/22. 1

4

1/2
3. 271/34.

(�27)1/35. (27)�1/36. (�27)4/37. 2�18.

2�29. 2�310. 1

2

�1

11. 1

2

�2

12.

1

2

�3

13. 1

4

�1/2
14.

p
2
6

15.
⇣�

2

3

� 3
2

⌘2

16.
✓

3
9

37

2
3

◆3

17.

✓p
2
p
2

◆p
2

18.
�
4

9

��1/2
19.

⇣p
3

2

⌘�4

20.
p
3
100

p
3
9421.
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20.2 Linear Functions, Power Functions and Polynomials

Some functions (and families of functions) are so elemental that they become part
of our daily mathematical vocabulary. Here is a quick inventory.

We begin with linear functions. A linear function is a function f : R ! R
having the form f(x) = mx + b, where m and b are constants. The graph of this
function is a straight line with slope m and y-intercept b. See Figure 20.1.

�3 �2 �1 1 2 3

�4

�3

�2

�1

1

2

3

4

f(x) = 2

3
x+ 2

g(x) = 2

3
x

h(x) = 2

3
x� 2

✓(x) = �x+ 1
'(x) = �4

Fig. 20.1 Some linear functions.

In f(x) = mx+b it is of course possible thatm = 0, giving the function f(x) = b.
This is called a constant function; no matter what the input x is, the output is
always the same number b. The graph of this function is a horizontal line (slope
0) passing through the point b on the y-axis. The constant function '(x) = �4 is
illustrated above. You could write is as '(x) = 0 · x � 4 and regard it as the rule
multiply x by zero and subtract 4.

A power function is a function of form f(x) = xn, where the exponent n is a
constant. Figure 20.2 shows a few examples for n 2 N. It is important to internalize
(not just memorize) these graphs. Take time to understand why the graphs look
the way they do. Notice that when n is even xn is positive for any x, so the graph
lies above the x axis in those cases. By contrast, for odd n the value xn is negative
whenever x is negative; thus a portion of these graphs is below the x-axis.

�2 �1 0 1 2

�2

�1

1
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4

y = x1

�2 �1 0 1 2

�2

�1

1

2

3

4

y = x2

�2 �1 0 1 2

�2

�1

1

2

3

4

y = x3

�2 �1 0 1 2

�2

�1

1

2

3

4

y = x4

�2 �1 0 1 2

�2

�1

1

2

3

4

y = x5

Fig. 20.2 Power functions f(x) = xn. In each case the domain is all real numbers, R. If n is even
the range is [0,1). If n is odd the range is R.
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It is of course possible to have power functions f(x) = xn for which n is not an
integer. For example, f(x) = x1/2 =

p
x, and in general f(x) = xa/b = b

p
x

a
. Notice

that if a and b are positive integers, then f(x) = xa/b = b
p
x

a
grows arbitrarily

large as x increases: For any positive y (no matter how large), x > a
p
y b implies

f(x) > b

q
a
p
y b

a

= y. This illustrates an important fact.

Fact 20.3. For powers n > 0, a power function f(x) = xn increases to 1 as x
increases to 1. In other words, if n > 0, then lim

x!1
xn = 1.

A polynomial function is a sum of multiples of integer powers of x, plus a
constant term (which could be 0). So f(x) = x4�2x2+⇡x+2 is a polynomial with
constant term 2, and g(x) = 5x2 + 3x � 1 is a polynomial with constant term �1.
The degree of a polynomial is its highest power of x, so f(x) has degree 4 and g(x)
has degree 2. A linear function, such as h(x) = 3x+ 7, is a polynomial of degree 1,
as h(x) = 3x1 + 7. We regard a constant function f(x) = b as a polynomial of
degree 0, as b = bx0 (for x 6= 0).

20.3 Exponential Functions

Interchanging the x and the 2 in the power function f(x) = x2 gives a new function
f(x) = 2x. A function like this one, a constant raised to a variable power, is called
an exponential function.

An exponential function is one of form f(x) = ax, where a is a positive
constant, called the base of the exponential function. For example, f(x) = 2x and
f(x) = 3x are exponential functions, as is f(x) = 1

2

x
. If we let a = 1 in f(x) = ax

we get f(x) = 1x = 1, which is, in fact, a linear function. For this reason we agree
that the base of an exponential function is never 1.

