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Chapter 1

What Is Discrete Mathematics?

It is barely an oversimplification to say that discrete mathematics is the study of
structures that can be typed on a computer keyboard.

To begin to understand what this means, it is helpful to appreciate the meanings
of (and di↵erences between) analog and discrete systems. Discrete mathematics is
the study of discrete (as opposed to analog) systems.

1.1 Analog Versus Discrete Systems

The di↵erence between analog and discrete systems is that analog systems involve
smooth, continuous, unbroken movement or structures, whereas discrete systems
involve individual parts or states that are clearly separate from one another.

This is illustrated by the di↵erence between a traditional (analog) clock and a
digital (discrete) clock, two inherently di↵erent systems for recording time. The
hands of an analog clock move in a fluid, continuous motion. In the one minute
between 10:12 and 10:13, the minute hand moves in a smooth, unbroken motion
passing through all instants between these two times. In an hour it passes through
infinitely many di↵erent instants of time. This is an analog system. By contrast, a
digital clock jumps from 10:12 to 10:13 in an instant. In an hour it records a finite
number (in fact, 60) instants of time. This is a discrete system.
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10:12

Think of it this way. Regarding the analog clock, you could never type out the
infinitely many instants of time between, say, 10:00 and 11:00 am. But you can
do this for the digital clock, as 10:00, 10:01, 10:02, . . . 10:59, 11:00, just using the
numeric symbols on the keypad, along with the colon.

Discrete mathematics deals with structures and systems that can be typed.

3
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For another example of an analog versus a discrete system, consider real numbers
versus integers. We visualize the real numbers as a smooth, unbroken, infinitely long
line. You can put your finger on 0 and move it continuously to the right in a fluid
motion, stopping at (say) 3. As you do this, your finger moves through infinitely
many numbers, one for each point on the line from 0 to 3. This is an analog system.

0 1 2 3 4�4 �3 �2 �1

Real numbers (analog system)

0 1 2 3 4�4 �3 �2 �1. . . . . .

Integers (discrete system)

By contrast, the integers (whole numbers) . . .�3,�2,�1, 0, 1, 2, 3 . . . are a system
whose parts (numbers in this case) are discrete entities. Putting your finger at 0
and moving to the right, you jump from 0, to 1, to 2, to 3, and so on.

Think of it this way. The set of integers is a discrete system because any integer,
such as, say 243 and �11 can be expressed by typing a finite sequence of the digits 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, and possibly a minus sign “�”. But the system of real numbers
is not a discrete system: it has irrational numbers like ⇡ = 3.14159265359 . . . that
cannot be typed because they involve infinitely many non-repeating decimal places.
Discrete mathematics deals with structures and systems that can be typed.

In this vein, the set of rational numbers (fractions of integers) is also a discrete
system because any rational number, such as �397/24 is expressible as a finite
sequence of the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,� and /, and thus can be typed. By
contrast, the (analog) system of real numbers includes irrational numbers like ⇡ andp
2 (just to name two) that cannot be expressed as fractions of integers.
The focus of discrete mathematics is on discrete number systems like the integers

or the rational numbers (as well as many other discrete number systems that we
will encounter). This is not to say that the real number system is unimportant. The
powerful theory of calculus is built on the real number system. It is the language of
physics, and it can also be a useful tool in discrete mathematics. Although calculus
will not be used in this text (which is a first course in discrete mathematics), if you
go on to become a serious practitioner of discrete mathematics, then calculus will
be a part of your mathematical tool box. But even then—as now—your primary
focus will be on discrete systems.

1.2 Examples of Discrete Structures

We just considered three examples of discrete systems, or structures: digital time-
keeping, the integers and the rational numbers. We now sample some other types
of discrete structures. Our list will be intentionally brief and (by necessity) incom-
plete. You will see many, many other types of discrete structures in this course, but
these examples should give you the flavor of what is to come.
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For the first example, consider the process of rolling a dice two times in a row.
A typical outcome might be described by a pair , meaning that a 3 was rolled
first, followed by a 5. You could also describe this outcome with the ordered pair
(3, 5). There are exactly 36 outcomes, listed below.

