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Chapter 15

Mathematical Induction

This chapter explains a powerful proof technique called mathematical induction
(or just induction for short). To motivate it, let’s first examine the kinds of
statements that induction is used to prove. Consider the following statement.

Conjecture. The sum of the first n odd natural numbers equals n2.

The table below illustrates what this conjecture says. Each row starts with a
natural number n, followed by the sum of the first n odd natural numbers, then n2.

n sum of the first n odd natural numbers n2

1 1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 1 + 3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 1 + 3 + 5 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 1 + 3 + 5 + 7 = . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 1 + 3 + 5 + 7 + 9 = . . . . . . . . . . . . . . . . . . . . . 25
...

...
...

n 1 + 3 + 5 + 7 + 9 + 11 + · · ·+ (2n� 1) = n2

...
...

...

Note that in the first five lines of the table, the sum of the first n odd numbers
really does add up to n2. Notice also that these first five lines indicate that the nth
odd natural number (the last number in each sum) is 2n � 1. (For instance, when
n = 2, the second odd natural number is 2 · 2 � 1 = 3; when n = 3, the third odd
natural number is 2 · 3� 1 = 5, etc.)

The table raises a question. Does the sum 1 + 3 + 5 + 7 + · · ·+ (2n� 1) really
always equal n2? In other words, is the conjecture true?

Let’s rephrase this. For each natural number n (i.e., for each line of the table),
we have a statement Sn, as follows:

327
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S1 : 1 = 12

S2 : 1 + 3 = 22

S3 : 1 + 3 + 5 = 32

S4 : 1 + 3 + 5 + 7 = 42

...
Sn : 1 + 3 + 5 + 7 + · · ·+ (2n� 1) = n2

...

Our question is: Are all of these statements true?
Mathematical induction answers just this kind of question, where we have an

infinite list of statements S1, S2, S3, . . . that we want to prove true. The method
is simple. To visualize it, think of the statements as dominoes, lined up in a row.
Suppose you can prove the first statement S1, and symbolize this as domino S1

being knocked down. Also, say you can prove that any statement Sk being true
(falling) forces the next statement Sk+1 to be true (to fall). Then S1 falls, knocking
down S2. Next S2 falls, knocking down S3, then S3 knocks down S4, and so on. The
inescapable conclusion is that all the statements are knocked down (proved true).

The Simple Idea Behind Mathematical Induction

Statements are lined up like dominoes.

(1) Suppose the first statement falls (is proved true);

(2) Suppose the kth falling always causes the (k + 1)th to fall;

Then all must fall (all are proved true).
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15.1 Proof by Induction

This domino analogy motivates an outline for our next major proof technique: proof
by mathematical induction.

Outline for Proof by Induction

Proposition The statements S1, S2, S3, S4, . . . are all true.

Proof. (Induction)

(1) Prove that the first statement S1 is true.
(2) Given any integer k � 1, prove that the statement Sk ) Sk+1 is true.
It follows by mathematical induction that every Sn is true.

In this setup, the first step (1) is called the basis step. Because S1 is usually
a very simple statement, the basis step is often quite easy to do. The second step
(2) is called the inductive step. In the inductive step direct proof is most often
used to prove Sk ) Sk+1, so this step is usually carried out by assuming Sk is true
and showing this forces Sk+1 to be true. The assumption that Sk is true is called
the inductive hypothesis.

Now let’s apply this technique to our original conjecture that the sum of the
first n odd natural numbers equals n2. Our goal is to show that for each n 2 N,
the statement Sn : 1 + 3 + 5 + 7 + · · · + (2n � 1) = n2 is true. Before getting
started, observe that Sk is obtained from Sn by plugging k in for n. Thus Sk is the
statement Sk : 1 + 3 + 5 + 7 + · · · + (2k � 1) = k2. Also, we get Sk+1 by plugging
in k + 1 for n, so that Sk+1 : 1 + 3 + 5 + 7 + · · ·+ (2(k + 1)� 1) = (k + 1)2.

Proposition If n 2 N, then 1 + 3 + 5 + 7 + · · ·+ (2n� 1) = n2.

Proof. We will prove this with mathematical induction.

(1) Observe that if n = 1, this statement is 1 = 12, which is obviously true.
(2) We must now prove Sk ) Sk+1 for any k � 1. That is, we must show that if

1+3+5+7+· · ·+(2k�1) = k2, then 1+3+5+7+· · ·+(2(k+1)�1) = (k+1)2.
We use direct proof. Suppose 1 + 3 + 5 + 7 + · · ·+ (2k � 1) = k2. Then

1 + 3 + 5 + 7 + · · · · · · · · · · · · · · ·+ (2(k + 1)� 1) =

1 + 3 + 5 + 7 + · · ·+ (2k � 1) + (2(k + 1)� 1) =
�
1 + 3 + 5 + 7 + · · ·+ (2k � 1)

�
+ (2(k + 1)� 1) =

k2 + (2(k + 1)� 1) = k2 + 2k + 1

= (k + 1)2.

Thus 1+3+5+7+ · · ·+(2(k+1)�1) = (k+1)2. This proves that Sk ) Sk+1.

It follows by induction that 1+ 3+ 5+ 7+ · · ·+ (2n� 1) = n2 for every n 2 N.
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In induction proofs it is usually the case that the first statement S1 is indexed by
the natural number 1, but this need not always be so. Depending on the problem,
the first statement could be S0, or Sm for any other integer m.

In the next example, the statements are S0, S1, S2, S3, . . . The same outline is
used, except that the basis step verifies S0, not S1. We will also have occasion
to use the Binomial Theorem (Theorem 6.6 on page 133) in expanding (k + 1)5 =�
5

0

�
k510+

�
5

1

�
k411+

�
5

2

�
k312+

�
5

3

�
k213+

�
5

4

�
k114+

�
5

5

�
k015. This simplifies to (k+1)5 =

k5 + 5k4 + 10k3 + 10k2 + 5k + 1 (with coe�cients from the fifth row of Pascal’s
triangle).

Proposition. If n is a non-negative integer, then 5 | (n5 � n).

Proof. We will prove this with mathematical induction. Observe that the first
non-negative integer is 0, so the basis step involves n = 0.

(1) If n = 0, this statement is 5 | (05 � 0) or 5 | 0, which is obviously true.

(2) Let k � 0. We need to prove that if 5 | (k5 � k), then 5 | ((k + 1)5 � (k + 1)).
We use direct proof. Suppose 5 | (k5 � k). Thus k5 � k = 5a for some a 2 Z.
Observe that

(k + 1)5 � (k + 1) = k5 + 5k4 + 10k3 + 10k2 + 5k + 1� k � 1

= (k5 � k) + 5k4 + 10k3 + 10k2 + 5k

= 5a+ 5k4 + 10k3 + 10k2 + 5k

= 5
�
a+ k4 + 2k3 + 2k2 + k

�
.

This shows (k+1)5�(k+1) is an integer multiple of 5, so 5 | ((k+1)5�(k+1)).
We have now shown that 5 | (k5 � k) implies 5 | ((k + 1)5 � (k + 1)).

It follows by induction that 5 | (n5 � n) for all non-negative integers n.

As noted, induction is used to prove statements of the form 8n 2 N, Sn. But
notice the outline does not work for statements of form 8n 2 Z, Sn (where n is in
Z, not N). The reason is that if you are trying to prove 8n 2 Z, Sn by induction,
and you’ve shown S1 is true and Sk ) Sk+1, then it only follows from this that Sn

is true for n � 1. You haven’t proved that any of the statements S0, S�1, S�2, . . .
are true. If you ever want to prove 8n 2 Z, Sn by induction, you have to show that
some Sa is true and Sk ) Sk+1 and Sk ) Sk�1.

Unfortunately, the term mathematical induction is sometimes confused with in-
ductive reasoning, that is, the process of reaching the conclusion that something is
likely to be true based on prior observations of similar circumstances. Please note
that mathematical induction, as introduced here, is a rigorous method that proves
statements with absolute certainty.

To round out this section, we present four additional induction proofs.
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Proposition. If n 2 Z and n � 0, then
nX

i=0

i · i! = (n+ 1)!� 1.

