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Chapter 14

Disproof

Ever since Chapter 9 we have dealt with one major theme: Given a statement, prove
that is it true. In every example and exercise we were handed a true statement and
charged with the task of proving it. Have you ever wondered what would happen
if you were given a false statement to prove? The answer is that no (correct) proof
would be possible, for if it were, the statement would be true, not false.

But how would you convince someone that a statement is false? The mere fact
that you could not produce a proof does not automatically mean the statement is
false, for you know (perhaps all too well) that proofs can be di�cult to construct. It
turns out that there is a very simple and utterly convincing procedure that proves
a statement is false. The process of carrying out this procedure is called disproof.
Thus, this chapter is concerned with disproving statements.

Before describing the new method, we will set the stage with some relevant
background information. First, we point out that mathematical statements can be
divided into three categories, described below.

One category consists of all those statements that have been proved to be true.
For the most part we regard these statements as significant enough to be designated
with special names such as “theorem,” “proposition,” “lemma” and “corollary.”
Some examples of statements in this category are listed in the left-hand box in the
diagram on the following page. There are also some wholly uninteresting statements
(such as 2 = 2) in this category, and although we acknowledge their existence we
certainly do not dignify them with terms such as “theorem” or “proposition.”

At the other extreme are the statements known to be false. Examples are listed
in the box on the right. Mathematicians are not very interested in them, so they
do not get any special names, other than the blanket term “false statement.”

But there is a third (and quite interesting) category between these two extremes.
It consists of statements whose truth or falsity has not been determined. Examples
include things like “Every perfect number is even,” or “Every even integer greater
than 2 is the sum of two primes.” (The latter statement is called the Goldbach
conjecture. See Section 3.1.) Mathematicians have a special name for the statements
in this category that they suspect (but haven’t yet proved) are true. Such statements
are called conjectures.
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Three Types of Statements:
Known to be true Truth unknown Known to be false

(Theorems & propositions) (Conjectures)

Examples:

• Pythagorean theorem

• Fermat’s last theorem
(Section 3.1)

• The square of an odd
number is odd.

• The series
1X

k=1

1

k
diverges.

Examples:

• All perfect numbers are even.

• Any even number greater
than 2 is the sum of two
primes. (Goldbach’s
conjecture, Section 3.1)

• There are infinitely n 2 N for
which 2n�1 is prime.

Examples:

• All prime numbers are odd.

• Some quadratic equations
have three solutions.

• 0 = 1

• There exist natural
numbers a, b and c
for which a3 + b3 = c3.

Mathematicians spend much of their time and energy attempting to prove or
disprove conjectures. (They also expend considerable mental energy in creating
new conjectures based on collected evidence or intuition.) When a conjecture is
proved (or disproved) the proof or disproof is typically published, provided the
conjecture is of su�cient interest. If it is proved, the conjecture attains the status
of a theorem or proposition. If it is disproved, then no one is really very interested
in it anymore—mathematicians do not care much for false statements.

Most conjectures that mathematicians are interested in are quite di�cult to
prove or disprove. We are not at that level yet. In this text, the “conjectures” that
you will encounter are the kinds of statements that an experienced mathematician
would immediately spot as true or false, but you may have to do some work before
figuring out a proof or disproof. But in keeping with the cloud of uncertainty that
surrounds conjectures at the advanced levels of mathematics, most exercises in this
chapter (and many beyond it) will ask you to prove or disprove statements without
giving any hint as to whether they are true or false. Your job will be to decide
whether or not they are true and to either prove or disprove them. The examples
in this chapter will illustrate the processes one typically goes through in deciding
whether a statement is true or false, and then verifying that it’s true or false.

You know the three major methods of proving a statement: direct proof, con-
trapositive proof and proof by contradiction. Now we are ready to understand the
method of disproving a statement. Suppose you want to disprove a statement P .
In other words you want to prove that P is false. The way to do this is to prove
that ¬P is true, for if ¬P is true, it follows immediately that P has to be false.

How to disprove P : Prove ¬P .

Our approach is incredibly simple. To disprove P , prove ¬P . In theory, this
proof can be carried out by direct, contrapositive or contradiction approaches. How-
ever, in practice things can be even easier than that if we are disproving a universally
quantified statement or a conditional statement. That is our next topic.
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14.1 Disproving Universal Statements: Counterexamples

A conjecture may be described as a statement that we hope is a theorem. As we
know, many theorems (hence many conjectures) are universally quantified state-
ments. Thus it seems reasonable to begin our discussion by investigating how to
disprove a universally quantified statement such as

8x 2 S, P (x).