Let’s graph the exponential function f(x) = 2x.
Below is a table with some sample x and f(x) values.
The resulting graph is on the right.

x �3 �2 �1 0 1 2 3
f(x) = 2x 1/8 1/4 1/2 1 2 4 8

Notice that f(x) = 2x is positive for any x, but
gets closer to zero the as x moves in the negative
direction. But 2x > 0 for any x, so the graph never
touches the x-axis.

x
�3 �2 �1 1 2 3

1

2

3

4

5

6

7

8

f(x)=2x

Working with exponential functions requires fluency with the exponent proper-
ties of Section 20.1. For example, if f(x) = 2x, then f(�3) = 2�3 = 1

23
= 1

8
and

f
�
3

2

�
= 2

3
2 =

p
2
3

=
p
2
p
2
p
2 = 2

p
2.

Several exponential functions are graphed below. These graphs underscore the
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fact that the domain of any exponential function is R. The range is (0,1). The
y-intercept of any exponential function is 1.

x

y
f(x) = 10x

f(x) = 3x

f(x) = 2x

f(x) = 1.25x

f(x) = 1.5x

f(x) = 1x

f(x) = 1

2

x

0

2

3

10

Notice that if the base of an exponential function is less than 1, like in f(x) = 1

2

x
,

then the graph decreases as x increases. If in doubt, write a table for this function
and graph it. (This involves using the formula a�x = 1

ax .) But if the base a is
greater than 1, then f(x) = ax grows very quickly as x increases.

Fact 20.4. If a > 1, the exponential function f(x) = ax increases to 1 as x
increases to 1.

Next we investigate inverses of exponential functions. They are called logarithms.

20.4 Logarithmic Functions

Now we apply the ideas of Chapter 18 to explore inverses of exponential functions.
Such inverses are called logarithmic functions, or just logarithms. An exponential
function f(x) = ax, viewed as f : R ! (0,1), is bijective and thus has an inverse.
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As illustrated below, this inverse sends any number x to the number y for which
f(y) = x, that is, for which ay = x.

x

y

1

x

f(x) = ax

y

In other words, the rule is f�1(x) =

✓
the number y

for which ay = x

◆
.

From this it seems that a better name for f�1 might be a⇤, for then

a⇤(x) =
✓

the number y

for which ay = x

◆
.

The idea is that a⇤(x) is the number y that goes in the box so that ay = x. Using
a⇤ as the name of f�1 thus puts the meaning of f�1 into its name. We therefore
will use the symbol a⇤ instead of f�1 for the inverse of f(x) = ax.

For example, the inverse of f(x) = 2x is a function called 2⇤, where

2⇤(x) =
✓

the number y

for which 2y = x

◆
.

Consider 2⇤(8). Putting 3 in the box gives 23 = 8, so 2⇤(8) = 3. Similarly

2⇤(16) = 4 because 24 = 16,
2⇤(4) = 2 because 22 = 4,
2⇤(2) = 1 because 21 = 2,

2⇤(0.5) = �1 because 2�1 = 1

2
= 0.5.

In the same spirit the inverse of f(x) = 10x is a function called 10⇤, and

10⇤(x) =
✓

the number y

for which 10y = x

◆
.

Therefore we have

10⇤(1000) = 3 because 103 = 1000,
10⇤(10) = 1 because 101 = 10,

10⇤(0.1) = �1 because 10�1 = 1

10
= 0.1.

Given a power 10p of 10 we have 10⇤ (10p) = p. For example,

10⇤ (100) = 10⇤
�
102

�
= 2,

10⇤
�p

10
�
= 10⇤

�
101/2

�
= 1

2
.
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But doing, say, 10⇤(15) is not so easy because 15 is not an obvious power of 10.
We will revisit this at the end of the section.

In general, the inverse of f(x) = ax is a function called a⇤, pronounced “a box,”
and defined as

a⇤(x) =
✓

the number y

for which ay = x

◆
.

You can always compute a⇤ of a power of a in your head because a⇤(ap) = p.
The notation a⇤ is nice because it reminds us of the meaning of the function.

But this book is probably the only place that you will ever see the symbol a⇤. Every
other textbook—in fact all of the civilized world—uses the symbol loga instead of
a⇤, and calls it the logarithm to base a.

Definition 20.1. For a > 0 and a 6= 1, the logarithm to base a is the function

loga(x) = a⇤(x) =
✓

number y for

which ay = x

◆
.

The function loga is pronounced “log base a.” It is the inverse of f(x) = ax.