Proof. We will prove this with mathematical induction.

(1) If n = 0, this statement is

0X

i=0

i · i! = (0 + 1)!� 1.

Since the left-hand side is 0 · 0! = 0, and the right-hand side is 1!� 1 = 0, the
equation

P
0

i=0
i · i! = (0 + 1)!� 1 holds, as both sides are zero.

(2) Consider any integer k � 0. We must show that Sk implies Sk+1. That is, we
must show that

kX

i=0

i · i! = (k + 1)!� 1

implies

k+1X

i=0

i · i! = ((k + 1) + 1)!� 1.

We use direct proof. Suppose
kX

i=0

i · i! = (k + 1)!� 1. Using this, we get

k+1X

i=0

i · i! =
 

kX

i=0

i · i!
!

+ (k + 1)(k + 1)!

=
⇣
(k + 1)!� 1

⌘
+ (k + 1)(k + 1)!

= (k + 1)! + (k + 1)(k + 1)!� 1

=
�
1 + (k + 1)

�
(k + 1)!� 1

= (k + 2)(k + 1)!� 1

= (k + 2)!� 1

= ((k + 1) + 1)!� 1.

Therefore
k+1X

i=0

i · i! = ((k + 1) + 1)!� 1.

It follows by induction that
nX

i=0

i · i! = (n+ 1)!� 1 for every integer n � 0.
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The next example illustrates a trick that is occasionally useful. You know that
you can add equal quantities to both sides of an equation without violating equality.
But don’t forget that you can add unequal quantities to both sides of an inequality,
as long as the quantity added to the bigger side is bigger than the quantity added
to the smaller side. For example, if x  y and a  b, then x+ a  y + b. Similarly,
if x  y and b is positive, then x  y+ b. This oft-forgotten fact is used in the next
proof.

Proposition. The inequality 2n  2n+1 � 2n�1 � 1 holds for each n 2 N.

Proof. We will prove this with mathematical induction.

(1) If n = 1, this statement is 21  21+1 � 21�1 � 1, and this simplifies to 2 
4� 1� 1, which is obviously true.

(2) Say k � 1. We use direct proof to show that 2k  2k+1 � 2k�1 � 1 implies
2k+1  2(k+1)+1 � 2(k+1)�1 � 1. Suppose 2k  2k+1 � 2k�1 � 1. Then:

2k  2k+1 � 2k�1 � 1

2
�
2k
�

 2
�
2k+1 � 2k�1 � 1

�
(multiply both sides by 2)

2k+1  2k+2 � 2k � 2

2k+1  2k+2 � 2k � 2 + 1 (add 1 to the bigger side)

2k+1  2k+2 � 2k � 1

2k+1  2(k+1)+1 � 2(k+1)�1 � 1.

We have now shown that 2k  2k+1�2k�1�1 being true forces the inequality
2k+1  2(k+1)+1 � 2(k+1)�1 � 1 to be true.

It follows by induction that 2n  2n+1 � 2n�1 � 1 for each n 2 N.

Actually, induction was not necessary in the above proposition. Here is an non-
inductive approach: Start with the equation 2n = 1

2
2n+1, from which 2n < 3

4
2n+1.

From this, 2n  3

4
2n+1 � 1 and then 2n  2n+1 � 1

4
2n+1 � 1, which simplifies as

2n  2n+1 � 2n�1 � 1.

We next prove that if n 2 N, then the inequality (1 + x)n � 1 + nx holds for all
x 2 R with x > �1. Thus we will need to prove that the statement

Sn : (1 + x)n � 1 + nx for every x 2 R with x > �1

is true for every natural number n. This is (only) slightly di↵erent from our other
examples, which proved statements of the form 8n 2 N, P (n), where P (n) is a
statement about the number n. This time we are proving something of form

8n 2 N, P (n, x),

where the statement P (n, x) involves not only n, but also a second variable x. (For
the record, the inequality (1 + x)n � 1 + nx is known as Bernoulli’s inequality.)
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Proposition. If n 2 N, then (1 + x)n � 1 + nx for all x 2 R with x > �1.

Proof. We will prove this with mathematical induction.

(1) For the basis step, notice that when n = 1 the statement is (1+x)1 � 1+1 ·x ,
and this is true because both sides equal 1 + x.

(2) Assume that for some k � 1, the statement (1 + x)k � 1 + kx is true for all
x 2 R with x > �1. From this we need to prove (1 + x)k+1 � 1 + (k + 1)x.
Now, 1 + x is positive because x > �1, so we can multiply both sides of
(1 + x)k � 1 + kx by (1 + x) without changing the direction of the �.

(1 + x)k(1 + x) � (1 + kx)(1 + x)

(1 + x)k+1 � 1 + x+ kx+ kx2

(1 + x)k+1 � 1 + (k + 1)x+ kx2

The above term kx2 is positive, so removing it from the right-hand side will
only make that side smaller. Thus we get (1 + x)k+1 � 1 + (k + 1)x.

Next, an example where the basis step involves more than routine checking. (It
will be used later, so it is numbered for reference.)

Proposition 15.1. Suppose a1, a2, . . . , an are n integers, where n � 2.
If p is prime and p | (a1 · a2 · a3 · · · an), then p | ai for at least one of the ai.

Proof. The proof is induction on n.

(1) The basis step involves n = 2. Let p be prime and suppose p | (a1a2). We need
to show that p | a1 or p | a2, or equivalently, if p - a1, then p | a2. Thus suppose
p - a1. Since p is prime, it follows that gcd(p, a1) = 1. By Proposition 13.1
(on page 307), there are integers k and ` for which 1 = pk + a1`. Multiplying
this by a2 gives

a2 = pka2 + a1a2`.

As we are assuming that p divides a1a2, it is clear that p divides the expression
pka2 + a1a2` on the right; hence p | a2. We’ve now proved that if p | (a1a2),
then p | a1 or p | a2. This completes the basis step.

(2) Suppose that k � 2, and p | (a1 · a2 · · · ak) implies then p | ai for some ai.
Now let p | (a1 · a2 · · · ak · ak+1). Then p |

�
(a1 · a2 · · · ak) · ak+1

�
. By what we

proved in the basis step, it follows that p | (a1 · a2 · · · ak) or p | ak+1. This and
the inductive hypothesis imply that p divides one of the ai.

Please test your understanding now by working a few exercises.
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15.2 Proof by Strong Induction

Sometimes in an induction proof it is hard to show that Sk implies Sk+1.
It may be easier to show some “lower” Sm (with m < k) implies Sk+1.
For such situations there is a slight variant of induction called strong induction.
Strong induction works just like regular induction, except that in Step (2) instead
of assuming Sk is true and showing this forces Sk+1 to be true, we assume that all
the statements S1, S2, . . . , Sk are true and show this forces Sk+1 to be true. Thus
strong induction uses k times as much information as regular induction to force
Sk+1 to be true. The idea is that if the first k dominoes falling always make the
(k + 1)th domino to fall, then all the dominoes must fall. Here is the outline.

Outline for Proof by Strong Induction

Proposition. The statements S1, S2, S3, S4, . . . are all true.

Proof. (Strong induction)
(1) Prove the first statement S1. (Or the first several Sn, if needed.)
(2) Given any integer k � 1, prove (S1 ^ S2 ^ S3 ^ · · · ^ Sk) ) Sk+1.

This is useful when Sk does not easily imply Sk+1. You might be better served by
showing some earlier statement (Sk�1 or Sk�2 for instance) implies Sk. In strong
induction you can use any (or all) of S1, S2, . . . , Sk to prove Sk+1.

Here is a classic “first” example of a strong induction proof. The problem is to
prove that you can achieve any postage of 8 cents or more, exactly, using only 3¢ and
5¢ stamps. For example, for a postage of 47 cents, you could use nine 3¢ stamps
and four 5¢ stamps. Let Sn be the statement Sn: You can get a postage of exactly
n¢ using only 3¢ and 5¢ stamps. Thus we need to prove all the statements S8, S9,
S10, S11 . . . are true. In the proof, to show Sk+1 is true we will need to “go back”
two steps from Sk, so the basis step involves verifying the first two statements.