This is a discrete system because its 36 parts are distinct and separate from one
another. (And moreover, each can be fully described with just two symbols. Each
can be typed.)

The set of all such outcomes is called a sample space. Such sets can be useful.
For example, if we wanted to know the probability of rolling a double, we can see
that exactly 6 of these 36 equally likely outcomes is a double, so the probability of
rolling a double is 6

36 = 1
6 . Chapters 2 and 5 introduce sets and counting, theories

relevant to situations such as this, and we study probability in Chapter 6.
Another example of a discrete structure is a graph. In mathematics, the word

“graph” is used in two di↵erent contexts. In algebra or calculus a graph is a visual
description of a function, graphed on a coordinate axis. Although we do use such
graphs in discrete mathematics, we more often use the word graph to mean a network
of nodes with connections between them. Here is a picture of a typical graph.

e d
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c

Its nodes are described by the discrete set
�

a, b, c, d, e
 

, and its connections
(called edges) are

�

ab, bc, cd, de, ea, eb
 

. Therefore this particular graph is com-
pletely described by typing the information

⇣

�

a, b, c, d, e
 

,
�

ab, bc, cd, de, ea, eb
 

⌘

.

The theory of graphs is a major branch of discrete mathematics. Graphs have
wide-ranging applications. For example, the Internet is a huge graph whose nodes
are web pages and whose edges are links between them. Google’s search algorithm
involves the mathematics of this structure. Also, a network of roads is a graph,
and finding the shortest route between nodes is one example of a typical discrete
mathematics problem. We will study graphs in Chapter 15.

A third example of a discrete structure is a computer program. A program is
a file of characters (that can be typed on a computer keyboard!) consisting of a
sequence of commands that can be executed by a digital computer. As you will
see in this course, computer programs (more generically known as algorithms) are
within the scope of discrete mathematics too.
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1.3 Symbols

Symbols play a big role in discrete mathematics. We will use a great many symbols.
You can think of them as being the characters on a very extensive computer key-
board. This will include the upper- and lower-case letters of the English alphabet
(A, B, C, . . ., Z, a, b, c, . . ., z) as well as the digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
and special characters (+, =, /, #, $, %, &, ⇤, etc.). Imagine that the keyboard
also features greek letters (↵,�, �, . . . ,�,�,⌃,⌥ . . .). It will be convenient to also
use symbols like ~, |, }, �, , , , etc. as well as some others that will be
introduced in due time. Mathematics is case-sensitive, so, for example, “A” and
“a” are two di↵erent symbols.

We often attach special meanings to symbols. For example, the symbol “5”
typically stands for the number five. But there is a di↵erence between the symbol
and what it stands for, just as there is a di↵erence between your name and you.
The number five can be designated by the Hindu-Arabic symbol “5” or the Roman
symbols “V” or ”v”. The ancient Babylonians use the cuneiform symbol for five.
The symbols 5, V, v and , are just symbols. We understand them to be di↵erent
names for the numeric value five. But they are symbols, not numbers.

Strings of multiple symbols can stand for various things. For example, the string
of symbols 1040 stands for the number one thousand forty. Each digit in this string
carries a specific meaning. For another example, the words on this page are strings
of letters and (for the most part) the individual letters stand for specific sounds.

By contrast, consider a password, such as X1040f$. By themselves, the individ-
ual symbols in this password have absolutely no meaning. They are just individual
pieces of a larger object whose meaning comes only from the aggregate. Like-
wise, consider the graph on page 5, which was described by the string of symbols
��

a, b, c, d, e
 

,
�

ab, bc, cd, de, ea, eb
 �

. The letters in this string of symbols don’t
have any meaning other than being names for the nodes. This graph could just as
validly be described by a string such as

��

↵, 6, c,�, e
 

,
�

↵6, 6c, c�,�e, e↵, e6
 �

,
where the a is replaced with ↵, the b with 6, and the d with �. One interesting fea-
ture of discrete mathematics is that it is often concerned with meaningful structures
made up of symbols that are not assigned meanings of their own.