Here are some examples.

log
2
(8) = 2⇤(8) = 3 log

5
(125) = 5⇤(125) = 3

log
2
(4) = 2⇤(4) = 2 log

5
(25) = 5⇤(25) = 2

log
2
(2) = 2⇤(2) = 1 log

5
(5) = 5⇤(5) = 1

log
2
(1) = 2⇤(1) = 0 log

5
(1) = 5⇤(1) = 0

To repeat, loga and a⇤ are di↵erent names for the same function. We will bow
to convention and use loga, mostly. But we will revert to a⇤ whenever it makes the
discussion clearer.

Understanding the graphs of logarithm functions is important. Recall from
algebra that the graph of f�1(x) is the graph of f(x) reflected across the line
y = x. Because loga is the inverse of f(x) = ax, its graph is the graph of y = ax

reflected across the line y = x, as illustrated in Figure 20.3.
Take note that the domain of loga is all positive numbers (0,1) because this is

the range of ax. Likewise the range of loga is the domain of ax, which is R. Also,
because loga(1) = a⇤(1) = 0, the x-intercept of y = loga(x) is 1.

The logarithm function log
10

to base 10 occurs frequently enough that it is
abbreviated as log and called the common logarithm.

Definition 20.2. The common logarithm, denoted log, is the function

log(x) = log
10
(x) = 10⇤(x).

Most calculators have a log button for the common logarithm. Test your
calculator by confirming log(1000) = 3 and log(0.1) = �1. The button will also tell
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y = ln(x)

y = x

x

y y = f(x) = ax

y = f�1(x) = a⇤(x) = loga(x)

�3�2�1 1 2 3 4 5 6 7

1

2

3

4

5

6

7

Fig. 20.3 The exponential function y = ax and its inverse y = loga(x).

you that log(15) ⇡ 1.17609125. In other words 10⇤(15) ⇡ 1.17609125, which means
101.17609125 ⇡ 15, a fact with which your calculator will concur.

One comment. Convention allows for loga x in the place of loga(x), that is, the
parentheses may be dropped. We will tend to use them.

Logarithms have many important properties, which we now review.
To start, for any x it is obvious that a⇤(ax) = x because x is what must go into
the box so that a to that power equals ax. So we have

a⇤ (ax) = x,

loga (a
x) = x. (20.1)

This simply reflects the fact that f�1
�
f(x)

�
= x for the function f(x) = ax.

Next consider the expression aa
⇤
(x). Here a is being raised to the power a⇤(x),

which is literally the power a must be raised to to give x. Therefore

aa
⇤
(x) = x,

alogb(x) = x (20.2)

for any x in the domain of a⇤. This is just saying f
�
f�1(x)

�
= x.

The x in Equations (20.1) and (20.2) can be any appropriate quantity or expres-
sion. It is reasonable to think of these equations as saying

a⇤
⇣
a

⌘
= and aa

⇤
( ) = ,

where the gray rectangle can represent an arbitrary expression. Thus

a⇤
⇣
ax+y2

+3

⌘
= x+ y2 + 3 and aa

⇤
�
5x+1

�
= 5x+ 1.

Next we verify a fundamental formula for loga(xy), that is, a
⇤(xy). Notice

a⇤(xy) = a⇤
⇣
aa

⇤
(x) aa

⇤
(y)

⌘
. . . . . . because x = aa

⇤
(x) and y = aa

⇤
(y)

= a⇤
⇣
aa

⇤
(x)+a⇤

(y)
⌘

. . . . . . . . . . . . . . . . . . . . . because acad = ac+d

= a⇤(x) + a⇤(y) .. . . . . . . . . . . . . . . . . . . using a⇤
⇣
a

⌘
=
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We have therefore established

a⇤(xy) = a⇤(x) + a⇤(y),

loga(xy) = loga(x) + loga(y). (20.3)

By the same reasoning you can also show a⇤
⇣

x
y

⌘
= a⇤(x)� a⇤(y), that is,

a⇤
✓
x

y

◆
= a⇤(x) � a⇤(y),

loga

✓
x

y

◆
= loga(x)� loga(y). (20.4)

Applying a⇤(1) = 0 to this yields a⇤
⇣

1

y

⌘
= a⇤(1)� a⇤(y) = �a⇤(y), so

a⇤
✓
1

y

◆
= �a⇤(y),

loga

✓
1

y

◆
= � loga(y). (20.5)

Here is a summary of what we have established so far.