Proposition. Any postage of 8¢ or more is possible using 3¢ and 5¢ stamps.

Proof. We will use strong induction.

(1) The proposition is true for a postages of 8 and 9 cents: For 8 cents, use one
3¢ stamp and one 5¢ stamp. For 9 cents, use three 3¢ stamps.

(2) Let k � 9, and for each 8  m  k, assume a postage of m cents can
be obtained exactly with 3¢ and 5¢ stamps. (That is, assume statements
S8, S9, . . . , Sk are all true.) We must show that Sk+1 is true, that is, (k + 1)-
cents postage can be achieved with 3¢ and 5¢ stamps. By assumption, Sk�2

is true. Thus we can get (k � 2)-cents postage with 3¢ and 5¢ stamps. Now
just add one more 3¢ stamp, and we have (k � 2) + 3 = k + 1 cents postage
with 3¢ and 5¢ stamps.

This completes the proof by strong induction.
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Our next example proves that 12 | (n4 � n2) for any n 2 N. But first, let’s
see how regular induction is problematic. Regular induction starts by checking
12 | (n4 � n2) for n = 1. This reduces to 12 | 0, which is true. Next we assume
12 | (k4 � k2) and try to show that this implies 12 | ((k + 1)4 � (k + 1)2). Now,
12 | (k4 � k2) means k4 � k2 = 12a for some a 2 Z. We want to use this to get
(k + 1)4 � (k + 1)2 = 12b for some integer b. Working it out,

(k + 1)4 � (k + 1)2 = (k4 + 4k3 + 6k2 + 4k + 1)� (k2 + 2k + 1)
= (k4 � k2) + 4k3 + 6k2 + 6k
= 12a+ 4k3 + 6k2 + 6k.

At this point we’re stuck because we can’t factor out a 12.
Let’s try strong induction. Say Sn is the statement Sn : 12 | (n4 � n2). In

strong induction, we assume each of S1, S2, . . . , Sk is true, and show that this makes
Sk+1 true. In particular, if S1 through Sk are true, then Sk�5 is true, provided
1  k � 5 < k. We will show Sk�5 ) Sk+1 instead of Sk ) Sk+1. For this to make
sense, our basis step must check that S1, S2, S3, S4, S5, S6 are all true. Once this is
established, Sk�5 ) Sk+1 will imply that the other Sk are all true. For example, if
k = 6, then Sk�5 ) Sk+1 is S1 ) S7, so S7 is true; for k = 7, then Sk�5 ) Sk+1 is
S2 ) S8, so S8 is true, etc.

Proposition. If n 2 N, then 12 | (n4 � n2).

Proof. We will prove this with strong induction.

(1) First note that the statement is true for the first six positive integers:
If n = 1, 12 divides 14 � 12 = 0. If n = 4, 12 divides 44 � 42 = 240.
If n = 2, 12 divides 24 � 22 = 12. If n = 5, 12 divides 54 � 52 = 600.
If n = 3, 12 divides 34 � 32 = 72. If n = 6, 12 divides 64 � 62 = 1260.

(2) For k � 6, assume 12 | (m4 �m2) for 1  m  k (i.e., S1, S2, . . . , Sk are true).
We must show Sk+1 is true, that is, 12 |

�
(k + 1)4 � (k + 1)2

�
. Now, Sk�5

being true means 12 |
�
(k � 5)4 � (k � 5)2

�
. To simplify, put k � 5 = ` so

12 | (`4 � `2), meaning `4 � `2 = 12a for a 2 Z, and k + 1 = `+ 6 . Then:

(k + 1)4 � (k + 1)2 = (`+ 6)4 � (`+ 6)2

= `4 + 24`3 + 216`2 + 864`+ 1296� (`2 + 12`+ 36)

= (`4 � `2) + 24`3 + 216`2 + 852`+ 1260

= 12a+ 24`3 + 216`2 + 852`+ 1260

= 12
�
a+ 2`3 + 18`2 + 71`+ 105

�
.

Because
�
a+ 2`3 + 18`2 + 71`+ 105

�
2 Z, we get 12 |

�
(k + 1)4 � (k + 1)2

�
.

This shows by strong induction that 12 | (n4 � n2) for every n 2 N.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 336

336 Discrete Math Elements

15.3 Proof by Smallest Counterexample

This section introduces yet another proof technique, called proof by smallest
counterexample. It is a hybrid of induction and proof by contradiction. It has
the nice feature that it leads you straight to a contradiction. It is therefore more
“automatic” than the proof by contradiction that was introduced in Chapter 11.

Outline for Proof by Smallest Counterexample

Proposition. The statements S1, S2, S3, S4, . . . are all true.

Proof. (Smallest counterexample)
(1) Check that the first statement S1 is true.
(2) For the sake of contradiction, suppose not every Sn is true.
(3) Let k > 1 be the smallest integer for which Sk is false.
(4) Then Sk�1 is true and Sk is false. Use this to get a contradiction.

Notice that this setup leads you to a point where Sk�1 is true and Sk is false.
It is here, where true and false collide, that you will find a contradiction.

Proposition. If n 2 N, then 4 | (5n � 1).

Proof. We use proof by smallest counterexample. (We will number the steps to
match the outline, but that is not usually done in practice.)

(1) If n = 1, then the statement is 4 | (51 � 1), or 4 | 4, which is true.
(2) For sake of contradiction, suppose it’s not true that 4 | (5n � 1) for all n.
(3) Let k > 1 be the smallest integer for which 4 - (5k � 1).
(4) Then 4 | (5k�1 � 1), so there is an integer a for which 5k�1 � 1 = 4a. Then:

5k�1 � 1 = 4a

5(5k�1 � 1) = 5 · 4a
5k � 5 = 20a

5k � 1 = 20a+ 4

5k � 1 = 4(5a+ 1)

This means 4 | (5k � 1), a contradiction, because 4 - (5k � 1) in Step 3. Thus,
we were wrong in Step 2 to assume that it is untrue that 4 | (5n � 1) for every
n. Therefore 4 | (5n � 1) is true for every n.

We next prove the fundamental theorem of arithmetic, which says any
integer greater than 1 has a unique prime factorization. For example, 12 factors
into primes as 12 = 2 · 2 · 3, and moreover any factorization of 12 into primes uses
exactly the primes 2, 2 and 3. Our proof combines the techniques of induction,
cases, minimum counterexample and the idea of uniqueness of existence outlined
at the end of Section 13.3. We dignify this fundamental result with the label of
“Theorem.”
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Theorem 15.1. (Fundamental Theorem of Arithmetic) Any integer n > 1 has a
unique prime factorization. That is, if n = p1 ·p2 ·p3 · · · pk and n = a1 ·a2 ·a3 · · · a`
are two prime factorizations of n, then k = `, and the primes pi and ai are the
same, except that they may be in a di↵erent order.

Proof. Suppose n > 1. We first use strong induction to show that n has a prime
factorization. For the basis step, if n = 2, it is prime, so it is already its own prime
factorization. Let n � 2 and assume every integer between 2 and n (inclusive)
has a prime factorization. Consider n + 1. If it is prime, then it is its own prime
factorization. If it is not prime, then it factors as n+1 = ab with a, b > 1. Because
a and b are both less than n+1 they have prime factorizations a = p1 · p2 · p3 · · · pk
and b = p0

1
· p0

2
· p0

3
· · · p0`. Then

n+ 1 = ab = (p1 · p2 · p3 · · · pk)(p01 · p02 · p03 · · · p0`)

is a prime factorization of n+ 1. This competes the proof by strong induction that
every integer greater than 1 has a prime factorization.

Next we use proof by smallest counterexample to prove that the prime factoriza-
tion of any n � 2 is unique. If n = 2, then n clearly has only one prime factorization,
namely itself. Assume for the sake of contradiction that there is an n > 2 that has
di↵erent prime factorizations n = p1 · p2 · p3 · · · pk and n = a1 · a2 · a3 · · · a`. As-
sume n is the smallest number with this property. From n = p1 · p2 · p3 · · · pk,
we see that p1 | n, so p1 | (a1 · a2 · a3 · · · a`). By Proposition 15.1 (page 333),
p1 divides one of the primes ai. As ai is prime, we have p1 = ai. Dividing
n = p1 · p2 · p3 · · · pk = a1 · a2 · a3 · · · a` by p1 = ai yields

p2 · p3 · · · pk = a1 · a2 · a3 · · · ai�1 · ai+1 · · · a`.