Another very important type of symbol (which you encountered in algebra) is
a variable. A variable is a symbol that stands for a definite but unspecified thing.
We often reserve the lower-case symbols s, t, u, v, w, x, y, z at the end of the alphabet
for variables. A variable may stand for a numeric value in an equation or formula.
For instance, the variable x in the equation x2�3x+2 = 0 stands for a number that
makes the equation true. There are two such numbers, namely x = 1 and x = 2.

For another example, consider the equation y = 2x2 � 4 containing variables x
and y. This expresses a relationship between the quantities x and y. If x = 1, then
y = �3; if x = 2, then y = 0, etc.

As you progress through this course you will become accustomed to variables
that stand for things more complex than numbers, like x = | or x = { , , }.
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1.4 Prerequsites

It is understood that you come to discrete mathematics with a sound understanding
of arithmetic and algebra. For instance, you can add (or subtract) fractions by
getting a common denominator, as in

5

3
+

3

2
=

5

3
·2
2
+

3

2
·3
3

=
10

6
+

9

6
=

19

6
,

and you can do this without a calculator. You can also carry out such operations
with expressions having variables, and perform the consequent simplifications, as in

x(x+ 1)

2
� x =

x(x+ 1)

2
� 2x

2
=

x(x� 1)� 2x

2
=

x2 � 3x

2
.

You know that (x+2)2 6= x2+4, but rather (x+2)2 = (x+2)(x+2) = x2+4x+4
(for example). You can also compute, say, (x+ 2)3 as

(x+ 2)3 = (x+ 2)(x+ 2)2 = (x+ 2)(x2 + 4x+ 4) = x3 + 6x2 + 12x+ 8.

You have a working knowledge of various exponential laws such as anam = am+n,
(am)n = amn and (ab)n = anbn. For example, you understand why

3n+1

3
=

313n

3
= 3n and

�

3x5
�2

6x
=

32x10

6x
=

3x9

2
.

If your arithmetic and algebra skills are rusty, then it is a prerequisite that you
are willing to take any necessary steps to overcome any and all deficiencies. You
can do this before starting the course, or as you go along. Working competently
with algebraic expressions will be essential for progress in discrete mathematics.

Although calculus is not necessary to understand the ideas in this book, you
have probably studied it. If so, that background will serve you well. For instance,
calculus requires a certain fluency in algebra and arithmetic, and that fluency is
equally essential in discrete mathematics, as we noted above. Calculus also requires
a working knowledge of functions, and that background will be useful. It has also
given you a grounding in certain useful notations, such as the sigma notation for
expressing sums. Given a list of numbers a1, a2, a3, . . . , an, their sum is compactly
expressed as

a1 + a2 + a3 + · · ·+ a
n

=
n

X

k=1

a
k

.

All of these background topics will play a role for us.
Finally, one very important prerequisite is that you are willing to think about

things in new ways, to work hard, to make mistakes and learn from them, and to
persevere.
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1.5 Case Study: Binary and Hexadecimal Number Systems

The binary and hexadecimal number systems are good illustrations of an adaptive
use of symbols. Though not absolutely essential for much of this text, it is impor-
tant because it forms the basis for the internal workings of computer circuitry and
computations.

We will introduce binary numbers by first reviewing the familiar decimal system.
Exponents play a key role here. Recall that for any number a and positive integer n,
the power an = a · a · · · · · a is the product of a with itself n times. For instance,
103 = 1000. Recall from algebra that if a is non-zero, then a0 = 1. In the following
pages you will encounter 100 = 1, 20 = 1 and 160 = 1.

In daily life we use the familiar base-10 number system, also called the Hindu-
Arabic number system, or the decimal number system. It uses ten symbols
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, representing the quantities zero through nine. There is no
single symbol for the quantity ten – instead we express it as the combination “10,”
signifying that ten equals 1 ten plus 0 ones. Any other positive integer is represented
as a string of symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, standing for the sum of the digits in the
string times powers of ten, decreasing to the zeroth power 100 = 1. For example,

7406 = 7 · 103 + 4 · 102 + 0 · 101 + 6 · 100

= 7 · 1000 + 4 · 100 + 0 · 10 + 6 · 1.