Fact 20.5. Logarithm Laws

loga(a
x) = x loga(1) = 0

aloga(x) = x loga(a) = 1

loga(xy) = loga(x) + loga(y) loga(x
y) = y loga(x)

loga

✓
x

y

◆
= loga(x)� loga(y) loga

✓
1

y

◆
= � loga(y)

The one law in this list that we have not yet verified is loga(x
y) = y loga(x).

This rule says that taking loga of xy converts the exponent y to a product. Because
products tend to be simpler than exponents, this property can be tremendously
useful. To verify it, just notice that

a⇤(xy) = a⇤
⇣�

aa
⇤
(x)

�y⌘
. . . . . . . . . . . . . . . . . . because x = aa

⇤
(x)

= a⇤
⇣
ay a⇤

(x)
⌘

. . . . . . . . . . . . . . . . because
�
ab
�y

= ayb

= y a⇤(x) . . . . . . . . . . . . . . . using a⇤
⇣
a

⌘
=

Therefore a⇤(xy) = y a⇤(x), or loga(x
y) = y loga(x), as listed above.

By the above laws, certain expressions involving logarithms can be transformed
into simpler expressions. Some examples follow.
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Example 20.2. Simplify log
2
(28x)� log

2
(7x).

To solve this we use the laws of logarithms to get

log
2
(28x)� log

2
(7x) = log

2

✓
28x

7x

◆

= log
2
(4)

= 2.

As mentioned above, the law loga(x
r) = r loga(x) is extremely useful

because it means taking loga of xr converts the exponent r to a product. Con-
sequently loga can be used to solve an equation for a quantity that appears as an
exponent, as in the next example.
Example 20.3. Solve the equation 5x+7 = 2x. In other words we want to find the
value of x that makes this true. Since x occurs as an exponent, we take log

10
of

both sides and simplify with log laws.

log
�
5x+7

�
= log (2x)

(x+ 7) · log(5) = x · log(2)
x log(5) + 7 log(5) = x log(2)

x log(5)� x log(2) = �7 log(5)

x
�
log(5)� log(2)

�
= �7 log(5)

x =
�7 log(5)

log(5)� log(2)
⇡ �12.2952955815

where we have used a calculator in the final step.

Example 20.4. Suppose a is positive. Solve the equation ay = x for y.

The variable y is an exponent, so we take log of both sides and simplify.

log (ay) = log(x)

y log(a) = log(x)

y =
log(x)

log(a)

Therefore, in terms of x and a, the quantity y is the number log(x)
log(a) .

Example 20.4 would have been quicker if we had used loga instead of log. Lets’s
do the same problem again with this alternative approach.

Example 20.5. Suppose a is positive. Solve the equation ay = x for y.

The variable y is an exponent, so we take loga of both sides and simplify.

loga (a
y) = logb(x)

y = loga(x)

Therefore, in terms of x and a, the quantity y is the number loga(x).



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 460

460 Discrete Math Elements

Examples 20.4 and 20.5 say the solution of ay = x can be expressed either as
log(x)
log(a) or loga(x). The first solution may be preferable, as your calculator has no

loga button. But what is significant is that these two methods arrive at the same

solution, which is to say loga(x) =
log(x)
log(a) . To summarize:

Fact 20.6. Change of Base Formula

loga(x) =
log(x)

log(a)

The change of base formula says that a logarithm loga(x) to any base a can be
expressed entirely in terms of log

10
.

Example 20.6. By the change of base formula, log
2
(5) =

log(5)

log(2)
⇡ 1.698970

0.301029
=

2.3219280. This seems about right because log
2
(5) = 2⇤(5) is the number y for

which 2y = 5. Now, 22 = 4 < 5 < 8 = 23, so y should be between 2 and 3. This
example shows in fact y = 2.3219280, to seven decimal places.

Exercises for Section 20.4
Find the following logarithms with pencil and paper (no calculator).

1. log
3
(81)

2. log
3

�
1

9

�

3. log
3
(
p
3)

4. log
3

⇣
1p
3

⌘

5. log
3
(1)

6. log(1000)

7. log( 3
p
10)

8. log( 3
p
100)

9. log(0.01)

10. log(1)
11. log

4
(4)

12. log
4
(2)

13. log
4
(
p
2)

14. log
4
(16)

15. log
4
(8)

Simplify the following expressions.