These two factorizations are di↵erent, because the two prime factorizations of n were
di↵erent. (Remember: the primes p1 and ai are equal, so the di↵erence appears in
the remaining factors, displayed above.) But also the above number p2 · p3 · · · pk is
smaller than n, and this contradicts the fact that n was the smallest number with
two di↵erent prime factorizations.

One word of warning about proof by smallest counterexample. In proofs in other
textbooks or in mathematical papers, it often happens that the writer doesn’t tell
you up front that proof by smallest counterexample is being used. Instead, you
will have to read through the proof to glean from context that this technique is
being used. In fact, the same warning applies to all of our proof techniques. If you
continue with mathematics, you will gradually gain through experience the ability
to analyze a proof and understand exactly what approach is being used when it is
not stated explicitly. Frustrations await you, but do not be discouraged by them.
Frustration is a natural part of anything that’s worth doing.
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15.4 Fibonacci Numbers

Leonardo Pisano, now known as Fibonacci, was a mathematician born around 1175
in what is now Italy. His most significant work was a book Liber Abaci, which is
recognized as a catalyst in medieval Europe’s slow transition from Roman numbers
to the Hindu-Arabic number system. But he is best known today for a number
sequence that he described in his book and that bears his name. The Fibonacci
sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

The numbers that appear in this sequence are called Fibonacci numbers. The
first two numbers are 1 and 1, and thereafter any entry is the sum of the previous
two entries. For example 3 + 5 = 8, and 5 + 8 = 13, etc. We denote the nth term
of this sequence as Fn. Thus F1 = 1, F2 = 1, F3 = 2, F4 = 3, F7 = 13 and so
on. Notice that the Fibonacci Sequence is entirely determined by the rules F1 = 1,
F2 = 1, and Fn = Fn�1 + Fn�2.

We introduce Fibonacci’s sequence here partly because it is something everyone
should know about, but also because it is a great source of induction problems.
This sequence, which appears with surprising frequency in nature, is filled with
mysterious patterns and hidden structures. Some of these structures will be revealed
to you in the examples and exercises.

We emphasize that the condition Fn = Fn�1 + Fn�2 (or equivalently Fn+1 =
Fn + Fn�1) is the perfect setup for induction. It suggests that we can determine
something about Fn by looking at earlier terms of the sequence. In using induction
to prove something about the Fibonacci sequence, you should expect to use the
equation Fn = Fn�1 + Fn�2 somewhere.

For our first example we will prove that F 2

n+1
� Fn+1Fn � F 2

n = (�1)n for any
natural number n. For example, if n = 5 we have F 2

6
�F6F5�F 2

5
= 82�8 ·5�52 =

64� 40� 25 = �1 = (�1)5.

Proposition. The Fibonacci sequence obeys F 2

n+1
� Fn+1Fn � F 2

n = (�1)n.

Proof. We will prove this with mathematical induction.
(1) If n = 1 we have F 2

n+1
� Fn+1Fn � F 2

n = F 2

2
� F2F1 � F 2

1
= 12 � 1 · 1� 12 =

�1 = (�1)1 = (�1)n, so indeed F 2

n+1
� Fn+1Fn � F 2

n = (�1)n is true when
n = 1.

(2) Take any integer k � 1. We must show that if F 2

k+1
� Fk+1Fk � F 2

k = (�1)k,
then F 2

k+2
� Fk+2Fk+1 � F 2

k+1
= (�1)k+1. We use direct proof. Suppose

F 2

k+1
� Fk+1Fk � F 2

k = (�1)k. Now we are going to carefully work out the
expression F 2

k+2
�Fk+2Fk+1�F 2

k+1
and show that it really does equal (�1)k+1.

In so doing, we will use the fact that Fk+2 = Fk+1 + Fk.
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F 2

k+2
� Fk+2Fk+1 � F 2

k+1
= (Fk+1 + Fk)

2 � (Fk+1 + Fk)Fk+1 � F 2

k+1

= F 2

k+1
+ 2Fk+1Fk + F 2

k � F 2

k+1
� FkFk+1 � F 2

k+1

= �F 2

k+1
+ Fk+1Fk + F 2

k

= �(F 2

k+1
� Fk+1Fk � F 2

k )

= �(�1)k (inductive hypothesis)

= (�1)1(�1)k

= (�1)k+1

Therefore F 2

k+2
� Fk+2Fk+1 � F 2

k+1
= (�1)k+1.

It follows by induction that F 2

n+1
� Fn+1Fn � F 2

n = (�1)n for every n 2 N.

Let’s pause for a moment and think about what the result we just proved means.
Dividing both sides of F 2

n+1
� Fn+1Fn � F 2

n = (�1)n by F 2

n gives

✓
Fn+1

Fn

◆2

� Fn+1

Fn
� 1 =

(�1)n

F 2
n

.

For large values of n, the right-hand side is very close to zero, and the left-hand
side is Fn+1/Fn plugged into the polynomial x2 � x� 1. Thus, as n increases, the
ratio Fn+1/Fn approaches a root of x2 � x� 1 = 0. By the quadratic formula, the
roots of x2 � x� 1 are 1±

p
5

2
. As Fn+1/Fn > 1, this ratio must be approaching the

positive root 1+
p
5

2
. Therefore

lim
n!1

Fn+1

Fn
=

1 +
p
5

2
. (15.1)

For a quick spot check, note that F13/F12 ⇡ 1.618025, while 1+
p
5

2
⇡ 1.618033.

Even for the small value n = 12, the numbers match to four decimal places.
The number � = 1+

p
5

2
is sometimes called the golden ratio, and there has

been much speculation about its occurrence in nature as well as in classical art
and architecture. One theory holds that the Parthenon and the Great Pyramids of
Egypt were designed in accordance with this number.

But we are here concerned with things that can be proved. We close by observing
how the Fibonacci sequence in many ways resembles a geometric sequence. Recall
that a geometric sequence with first term a and common ratio r has the form

a, ar, ar2, ar3, ar4, ar5, ar6, ar7, ar8, . . .

where any term is obtained by multiplying the previous term by r. In general its nth
term is Gn = arn, and Gn+1/Gn = r. Equation (15.1) tells us that Fn+1/Fn ⇡ �.
Thus even though it is not a geometric sequence, the Fibonacci sequence tends to
behave like a geometric sequence with common ratio �, and the further “out” you
go, the higher the resemblance.
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15.5 Case Study: Proving Recursive Procedures Work

In Section 8.6 (page 216), we devised the following procedure RFac for calculating
the factorial of an integer n, that is, RFac(n) supposedly returns the value n!. This
procedure is recursive, meaning that within its body there is another call to RFac.
Although this may seem circular, most high-level programming languages do allow
for recursive procedures.

Procedure RFac(n )

1 begin
2 if n = 0 then
3 return 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because 0! = 1
4 else
5 return n · RFac(n� 1) . . . . . . . . . . . . . . . . . . . . . because n! = n · (n� 1)!
6 end

7 end

Induction can prove that properly-written recursive procedures are valid, and
run correctly when implemented in programming languages that allow for recursion.
As an example, we will prove that RFac(n) really does return the correct value of
n!.

Proposition 15.2. If n is a non-negative integer, then RFac(n) returns the cor-
rect value of n!.

Proof. We will prove this with mathematical induction.

(1) For the base case, suppose n = 0. Referring to lines 2 and 3 of RFac, we see
that RFac(0) returns 1, which is indeed 0!.

(2) Now take any integer k � 0. We need to show that if RFac(k) returns k!, then
RFac(k + 1) returns (k + 1)!.
For this we use direct proof. Thus assume that RFac(k) returns the correct
value of k!. Now run RFac(k + 1). Because k + 1 > 0, the procedure executes
the else clause, and in line 5 it returns the value of

(k + 1) · RFac
�
(k + 1)� 1

�
= (k + 1) · RFac(k).