To disprove this statement, we must prove its negation. Its negation is

¬(8x 2 S, P (x)) = 9x 2 S,¬P (x).

The negation is an existence statement. To prove the negation is true, we just need
to produce an example of an x 2 S that makes ¬P (x) true, that is, an x that makes
P (x) false. This leads to the following outline for disproving a universally quantified
statement.

How to disprove 8x 2 S, P (x).

Produce an example of an x 2 S
that makes P (x) false.

Things are even simpler if we want to disprove a conditional statement P (x) )
Q(x). This statement asserts that for every x that makes P (x) true, Q(x) will also
be true. The statement can only be false if there is an x that makes P (x) true and
Q(x) false. This leads to our next outline for disproof.

How to disprove P (x) ) Q(x).

Produce an example of an x that makes
P (x) true and Q(x) false.

In both of the above outlines, the statement is disproved simply by exhibiting
an example that shows the statement is not always true. (Think of it as an example
that proves the statement is a promise that can be broken.) There is a special name
for an example that disproves a statement: It is called a counterexample.

Example 14.1. As our first example, we will work through the process of deciding
whether or not the following conjecture is true.

Conjecture: For every n 2 Z, the integer f(n) = n2 � n+ 11 is prime.

In resolving the truth or falsity of a conjecture, it’s a good idea to gather as much
information about the conjecture as possible. In this case let’s start by making a
table that tallies the values of f(n) for some integers n.

n �3 �2 �1 0 1 2 3 4 5 6 7 8 9 10
f(n) 23 17 13 11 11 13 17 23 31 41 53 67 83 101
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In every case, f(n) is prime, so you may begin to suspect that the conjecture is
true. Before attempting a proof, let’s try one more n. Unfortunately, f(11) =
112 � 11 + 11 = 112 is not prime. The conjecture is false because n = 11 is a
counterexample. We summarize our disproof as follows:

Disproof. The statement “For every n 2 Z, the integer f(n) = n2 � n + 11 is
prime,” is false. For a counterexample, note that for n = 11, the integer f(11) =
121 = 11 · 11 is not prime.

In disproving a statement with a counterexample, it is important to explain exactly
how the counterexample makes the statement false. Our work would not have been
complete if we had just said “for a counterexample, consider n = 11,” and left
it at that. We need to show that the answer f(11) is not prime. Showing the
factorization f(11) = 11 · 11 su�ces for this.

Example 14.2. Either prove or disprove the following conjecture.

Conjecture. If A, B and C are sets, then A� (B \ C) = (A�B) \ (A� C).

Disproof. This conjecture is false because of the following counterexample. Let
A =

�
1, 2, 3

 
, B =

�
1, 2

 
and C =

�
2, 3

 
. Notice that A � (B \ C) =

�
1, 3

 
and

(A�B) \ (A� C) = ;, so A� (B \ C) 6= (A�B) \ (A� C).

(To see where this counterexample came from, draw Venn diagrams for A� (B\C)
and (A�B) \ (A�C). You will see that the diagrams are di↵erent. The numbers
1, 2 and 3 can then be inserted into the regions of the diagrams in such a way as
to create the above counterexample.)

14.2 Disproving Existence Statements

We have seen that we can disprove a universally quantified statement or a condi-
tional statement simply by finding a counterexample. Now let’s turn to the problem
of disproving an existence statement such as

9x 2 S, P (x).

Proving this would involve simply finding an example of an x that makes P (x) true.
To disprove it, we have to prove its negation ¬(9x 2 S, P (x)) = 8x 2 S,¬P (x).
But this negation is universally quantified. Proving it involves showing that ¬P (x)
is true for all x 2 S, and for this an example does not su�ce. Instead we must
use direct, contrapositive or contradiction proof to prove the conditional statement
“If x 2 S, then ¬P (x).” As an example, here is a conjecture to either prove or
disprove.
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Example 14.3. Either prove or disprove the following conjecture.

Conjecture. There is a real number x for which x4 < x < x2.

This may not seem like an unreasonable statement at first glance. After all, if the
statement were asserting the existence of a real number for which x3 < x < x2,
then it would be true: just take x = �2. But it asserts there is an x for which
x4 < x < x2. When we apply some intelligent guessing to locate such an x we
run into trouble. If x = 1

2
, then x4 < x, but we don’t have x < x2; similarly if

x = 2, we have x < x2 but not x4 < x. Since finding an x with x4 < x < x2 seems
problematic, we may begin to suspect that the given statement is false.