16. log
2
(2sin(x))

17. 10log(5x+1)

18. log
�
10x10

�

19. log(2) + log(5)

20. log(2) + log(2x) + log(25x)
21. log

2
(2)� log

2
(5x) + log

2
(20x)

Write the following expressions as a single logarithm.

22. 5 log
2
(x3 + 1) + log

2
(x)� log

2
(3)

23. log
2
(sin(x))+ 1

2
log

2
(4x)�3 log

2
(3)

24. 2 + log(5) + 2 log(7)
25. log(2x) + log(5x)

Break up the following expressions into simpler logarithms.

26. log
2

�
x3(x+ 1)

�

27. log
2

�
(x+ 5)4x7

p
x+ 1

� 28. log
�p

x(x+ 3)6
�

29. log
3

⇣
3

5
3px

⌘

Use the change of base formula to express the following logarithms in terms of log.

30. log
2
(5)

31. log
3
(5)

32. log
4
(5)

33. log
5
(5)

34. log(8)
35. log

9
(10)

36. log(10)
37. log

2
(33)

38. log
3
(8)

39. log
3
(9)
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20.5 The Triangle Inequality

The next chapter uses absolute value extensively, so it is fitting to quickly review
it. As you know, the absolute value of a real number x is the non-negative number

|x| =
⇢

x if x � 0
�x if x < 0.

Fundamental properties of absolute value include |xy| = |x|·|y| and x  |x|. Another
property—used often in proofs—is the triangle inequality:

Theorem 20.7. (Triangle inequality) If x, y, z 2 R, then |x�y|  |x�z|+|z�y|.

Proof. The name triangle inequality comes from the fact that the theorem can be
interpreted as asserting that for any “triangle” on the number line, the length of
any side never exceeds the sum of the lengths of the other two sides. Indeed, the
distance between any two numbers a, b 2 R is |a � b|. With this in mind, observe
in the diagrams below that regardless of the order of x, y, z on the number line, the
inequality |x� y|  |x� z|+ |z � y| holds.

x y z| {z }
|x�z|

|x�y|
z }| {

|z�y|
z }| {

y x z| {z }
|z�y|

|x�y|
z }| {

|x�z|
z }| {

z x y| {z }
|z�y|

|x�z|
z }| {

|x�y|
z }| {

x z y| {z }
|x�y|

|x�z|
z }| {

|z�y|
z }| {

y z x| {z }
|x�y|

|z�y|
z }| {

|x�z|
z }| {

z y x| {z }
|x�z|

|z�y|
z }| {

|x�y|
z }| {

(These diagrams show x, y, z as distinct points. If x = y, x = z or y = z, then
|x� y|  |x� z|+ |z � y| holds automatically.)

The triangle inequality says the shortest route from x to y avoids z unless z lies
between x and y. Several useful results flow from it. Put z = 0 to get

|x� y|  |x|+ |y| for any x, y 2 R. (20.6)

Replacing the y in this inequality with �y results in

|x+ y|  |x|+ |y| for any x, y 2 R. (20.7)

Also by the triangle inequality, |x� 0|  |x� (�y)|+ |� y � 0|, which yields

|x|� |y|  |x+ y| for any x, y 2 R. (20.8)

The three inequalities (20.6), (20.7) and (20.8) are very useful in proofs. They can
be iterated. For example, (20.6) and 20.7) together yield

|x� y + z|  |x|+ |y|+ |z| for any x, y, z 2 R, (20.9)

and so on. Collectively we call inequalities (20.6)–(20.8) the triangle inequality, as
they are just variants of Theorem 20.7.
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20.6 A Word about Calculus

This text has so far avoided using calculus in an e↵ort to be more self-contained.
But this comes at a cost in Chapter 21, where certain proofs and computations that
would be very easy with calculus will be more complicated without it. Although we
will mostly continue to avoid calculus, certain exercises will be pitched to readers
that know it. This brief section reviews two calculus topics relevant in Chapter 21.

Recall that the derivative of a function f is another function f 0 for which f 0(x)
equals the slope of the tangent line to the graph of y = f(x) at the point

�
x, f(x)

�
.

x

y

x

�
x, f(x)

�

slope = f 0(x)

y = f(x)

The derivative f 0(x) of a function y = f(x) has a variety of notations, including

f 0(x) =
d

dx

h
f(x)

i
=

dy

dx
.