By assumption, RFac(k) in the above line returns the value k!, so the above
line is (k+1) ·RFac(k) = (k+1)k! = (k+1)!. Thus RFac(k+1) returns (n+1)!.

It follows by induction that RFac(n) returns n! for any integer n � 0.
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Exercises for Chapter 15

Prove the following statements with either induction, strong induction or proof by smallest
counterexample.

1. Prove that 1 + 2 + 3 + 4 + · · ·+ n =
n2 + n

2
for positive integers n.

2. Prove that 12 + 22 + 32 + 42 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
for positive integers n.

3. Prove that 13 + 23 + 33 + 43 + · · ·+ n3 =
n2(n+ 1)2

4
for every positive integer n.

4. If n 2 N, then 1 · 2 + 2 · 3 + 3 · 4 + 4 · 5 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
.

5. If n 2 N, then 21 + 22 + 23 + · · ·+ 2n = 2n+1 � 2.

6. Prove that
nX

i=1

(8i� 5) = 4n2 � n for every positive integer n.

7. If n 2 N, then 1 · 3 + 2 · 4 + 3 · 5 + 4 · 6 + · · ·+ n(n+ 2) =
n(n+ 1)(2n+ 7)

6
.

8. If n 2 N, then 1
2!

+
2
3!

+
3
4!

+ · · ·+ n
(n+ 1)!

= 1� 1
(n+ 1)!

9. Prove that 24 | (52n � 1) for every integer n � 0.

10. Prove that 3 | (52n � 1) for every integer n � 0.

11. Prove that 3 | (n3 + 5n+ 6) for every integer n � 0.

12. Prove that 9 | (43n + 8) for every integer n � 0.

13. Prove that 6 | (n3 � n) for every integer n � 0.

14. Suppose a 2 Z. Prove that 5 | 2na implies 5 | a for any n 2 N.

15. If n 2 N, then 1
1 · 2 +

1
2 · 3 +

1
3 · 4 +

1
4 · 5 + · · ·+ 1

n(n+ 1)
= 1� 1

n+ 1
.

16. Prove that that 2n + 1  3n for every positive integer n.

17. Suppose A1, A2, . . . An are sets in some universal set U , and n � 2. Prove that
A1 \A2 \ · · · \An = A1 [A2 [ · · · [An.

18. Suppose A1, A2, . . . An are sets in some universal set U , and n � 2. Prove that
A1 [A2 [ · · · [An = A1 \A2 \ · · · \An.

19. Prove that
1
1
+

1
4
+

1
9
+ · · ·+ 1

n2
 2� 1

n
for every n 2 N.

20. Prove that (1 + 2 + 3 + · · ·+ n)2 = 13 + 23 + 33 + · · ·+ n3 for every n 2 N.

21. If n 2 N, then 1
1
+

1
2
+

1
3
+

1
4
+

1
5
+ · · ·+ 1

2n � 1
+

1
2n

� 1 +
n
2
.

(Note: This problem asserts that the sum of the first 2n terms of the harmonic
series is at least 1 + n/2. It thus implies that the harmonic series diverges.)

22. If n 2 N, then
✓
1� 1

2

◆✓
1� 1

4

◆✓
1� 1

8

◆✓
1� 1

16

◆
· · ·
✓
1� 1

2n

◆
� 1

4
+

1
2n+1

.

23. Use mathematical induction to prove the binomial theorem (Theorem 6.6 on
page 133). You may find that you need Equation (6.3) on page 131.
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24. Prove that
nX

k=1

k ( n
k ) = n2n�1 for each natural number n.

25. Concerning the Fibonacci sequence, prove that F1+F2+F3+F4+. . .+Fn = Fn+2�1.

26. Concerning the Fibonacci sequence, prove that
nX

k=1

F 2
k = FnFn+1.

27. Concerning the Fibonacci sequence, prove that F1+F3+F5+F7+. . .+F2n�1 = F2n.

28. Concerning the Fibonacci sequence, prove that F2 + F4 + F6 + F8 + . . . + F2n =
F2n+1 � 1.

29. In this problem n 2 N and Fn is the nth Fibonacci number. Prove that

( n
0 ) + ( n�1

1 ) + ( n�2
2 ) + ( n�3

3 ) + · · ·+ ( 0
n ) = Fn+1.

(For example, ( 6
0 )+ ( 5

1 )+ ( 4
2 )+ ( 3

3 )+ ( 2
4 )+ ( 1

5 )+ ( 0
6 ) = 1+5+6+1+0+0+0 =

13 = F6+1.)

30. Here Fn is the nth Fibonacci number. Prove that

Fn =

⇣
1+

p
5

2

⌘n
�
⇣

1�
p

5
2

⌘n

p
5

.

31. Prove that
nX

k=0

( k
r ) =

�
n+1
r+1

�
, where 1  r  n.

32. Prove that the number of n-digit binary numbers that have no consecutive 1’s is
the Fibonacci number Fn+2. For example, for n = 2 there are three such numbers
(00, 01, and 10), and 3 = F2+2 = F4. Also, for n = 3 there are five such numbers
(000, 001, 010, 100, 101), and 5 = F3+2 = F5.

33. Suppose n (infinitely long) straight lines lie on a plane in such a way that no two
of the lines are parallel, and no three of the lines intersect at a single point. Show

that this arrangement divides the plane into n2+n+2
2 regions.

34. Prove that 31 + 32 + 33 + 34 + · · ·+ 3n =
3n+1 � 3

2
for every n 2 N.

35. Prove that if n, k 2 N, and n is even and k is odd, then
�
n
k

�
is even.

36. Prove that if n = 2k�1 for some k 2 N, then every entry in the nth row of Pascal’s
triangle is odd.

37. Prove that if m,n 2 N, then
nP

k=0
k
�
m+k
m

�
= n

�
m+n+1
m+1

�
�
�
m+n+1
m+2

�
.

38. Prove that if n, k 2 N, then
�
n
0

�2
+
�
n
1

�2
+
�
n
2

�2
+ · · ·+

�
n
n

�2
=
�
2n
n

�
.

(Note that this equality was proved by combinatorial proof in Section 6.10, but
here you are asked to prove it by induction.)

39. If n and k are non-negative integers, then
�
n+0
0

�
+
�
n+1
1

�
+
�
n+2
2

�
+ · · · +

�
n+k
k

�
=�

n+k+1
k

�
.

40. Prove that
pP

k=0

�
m
k

��
n

p�k

�
=
�
m+n

p

�
for non-negative integers m,n and p.
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41. Prove that
mP

k=0

�
m
k

��
n

p+k

�
=
�
m+n
m+p

�
for non-negative integers m,n and p.

42. The indicated diagonals of Pascal’s triangle sum to Fibonacci numbers. Prove that
this pattern continues forever.

1
1
2
3
5
8
13
21
34

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

3 3

4 6 4

5 10 10 5

6 15 20 15 5

7 21 35 35 21 7

8 28 56 70 56 28 8
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Solutions for Chapter 15

1. Prove that 1 + 2 + 3 + 4 + · · ·+ n = n2+n
2 for every positive integer n.

Proof. We will prove this with mathematical induction.

(1) Observe that if n = 1, this statement is 1 = 12+1
2 , which is obviously true.

(2) Consider any integer k � 1. We must show that Sk implies Sk+1. In other

words, we must show that if 1 + 2 + 3 + 4 + · · ·+ k = k2+k
2 is true, then

1 + 2 + 3 + 4 + · · ·+ k + (k + 1) =
(k + 1)2 + (k + 1)

2

is also true. We use direct proof.

Suppose k � 1 and 1 + 2 + 3 + 4 + · · ·+ k = k2+k
2 . Observe that

1 + 2 + 3 + 4 + · · ·+ k + (k + 1) =

(1 + 2 + 3 + 4 + · · ·+ k) + (k + 1) =

k2 + k
2

+ (k + 1) =
k2 + k + 2(k + 1)

2

=
k2 + 2k + 1 + k + 1

2

=
(k + 1)2 + (k + 1)

2
.

Therefore we have shown that 1+2+3+4+· · ·+k+(k+1) = (k+1)2+(k+1)
2 .