Let’s see if we can disprove it. According to our strategy for disproof, to disprove
it we must prove its negation. Symbolically, the statement is 9x 2 R, x4 < x < x2,
so its negation is

¬(9x 2 R, x4 < x < x2) = 8x 2 R,¬(x4 < x < x2).
Thus, in words the negation is:

For every real number x, it is not the case that x4 < x < x2.

This can be proved with contradiction, as follows. Suppose for the sake of
contradiction that there is an x for which x4 < x < x2. Then x must be positive
since it’s greater than the non-negative number x4. Dividing all parts of x4 < x < x2

by the positive number x produces x3 < 1 < x. Now subtract 1 from all parts of
x3 < 1 < x to obtain x3 � 1 < 0 < x� 1 and reason as follows:

x3 � 1 < 0 < x� 1

(x� 1)(x2 + x+ 1) < 0 < (x� 1)

x2 + x+ 1 < 0 < 1

(Division by x � 1 did not reverse the inequality < because the second line above
shows 0 < x� 1, that is, x� 1 is positive.) Now we have x2 + x+ 1 < 0, which is a
contradiction because x being positive forces x2 + x+ 1 > 0

We summarize our work as follows.
The statement “There is a real number x for which x4 < x < x2” is false

because we have proved its negation “For every real number x, it is not the case
that x4 < x < x2.”

As you work the exercises, keep in mind that not every conjecture will be false.
If one is true, then a disproof is impossible and you must produce a proof.

Example 14.4. Either prove or disprove the following conjecture.

Conjecture. There exist three integers x, y, z, all greater than 1 and no two equal,
for which xy = yz.

This conjecture is true. It is an existence statement, so to prove it we just need
to give an example of three integers x, y, z, all greater than 1 and no two equal, so
that xy = yz. A proof follows.

Proof. Note that if x = 2, y = 16 and z = 4, then xy = 216 = (24)4 = 164 = yz.
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14.3 Disproof by Contradiction

Contradiction can be a very useful way to disprove a statement. To see how this
works, suppose we wish to disprove a statement P . We know that to disprove P ,
we must prove ¬P . To prove ¬P with contradiction, we assume ¬¬P is true and
deduce a contradiction. But since ¬¬P = P , this boils down to assuming P is true
and deducing a contradiction. Here is an outline:

How to disprove P with contradiction:

Assume P is true, and deduce a contradiction.

To illustrate this, let’s revisit Example 14.3 but do the disproof with contradic-
tion. You will notice that the work duplicates much of what we did in Example
14.3, but is it much more streamlined because here we do not have to negate the
conjecture.

Example 14.5. Disprove the following conjecture.

Conjecture. There is a real number x for which x4 < x < x2.

Disproof. Suppose for the sake of contradiction that this conjecture is true. Let x
be a real number for which x4 < x < x2. Then x is positive, since it is greater
than the non-negative number x4. Dividing all parts of x4 < x < x2 by the positive
number x produces x3 < 1 < x. Now subtract 1 from all parts of x3 < 1 < x to
obtain x3 � 1 < 0 < x� 1 and reason as follows:

x3 � 1 < 0 < x� 1

(x� 1)(x2 + x+ 1) < 0 < (x� 1)

x2 + x+ 1 < 0 < 1

Now we have x2 + x + 1 < 0, which is a contradiction because x is positive. Thus
the conjecture must be false.

Exercises for Chapter 14

Each of the following statements is either true or false. If a statement is true, prove it.
If a statement is false, disprove it. These exercises are cumulative, covering all topics
addressed in Chapters 2–14.

1. If x, y 2 R, then |x+ y| = |x|+ |y|.

2. For every natural number n, the integer 2n2 � 4n+ 31 is prime.

3. If n 2 Z and n5 � n is even, then n is even.

4. For every natural number n, the integer n2 + 17n+ 17 is prime.
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5. If A, B,C and D are sets, then (A⇥B) [ (C ⇥D) = (A [ C)⇥ (B [D).