You learned many derivative rules in your calculus course. To mention just two,
d

dx

h
xa

i
= nxn�1 (power rule)

d

dx

h
loga(x)

i
=

1

x ln(a)
. (logarithm rule)

Because f 0(x) gives the slope of the tangent to y = f(x) at x, it gives information
about where f is increasing or decreasing. If f 0(x) > 0, then the slope at x is
positive, so f is increasing at x. If f 0(x) < 0, then f is decreasing at x.

Fact 20.8. Suppose f(x) is a function that has a derivative f 0(x).
• If at some x value, f 0(x) > 0, then y = f(x) is increasing at x
• If at some x value, f 0(x) < 0, then y = f(x) is decreasing at x

In your calculus class you learned to apply this fact to find where functions
increase and decrease. That process will often be useful in Chapter 21. L’Hôpital’s
Rule is another calculus topic that can simplify some upcoming computations.

Fact 20.9. L’Hôpital’s Rule

If lim
x!c

f(x)
g(x) exists and has indeterminate form 0

0
or 1

1 , then lim
x!c

f(x)
g(x) = lim

x!c

f 0
(x)

g0(x) .

Do not be concerned if all this seems unfamiliar, for it is not absolutely essential
in Chapter 21. But it is a blunt fact that any serious student of discrete mathematics
should know calculus.
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Solutions for Chapter 20

Section 20.1

(1) 251/2 =
p
25 = 5 (2) 1

4

1/2
=

q
1
4 = 1

2

(3) (�27)1/3 = 3
p
�27 = �3 (4) (�27)4/3 = 3

p
�27

4
= (�3)4 = 81

(5) 2�2 = 1
22

= 1
4 (6) 1

2

�1
= 1

1
2
= 2

(7) 1
2

�3
= 1

( 1
2 )

3 = 1
1
8
= 8 (8)

p
2
6
=

⇣p
2
2
⌘3

= 23 = 8

(9)
⇣p

3
2

⌘�4
= 1⇣p

3
2

⌘4 = 1
9
16

= 16
9 (10)

⇣�
2
3

� 3
2

⌘2

=

✓q
2
3

3
◆2

=

✓q
2
3

2
◆3

=
�
2
3

�3
= 8

27

(11)

✓p
2
p

2
◆p

2

=
p
2
p

2
p
2
=

p
2
2
= 2

Section 20.4

(1) log3(81) = 3⇤(81) = 4 (2) log3(
p
3) = 3⇤(3

1
2 = 1

2

(3) log3(1) = 3⇤(1) = 0 (4) log( 3
p
10) = 10⇤(10

1
3 ) = 1

3

(5) log(0.01) = 10⇤(10�2) = �2 (6) log4(4) = 4⇤(4) = 1

(7) log4(
p
2) = log4(2

1
2 ) = 1

2 log4(2) =
1
4
(8) log4(8) = log4(2

3) = 3 log4(2) = 3 · 1
2 =

3
2

(9) 10log(5x+1) = 5x+ 1. (10) log(2) + log(5) = log(2 · 5) = log(10) = 1

(11)

log2(2)� log2(5x) + log2(20x) = log2

✓
2
5x

◆
+ log2(20x) = log2

✓
40x
5x

◆
= log2(8) = 3

(12) log2(sin(x)) +
1
2
log2(4x)� 3 log2(3) = log2(sin(x)) + log2

⇣
(4x)

1
2

⌘
� log2(3

3) =

log2(sin(x)) + log2 (2
p
x)� log2(27) = log2

⇣
2
p
x sin(x)
27

⌘
.

(13) log(2x) + log(5x) = log(2x · 5x) = log(10x2) = log(10) + log(x2) = 1 + 2 log(x)

(14) log2
�
(x+ 5)4x7px+ 1

�
= log2(x+ 5)4 + log2(x

7) + log2(
p
x+ 1) =

4 log2(x+5)+7 log2(x)+log2

⇣
(x+ 1)

1
2

⌘
= 4 log2(x+5)+7 log2(x)+

1
2 log2(x+1)

(15) log3

⇣
3

5 3px

⌘
= log3(3) � log3(5

3
p
x) = 1 � log3(5) � log3

⇣
x

1
3

⌘
= 1 � log3(5) �

1
3 log3(x)
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(16) log3(5) =
log(5)
log(3)

⇡ 1.4649 (17) log5(5) =
log(5)
log(5)

= 1

(18) log9(10) =
log(10)
log(9)

⇡ 1.0479 (19) log2(33) =
log(33)
log(2)

⇡ 5.04438

(20) log3(9) =
log(9)
log(3)

= 2