3. Prove that 13 + 23 + 33 + 43 + · · ·+ n3 = n2(n+1)2

4 for every positive integer n.

Proof. We will prove this with mathematical induction.

(1) When n = 1 the statement is 13 = 12(1+1)2

4 = 4
4 = 1, which is true.

(2) Now assume the statement is true for some integer n = k � 1, that is assume

13+23+33+43+ · · ·+k3 = k2(k+1)2

4 . Observe that this implies the statement
is true for n = k + 1.

13 + 23 + 33 + 43 + · · ·+ k3 + (k + 1)3 =

(13 + 23 + 33 + 43 + · · ·+ k3) + (k + 1)3 =

k2(k + 1)2

4
+ (k + 1)3 =

k2(k + 1)2

4
+

4(k + 1)3

4

=
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4(k + 1)1)

4

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4

=
(k + 1)2((k + 1) + 1)2

4
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Therefore 13 + 23 + 33 + 43 + · · · + k3 + (k + 1)3 = (k+1)2((k+1)+1)2

4 , which
means the statement is true for n = k + 1.

5. If n 2 N, then 21 + 22 + 23 + · · ·+ 2n = 2n+1 � 2.

Proof. The proof is by mathematical induction.

(1) When n = 1, this statement is 21 = 21+1 � 2, or 2 = 4� 2, which is true.
(2) Now assume the statement is true for some integer n = k � 1, that is assume

21 + 22 + 23 + · · · + 2k = 2k+1 � 2. Observe this implies that the statement
is true for n = k + 1, as follows:

21 + 22 + 23 + · · ·+ 2k + 2k+1 =

(21 + 22 + 23 + · · ·+ 2k) + 2k+1 =

2k+1 � 2 + 2k+1 = 2 · 2k+1 � 2

= 2k+2 � 2

= 2(k+1)+1 � 2

Thus we have 21 +22 +23 + · · ·+2k +2k+1 = 2(k+1)+1 � 2, so the statement
is true for n = k + 1.

Thus the result follows by mathematical induction.

7. If n 2 N, then 1 · 3 + 2 · 4 + 3 · 5 + 4 · 6 + · · ·+ n(n+ 2) =
n(n+ 1)(2n+ 7)

6
.

Proof. The proof is by mathematical induction.

(1) When n = 1, we have 1 · 3 = 1(1+1)(2+7)
6 , which is the true statement 3 = 18

6 .
(2) Now assume the statement is true for some integer n = k � 1, that is assume

1 · 3 + 2 · 4 + 3 · 5 + 4 · 6 + · · ·+ k(k + 2) = k(k+1)(2k+7)
6 . Now observe that

1 · 3 + 2 · 4 + 3 · 5 + 4 · 6 + · · ·+ k(k + 2) + (k + 1)((k + 1) + 2) =

(1 · 3 + 2 · 4 + 3 · 5 + 4 · 6 + · · ·+ k(k + 2)) + (k + 1)((k + 1) + 2) =

k(k + 1)(2k + 7)
6

+ (k + 1)((k + 1) + 2) =

k(k + 1)(2k + 7)
6

+
6(k + 1)(k + 3)

6
=

k(k + 1)(2k + 7) + 6(k + 1)(k + 3)
6

=

(k + 1)(k(2k + 7) + 6(k + 3))
6

=

(k + 1)(2k2 + 13k + 18)
6

=

(k + 1)(k + 2)(2k + 9)
6

=

(k + 1)((k + 1) + 1)(2(k + 1) + 7)
6

Thus we have 1 · 3+2 · 4+3 · 5+4 · 6+ · · ·+ k(k+2)+ (k+1)((k+1)+2) =
(k+1)((k+1)+1)(2(k+1)+7)

6 , and this means the statement is true for n = k + 1.

Thus the result follows by mathematical induction.
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9. Prove that 24 | (52n � 1) for every integer n � 0.

Proof. The proof is by mathematical induction.

(1) For n = 0, the statement is 24 | (52·0 � 1). This is 24 | 0, which is true.
(2) Now assume the statement is true for some integer n = k � 1, that is assume

24 | (52k � 1). This means 52k � 1 = 24a for some integer a, and from this we
get 52k = 24a+ 1. Now observe that

52(k+1) � 1 =

52k+2 � 1 =

5252k � 1 =

52(24a+ 1)� 1 =

25(24a+ 1)� 1 =

25 · 24a+ 25� 1 = 24(25a+ 1).

This shows 52(k+1) � 1 = 24(25a+ 1), which means 24 | 52(k+1) � 1.

This completes the proof by mathematical induction.

11. Prove that 3 | (n3 + 5n+ 6) for every integer n � 0.

Proof. The proof is by mathematical induction.

(1) When n = 0, the statement is 3 | (03 + 5 · 0 + 6), or 3 | 6, which is true.
(2) Now assume the statement is true for some integer n = k � 0, that is assume

3 | (k3 + 5k + 6). This means k3 + 5k + 6 = 3a for some integer a. We need
to show that 3 | ((k + 1)3 + 5(k + 1) + 6). Observe that

(k + 1)3 + 5(k + 1) + 6 = k3 + 3k2 + 3k + 1 + 5k + 5 + 6

= (k3 + 5k + 6) + 3k2 + 3k + 6

= 3a+ 3k2 + 3k + 6

= 3(a+ k2 + k + 2).

Thus we have deduced (k+1)3�(k+1) = 3(a+k2+k+2). Since a+k2+k+2
is an integer, it follows that 3 | ((k + 1)3 + 5(k + 1) + 6).

It follows by mathematical induction that 3 | (n3 + 5n+ 6) for every n � 0.

13. Prove that 6 | (n3 � n) for every integer n � 0.

Proof. The proof is by mathematical induction.

(1) When n = 0, the statement is 6 | (03 � 0), or 6 | 0, which is true.
(2) Now assume the statement is true for some integer n = k � 0, that is, assume

6 | (k3 � k). This means k3 � k = 6a for some integer a. We need to show
that 6 | ((k + 1)3 � (k + 1)). Observe that

(k + 1)3 � (k + 1) = k3 + 3k2 + 3k + 1� k � 1

= (k3 � k) + 3k2 + 3k

= 6a+ 3k2 + 3k

= 6a+ 3k(k + 1).
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Thus we have deduced (k + 1)3 � (k + 1) = 6a+ 3k(k + 1). Since one of k or
(k+1) must be even, it follows that k(k+1) is even, so k(k+1) = 2b for some
integer b. Consequently (k + 1)3 � (k + 1) = 6a + 3k(k + 1) = 6a + 3(2b) =
6(a+b). Since (k+1)3�(k+1) = 6(a+b) it follows that 6 | ((k+1)3�(k+1)).

Thus the result follows by mathematical induction.

15. If n 2 N, then 1
1·2 + 1

2·3 + 1
3·4 + 1

4·5 + · · ·+ 1
n(n+1) = 1� 1

n+1 .

Proof. The proof is by mathematical induction.

(1) When n = 1, the statement is 1
1(1+1) = 1� 1

1+1 , which simplifies to 1
2 = 1

2 .

(2) Now assume the statement is true for some integer n = k � 1, that is assume
1
1·2 +

1
2·3 +

1
3·4 +

1
4·5 + · · ·+ 1

k(k+1) = 1� 1
k+1 . Next we show that the statement

for n = k + 1 is true. Observe that

1
1 · 2 +

1
2 · 3 +

1
3 · 4 +

1
4 · 5 + · · ·+ 1

k(k + 1)
+

1
(k + 1)((k + 1) + 1)

=

✓
1

1 · 2 +
1

2 · 3 +
1

3 · 4 +
1

4 · 5 + · · ·+ 1
k(k + 1)

◆
+

1
(k + 1)(k + 2)

=

✓
1� 1

k + 1

◆
+

1
(k + 1)(k + 2)

=

1� 1
k + 1

+
1

(k + 1)(k + 2)
=

1� k + 2
(k + 1)(k + 2)

+
1

(k + 1)(k + 2)
=

1� k + 1
(k + 1)(k + 2)

=

1� 1
k + 2

=

1� 1
(k + 1) + 1

.