6. If A, B,C and D are sets, then (A⇥B) \ (C ⇥D) = (A \ C)⇥ (B \D).

7. If A, B and C are sets, and A⇥ C = B ⇥ C, then A = B.

8. If A, B and C are sets, then A� (B [ C) = (A�B) [ (A� C).

9. If A and B are sets, then P(A)� P(B) ✓ P(A�B).

10. If A and B are sets and A \B = ;, then P(A)� P(B) ✓ P(A�B).

11. If a, b 2 N, then a+ b < ab.

12. If a, b, c 2 N and ab, bc and ac all have the same parity, then a, b and c all have the
same parity.

13. There exists a set X for which R ✓ X and ; 2 X.

14. If A and B are sets, then P(A) \ P(B) = P(A \B).

15. Every odd integer is the sum of three odd integers.

16. If A and B are finite sets, then |A [B| = |A|+ |B|.

17. For all sets A and B, if A�B = ;, then B 6= ;.

18. If a, b, c 2 N, then at least one of a� b, a+ c and b� c is even.

19. For every r, s 2 Q with r < s, there is an irrational number u for which r < u < s.

20. There exist prime numbers p and q for which p� q = 1000.

21. There exist prime numbers p and q for which p� q = 97.

22. If p and q are prime numbers for which p < q, then 2p+ q2 is odd.

23. If x, y 2 R and x3 < y3, then x < y.

24. The inequality 2x � x+ 1 is true for all positive real numbers x.

25. For all a, b, c 2 Z, if a | bc, then a | b or a | c.

26. Suppose A, B and C are sets. If A = B � C, then B = A [ C.

27. The equation x2 = 2x has three real solutions.

28. Suppose a, b 2 Z. If a | b and b | a, then a = b.

29. If x, y 2 R and |x+ y| = |x� y|, then y = 0.

30. There exist integers a and b for which 42a+ 7b = 1.

31. No number (other than 1) appears in Pascal’s triangle more than four times.

32. If n, k 2 N and ( n
k ) is a prime number, then k = 1 or k = n� 1.

33. Suppose f(x) = a0+a1x+a2x
2+ · · ·+anx

n is a polynomial of degree 1 or greater,
and for which each coe�cient ai is in N. Then there is an n 2 N for which the
integer f(n) is not prime.

34. If X ✓ A [B, then X ✓ A or X ✓ B.
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Solutions for Chapter 14

1. If x, y 2 R, then |x+ y| = |x|+ |y|.
This is false. Counterexample: Let x = 1 and y = �1. Then |x + y| = 0 and
|x|+ |y| = 2, so it’s not true that |x+ y| = |x|+ |y|.

3. If n 2 Z and n5 � n is even, then n is even. This is false. Counterexample: Let
n = 3. Then n5 � n = 35 � 3 = 240, but n is not even.

5. If A, B,C and D are sets, then (A⇥B) [ (C ⇥D) = (A [ C)⇥ (B [D).
This is false. Counterexample: Let A= {1, 2}, B= {1, 2}, C= {2, 3} and D= {2, 3}.
Then (A⇥B)[ (C⇥D) = {(1, 1), (1, 2), (2, 1), (2, 2)}[{(2, 2), (2, 3), (3, 2), (3, 3)} =
{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)} . Also (A[C)⇥ (B [D) = {1, 2, 3}⇥
{1, 2, 3}= {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}, so you can see
that (A⇥B) [ (C ⇥D) 6= (A [ C)⇥ (B [D).

7. If A, B and C are sets, and A⇥ C = B ⇥ C, then A = B.
This is false.
Disproof: Here is a counterexample: Let A = {1}, B = {2} and C = ;. Then
A⇥ C = B ⇥ C = ;, but A 6= B.

9. If A and B are sets, then P(A)� P(B) ✓ P(A�B).
This is false.
Disproof: Here is a counterexample: Let A = {1, 2} and B = {1}. Then
P(A)�P(B) = {;, {1} , {2} , {1, 2}}�{;, {1}} = {{2} , {1, 2}}. Also P(A�B) =
P({2}) = {;, {2}}. In this example we have P(A)� P(B) 6✓ P(A�B).

11. If a, b 2 N, then a+ b < ab.
This is false.
Disproof: Here is a counterexample: Let a = 1 and b = 1. Then a + b = 2 and
ab = 1, so it’s not true that a+ b < ab.

13. There exists a set X for which R ✓ X and ; 2 X. This is true.

Proof. Simply let X = R [ {;}. If x 2 R, then x 2 R [ {;} = X, so R ✓ X.
Likewise, ; 2 R [ {;} = X because ; 2 {;}.

15. Every odd integer is the sum of three odd integers. This is true.

Proof. Suppose n is odd. Then n = n + 1 + (�1), and therefore n is the sum of
three odd integers.

17. For all sets A and B, if A�B = ;, then B 6= ;.
This is false.
Disproof: Here is a counterexample: Just let A = ; and B = ;. Then A�B = ;,
but it’s not true that B 6= ;.