This establishes 1
1·2 +

1
2·3 +

1
3·4 +

1
4·5 + · · ·+ 1

(k+1)((k+1)+1 = 1� 1
(k+1)+1 , which

is to say that the statement is true for n = k + 1.

This completes the proof by mathematical induction.

17. Suppose A1, A2, . . . An are sets in some universal set U , and n � 2. Prove that
A1 \A2 \ · · · \An = A1 [A2 [ · · · [An.

Proof. The proof is by strong induction.

(1) When n = 2 the statement is A1 \A2 = A1 [ A2. This is not an entirely
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obvious statement, so we have to prove it. Observe that

A1 \A2 = {x : (x 2 U) ^ (x /2 A1 \A2)} (definition of complement)

= {x : (x 2 U) ^ ¬(x 2 A1 \A2)}
= {x : (x 2 U) ^ ¬((x 2 A1) ^ (x 2 A2))} (definition of \)
= {x : (x 2 U) ^ (¬(x 2 A1) _ ¬(x 2 A2))} (DeMorgan)

= {x : (x 2 U) ^ ((x /2 A1) _ (x /2 A2))}
= {x : (x 2 U) ^ (x /2 A1) _ (x 2 U) ^ (x /2 A2)} (distributive prop.)

= {x : ((x 2 U) ^ (x /2 A1))} [ {x : ((x 2 U) ^ (x /2 A2))} (def. of [)
= A1 [A2 (definition of complement)

(2) Let k � 2. Assume the statement is true if it involves k or fewer sets. Then

A1 \A2 \ · · · \Ak�1 \Ak \Ak+1 =

A1 \A2 \ · · · \Ak�1 \ (Ak \Ak+1) = A1 [A2 [ · · · [Ak�1 [Ak \Ak+1

= A1 [A2 [ · · · [Ak�1 [Ak [Ak+1

Thus the statement is true when it involves k + 1 sets.

This completes the proof by strong induction.

19. Prove
Pn

k=1 1/k
2  2� 1/n for every n.

Proof. This clearly holds for n = 1. Assume it holds for some n � 1. ThenPn+1
k=1 1/k

2  2 � 1/n + 1/(n + 1)2 = 2 � (n+1)2�n
n(n+1)2

 2 � 1/(n + 1). The proof is

complete.

21. If n 2 N, then 1
1 + 1

2 + 1
3 + · · ·+ 1

2n � 1 + n
2 .

Proof. If n = 1, the result is obvious.

Assume the proposition holds for some n > 1. Then

1
1
+

1
2
+

1
3
+ · · ·+ 1

2n+1

=

✓
1
1
+

1
2
+

1
3
+ · · ·+ 1

2n

◆
+

✓
1

2n + 1
+

1
2n + 2

+
1

2n + 3
+ · · ·+ 1

2n+1

◆

�
⇣
1 +

n
2

⌘
+

✓
1

2n + 1
+

1
2n + 2

+
1

2n + 3
+ · · ·+ 1

2n+1

◆
.

Now, the sum
⇣

1
2n+1 + 1

2n+2 + 1
2n+3 + · · ·+ 1

2n+1

⌘
on the right has 2n+1 �

2n = 2n terms, all greater than or equal to 1
2n+1 , so the sum is greater

than 2n 1
2n+1 = 1

2 . Therefore we get 1
1 + 1

2 + 1
3 + · · · + 1

2n+1 �
�
1 + n

2

�
+⇣

1
2n+1 + 1

2n+2 + 1
2n+3 + · · ·+ 1

2n+1

⌘
�
�
1 + n

2

�
+ 1

2 = 1 + n+1
2 . This means the

result is true for n+ 1, so the theorem is proved.

23. Use induction to prove the binomial theorem (x+ y)n =
Pn

i=0

�
n
i

�
xn�iyi.
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Proof. For n = 1, this is (x+ y)1 =
�
1
0

�
x1y0 +

�
1
1

�
x0y1 = x+ y, which is true.

Now assume the theorem is true for some n > 1. We will show that this implies
that it is true for the power n+ 1. Just observe that

(x+ y)n+1 = (x+ y)(x+ y)n

= (x+ y)
nX

i=0

 
n
i

!
xn�iyi

=
nX

i=0

 
n
i

!
x(n+1)�iyi +

nX

i=0

 
n
i

!
xn�iyi+1

=
nX

i=0

" 
n
i

!
+

 
n

i� 1

!#
x(n+1)�iyi + yn+1

=
nX

i=0

 
n+ 1

i

!
x(n+1)�iyi +

 
n+ 1
n+ 1

!
yn+1

=
n+1X

i=0

 
n+ 1

i

!
x(n+1)�iyi.

This shows that the formula is true for (x+ y)n+1, so the theorem is proved.

25. Concerning the Fibonacci sequence, prove that F1+F2+F3+F4+. . .+Fn = Fn+2�1.

Proof. The proof is by induction.

(1) When n = 1 the statement is F1 = F1+2�1 = F3�1 = 2�1 = 1, which is true.
Also when n = 2 the statement is F1 + F2 = F2+2 � 1 = F4 � 1 = 3� 1 = 2,
which is true, as F1 + F2 = 1 + 1 = 2.

(2) Now assume k � 1 and F1 +F2 +F3 +F4 + . . .+Fk = Fk+2 � 1. We need to
show F1 + F2 + F3 + F4 + . . .+ Fk + Fk+1 = Fk+3 � 1. Observe that

F1 + F2 + F3 + F4 + . . .+ Fk + Fk+1 =

(F1 + F2 + F3 + F4 + . . .+ Fk) + Fk+1 =

Fk+2 � 1 + +Fk+1 = (Fk+1 + Fk+2)� 1

= Fk+3 � 1.

This completes the proof by induction.

27. Concerning the Fibonacci sequence, prove that F1 + F3 + · · ·+ F2n�1 = F2n.

Proof. If n = 1, the result is immediate. Assume for some n > 1 we havePn
i=1 F2i�1 = F2n. Then

Pn+1
i=1 F2i�1 = F2n+1 +

Pn
i=1 F2i�1 = F2n+1 + F2n =

F2n+2 = F2(n+1) as desired.

29. Prove that
�
n
0

�
+
�
n�1
1

�
+
�
n�2
2

�
+
�
n�3
3

�
+ · · ·+

�
1

n�1

�
+
�
0
n

�
= Fn+1.

Proof. (Strong Induction) For n = 1 this is
�
1
0

�
+
�
0
1

�
= 1 + 0 = 1 = F2 = F1+1.

Thus the assertion is true when n = 1.
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Now fix n and assume that
�
k
0

�
+
�
k�1
1

�
+
�
k�2
2

�
+
�
k�3
3

�
+ · · ·+

�
1

k�1

�
+
�
0
k

�
= Fk+1

whenever k < n. In what follows we use the identity
�
n
k

�
=
�
n�1
k�1

�
+
�
n�1
k

�
. We also

often use
�
a
b

�
= 0 whenever it is untrue that 0  b  a.

⇣n
0

⌘
+

⇣n� 1

1

⌘
+

⇣n� 2

2

⌘
+ · · ·+

⇣ 1

n� 1

⌘
+

⇣0
n

⌘

=
⇣n
0

⌘
+

⇣n� 1

1

⌘
+

⇣n� 2

2

⌘
+ · · ·+

⇣ 1

n� 1

⌘

=
⇣n� 1

�1

⌘
+

⇣n� 1

0

⌘
+

⇣n� 2

0

⌘
+

⇣n� 2

1

⌘
+

⇣n� 3

1

⌘
+

⇣n� 3

2

⌘
+ · · ·+

⇣ 0

n� 1

⌘
+

⇣0
n

⌘

=
⇣n� 1

0

⌘
+

⇣n� 2

0

⌘
+

⇣n� 2

1

⌘
+

⇣n� 3

1

⌘
+

⇣n� 3

2

⌘
+ · · ·+

⇣ 0

n� 1

⌘
+

⇣0
n

⌘

=

⇣n� 1

0

⌘
+

⇣n� 2

1

⌘
+ · · ·+

⇣ 0

n� 1

⌘�
+

⇣n� 2

0

⌘
+

⇣n� 3

1

⌘
+ · · ·+

⇣ 0

n� 2

⌘�

= Fn + Fn�1 = Fn

This completes the proof.

31. Prove that
Pn

k=0

�
k
r

�
=
�
n+1
r+1

�
, where r 2 N.

Hint: Use induction on the integer n. After doing the basis step, break up the
expression

�
k
r

�
as
�
k
r

�
=
�
k�1
r�1

�
+
�
k�1
r

�
. Then regroup, use the induction hypothesis,

and recombine using the above identity.

33. Suppose that n infinitely long straight lines lie on the plane in such a way that no
two are parallel, and no three intersect at a single point. Show that this arrangement

divides the plane into n2+n+2
2 regions.

Proof. The proof is by induction. For the basis step, suppose n = 1. Then there
is one line, and it clearly divides the plane into 2 regions, one on either side of the

line. As 2 = 12+1+2
2 = n2+n+2

2 , the formula is correct when n = 1.

Now suppose there are n+1 lines on the plane, and that the formula is correct for
when there are n lines on the plane. Single out one of the n+1 lines on the plane,
and call it `. Remove line `, so that there are now n lines on the plane.

By the induction hypothesis, these n lines

divide the plane into n2+n+2
2 regions. Now

add line ` back. Doing this adds an addi-
tional n + 1 regions. (The diagram illus-
trates the case where n + 1 = 5. Without
`, there are n = 4 lines. Adding ` back
produces n+ 1 = 5 new regions.)

`

1

2

3

4

5

Thus, with n+ 1 lines there are all together (n+ 1) + n2+n+2
2 regions. Observe

(n+ 1) +
n2 + n+ 2

2
=

2n+ 2 + n2 + n+ 2
2

=
(n+ 1)2 + (n+ 1) + 2

2
.

Thus, with n + 1 lines, we have (n+1)2+(n+1)+2
2 regions, which means that the

formula is true for when there are n + 1 lines. We have shown that if the formula
is true for n lines, it is also true for n + 1 lines. This completes the proof by
induction.
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35. If n, k 2 N, and n is even and k is odd, then
�
n
k

�
is even.

Proof. Notice that if k is not a value between 0 and n, then
�
n
k

�
= 0 is even; thus

from here on we can assume that 0 < k < n. We will use strong induction.

For the basis case, notice that the assertion is true for the even values n = 2 and
n = 4:

�
2
1

�
= 2;

�
4
1

�
= 4;

�
4
3

�
= 4 (even in each case).

Now fix and even n assume that
�
m
k

�
is even whenever m is even, k is odd, and

m < n. Using the identity
�
n
k

�
=
�
n�1
k�1

�
+
�
n�1
k

�
three times, we get

⇣n
k

⌘
=

⇣n� 1

k � 1

⌘
+

⇣n� 1

k

⌘

=
⇣n� 2

k � 2

⌘
+

⇣n� 2

k � 1

⌘
+

⇣n� 2

k � 1

⌘
+

⇣n� 2

k

⌘

=
⇣n� 2

k � 2

⌘
+ 2

⇣n� 2

k � 1

⌘
+

⇣n� 2

k

⌘
.

Now, n � 2 is even, and k and k � 2 are odd. By the inductive hypothesis, the
outer terms of the above expression are even, and the middle is clearly even; thus
we have expressed

�
n
k

�
as the sum of three even integers, so it is even.

37. Prove that if m,n 2 N, then
nP

k=0
k
�
m+k
m

�
= n

�
m+n+1
m+1

�
�
�
m+n+1
m+2

�
.

Proof. We will use induction on n. Let m be any integer.

(1) If n = 1, then the equation is
1P

k=0
k
�
m+k
m

�
= 1
�
m+1+1
m+1

�
�
�
m+1+1
m+2

�
, and this is

0
�
m
m

�
+ 1
�
m+1
m

�
= 1

�
m+2
m+1

�
�
�
m+2
m+2

�
, which yields the true statement m + 1 =

m+ 2� 1.
(2) Now let n > 1 and assume the equation holds for n. (This is the inductive

hypothesis.) Now we will confirm that it holds for n+ 1. Observe that

n+1X

k=0

k
⇣m+ k

m

⌘
= (left-hand side for n+ 1)

nX

k=0

k
⇣m+ k

m

⌘
+ (n+ 1)

⇣m+ (n+ 1)

m

⌘
= (split o↵ final term)

n
⇣m+ n+ 1

m+ 1

⌘
�

⇣m+ n+ 1

m+ 2

⌘
+ (n+ 1)

⇣m+ n+ 1

m

⌘
=

(apply inductive hypothesis)

n
⇣m+ n+ 1

m+ 1

⌘
+

⇣m+ n+ 1

m+ 1

⌘
�

⇣m+ n+ 2

m+ 2

⌘
+ (n+ 1)

⇣m+ n+ 1

m

⌘
=

(Pascal’s formula)

(n+ 1)
⇣m+ n+ 1

m+ 1

⌘
�

⇣m+ n+ 2

m+ 2

⌘
+ (n+ 1)

⇣m+ n+ 1

m

⌘
= (factor)

(n+ 1)

⇣m+ n+ 1

m+ 1

⌘
+

⇣m+ n+ 1

m

⌘�
�

⇣m+ n+ 2

m+ 2

⌘
= (factor again)

(n+ 1)
⇣m+ n+ 2

m+ 1

⌘
�

⇣m+ n+ 2

m+ 2

⌘
= (Pascal’s formula)

(n+ 1)
⇣m+ (n+ 1) + 1

m+ 1

⌘
�

⇣m+ (n+ 1) + 1

m+ 2

⌘
. (right-hand side for n+ 1)

The proof is done.
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39. If n and k are non-negative integers, then
�
n+0
0

�
+
�
n+1
1

�
+ · · ·+

�
n+k
k

�
=
�
n+k+1

k

�
.

Proof. We will use induction on k. Let n be any non-negative integer.

(1) If k = 0, then the equation is
�
n+0
0

�
=
�
n+0+1

0

�
, which reduces to 1 = 1.

(2) Assume the equation holds for some k � 1. (This is the inductive hypothesis.)
Now we will show that it holds for k + 1. The left side for k + 1 is

 
n+ 0
0

!
+

 
n+ 1
1

!
+ · · ·+

 
n+ k
k

!
+

 
n+ (k + 1)

k + 1

!

=

 
n+ k + 1

k

!
+

 
n+ k + 1
k + 1

!
(apply inductive hypothesis)

=

 
n+ k + 2
k + 1

!
(Pascal’s formula)

=

 
n+ (k + 1) + 1

k + 1

!
. (right-hand side for k + 1)

The proof is complete.

41. Prove that
mP

k=0

�
m
k

��
n

p+k

�
=
�
m+n
m+p

�
for non-negative integers m,n and p.

Proof. We will use induction on n. Let m and p be any non-negative integers.

(1) If n = 0, then the equation is
mP

k=0

�
m
k

��
0

p+k

�
=
�
m+0
m+p

�
. This holds if p > 0,

because then
�

0
p+k

�
= 0 =

�
m

m+p

�
, and both sides of the equation are zero. If

p = 0, the equation is
mP

k=0

�
m
k

��
0
k

�
=
�
m
m

�
, and both sides equal 1.

(2) Now take n � 1 and suppose the equation holds for n. (This is the inductive
hypothesis.) Next we confirm that the equation holds for n+ 1.

 
m+ (n+ 1)

m+ p

!
(right-hand side for n+ 1)

=

 
m+ n

m+ (p� 1)

!
+

 
m+ n
m+ p

!
(Pascal’s formula)

=
mX

k=0

 
m
k

! 
n

(p� 1) + k

!
+

mX

k=0

 
m
k

! 
n

p+ k

!

(apply inductive hypothesis)

=
mX

k=0

 
m
k

!" 
n

(p� 1) + k

!
+

 
n

p+ k

!#
(combine)

=
mX

k=0

 
m
k

! 
n+ 1
p+ k

!
(Pascal’s formula)

This final expression is left-hand side for n+ 1, so the proof is finished.