19. For every r, s 2 Q with r < s, there is an irrational number u for which r < u < s.
This is true.

Proof. (Direct) Suppose r, s 2 Q with r < s. Consider the number u = r+
p
2 s�r

2 .
In what follows we will show that u is irrational and r < u < s. Certainly since
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s� r is positive, it follows that r < r +
p
2 s�r

2 = u. Also, since
p
2 < 2 we have

u = r +
p
2
s� r
2

< r + 2
s� r
2

= s,

and therefore u < s. Thus we can conclude r < u < s.

Now we just need to show that u is irrational. Suppose for the sake of contradiction
that u is rational. Then u = a

b for some integers a and b. Since r and s are rational,
we have r = c

d and s = e
f for some c, d, e, f 2 Z. Now we have

u = r +
p
2
s� r
2

a
b
=

c
d
+

p
2

e
f � c

d

2
ad� bc

bd
=

p
2
ed� cf
2df

(ad� bc)2df
bd(ed� cf)

=
p
2

This expresses
p
2 as a quotient of two integers, so

p
2 is rational, a contradiction.

Thus u is irrational.

In summary, we have produced an irrational number u with r < u < s, so the proof
is complete.

21. There exist two prime numbers p and q for which p� q = 97.
This statement is false.
Disproof: Suppose for the sake of contradiction that this is true. Let p and q be
prime numbers for which p � q = 97. Now, since their di↵erence is odd, p and q
must have opposite parity, so one of p and q is even and the other is odd. But there
exists only one even prime number (namely 2), so either p = 2 or q = 2. If p = 2,
then p� q = 97 implies q = 2� 97 = �95, which is not prime. On the other hand
if q = 2, then p � q = 97 implies p = 99, but that’s not prime either. Thus one of
p or q is not prime, a contradiction.

23. If x, y 2 R and x3 < y3, then x < y. This is true.

Proof. (Contrapositive) Suppose x � y. We need to show x3 � y3.
Case 1. Suppose x and y have opposite signs, that is one of x and y is positive
and the other is negative. Then since x � y, x is positive and y is negative. Then,
since the powers are odd, x3 is positive and y3 is negative, so x3 � y3.
Case 2. Suppose x and y do not have opposite signs. Then x2 + xy + y2 � 0 and
also x� y � 0 because x � y. Thus we have x3 � y3 = (x� y)(x2 + xy + y2) � 0.
From this we get x3 � y3 � 0, so x3 � y3.

In either case we have x3 � y3.

25. For all a, b, c 2 Z, if a | bc, then a | b or a | c.
This is false.
Disproof: Let a = 6, b = 3 and c = 4. Note that a | bc, but a - b and a - c.
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27. The equation x2 = 2x has three real solutions.

Proof. By inspection, the numbers x = 2 and x = 4 are two solutions of this
equation. But there is a third solution. Let m be the real number for which
m2m = 1

2 . Then negative number x = �2m is a solution, as follows.

x2 = (�2m)2 = 4m2 = 4

✓
m2m

2m

◆2

= 4

✓ 1
2

2m

◆2

=
1

22m
= 2�2m = 2x.

Therefore we have three solutions 2, 4 and m.

29. If x, y 2 R and |x+ y| = |x� y|, then y = 0.
This is false.
Disproof: Let x = 0 and y = 1. Then |x+ y| = |x� y|, but y = 1.

31. No number appears in Pascal’s triangle more than four times.
Disproof: The number 120 appears six times. Check that ( 10

3 ) = ( 10
7 ) = ( 16

2 ) =
( 16
14 ) = ( 120

1 ) = ( 120
119 ) = 120.

33. Suppose f(x) = a0+a1x+a2x
2+ · · ·+anx

n is a polynomial of degree 1 or greater,
and for which each coe�cient ai is in N. Then there is an n 2 N for which the
integer f(n) is not prime.

Proof. (Outline) Note that, because the coe�cients are all positive and the degree
is greater than 1, we have f(1) > 1. Let b = f(1) > 1. Now, the polynomial
f(x) � b has a root 1, so f(x) � b = (x � 1)g(x) for some polynomial g. Then
f(x) = (x � 1)g(x) + b. Now note that f(b + 1) = bg(b) + b = b(g(b) + 1). If
we can now show that g(b) + 1 is an integer, then we have a nontrivial factoring
f(b + 1) = b(g(b) + 1), and f(b + 1) is not prime. To complete the proof, use the
fact that f(x)� b = (x� 1)g(x) has integer coe�cients, and deduce that g(x) must
also have integer coe�cients.