Thus the number seven-thousand-four-hundred-six is represented as 7406, with a 7
in the thousand’s place, a 4 in the hundred’s place, a 0 in the ten’s place, and a 6 in
the one’s place. There is little need to elaborate because you internalized this early
in life.

There is nothing sacred about base of ten, other than the fact that it caters to
humans (who have ten fingers). The base-2, or binary number system, which we
now introduce, expresses numbers in terms of powers of 2 rather than powers of 10.

The binary number system uses only two digits, 0 and 1, representing the quan-
tities zero and one. There is no single symbol for the number two – instead it is
expressed as the combination “10,” signifying that two equals 1 two plus 0 ones.
Any other quantity is represented as a string of 0’s and 1’s, such as 10011. Such a
string stands for the number that equals the sum of the digits in the string times
powers of two, decreasing to 20 = 1.

For example, the base-2 number 10011 equals the base-10 number

1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20 =

1 · 16 + 0 · 8 + 0 · 4 + 1 · 2 + 1 · 1 = 19.

The number nineteen is represented as “10011” in base-2 because it is the sum of
1 sixteen, 0 eights, 0 fours, 1 two and 1 one. It is represented as “19” in base-10
because it is the sum of 1 ten and 9 ones.

For clarity, we sometimes use a subscript to indicate what base is being used,
so the above computation is summarized as 100112 = 1910.
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Table 1.1 shows the first sixteen binary numbers in the left column, with their
corresponding decimal representations on the right. Be sure you agree with this.
For instance, 1102 = 610 because 1 · 22 + 1 · 21 + 0 · 20 = 6.

Table 1.1 Binary and decimal representations of numbers

binary powers of 2 decimal
number 16 8 4 2 1 number

0 = 0·1 = 0
1 = 1·1 = 1

10 = 1·2+0·1 = 2
11 = 1·2+1·1 = 3

100 = 1·4+0·2+0·1 = 4
101 = 1·4+0·2+1·1 = 5
110 = 1·4+1·2+0·1 = 6
111 = 1·4+1·2+1·1 = 7

1000 = 1·8+0·4+0·2+0·1 = 8
1001 = 1·8+0·4+0·2+1·1 = 9
1010 = 1·8+0·4+1·2+0·1 = 10
1011 = 1·8+0·4+1·2+1·1 = 11
1100 = 1·8+1·4+0·2+0·1 = 12
1101 = 1·8+1·4+0·2+1·1 = 13
1110 = 1·8+1·4+1·2+0·1 = 14
1111 = 1·8+1·4+1·2+1·1 = 15

10000 = 1·16+0·8+0·4+0·2+0·1 = 16

In converting between binary and decimal representations of numbers, it’s help-
ful to know the various powers of 2. They are listed in Table 1.2. For example,
25 = 2 · 2 · 2 · 2 · 2 = 32, so 32 appears below 25.

Table 1.2 Powers of 2

· · · 212 211 210 29 28 27 26 25 24 23 22 21 20

· · · 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

Table 1.1 suggests that to convert a given a binary number to decimal, multiply
its digits by decreasing powers of two, down to 20 = 1, and add them. For example,

1110 = 1 · 23 + 1 · 22 + 1 · 21 + 0 · 20
= 1 · 8 + 1 · 4 + 1 · 2 + 0 · 1 = 14.

Example 1.1. Convert the binary number 110101 to decimal.

Solution We simply write this number as a sum of powers of 2 in base-10.

110101 = 1 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20
= 1 · 32 + 1 · 16 + 0 · 8 + 1 · 4 + 0 · 2 + 1 · 1 = 53

Thus 1101012 = 5310, that is, 110101 (base 2) is 53 (base 10).
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Converting decimal to binary involves running this process in reverse, which can
involve some reverse engineering.

Example 1.2. Convert the decimal number 347 to binary.

Solution We need to find how 347 is a sum of powers of 2. Table 1.2 shows that
the highest power of 2 less than 347 is 28 = 256, and

347 = 256 + 91

= 28 + 91.

Now look at the 91. Table 1.2 shows that the highest power of 2 less than 91 is
26 = 64, and 91 = 64 + 27 = 26 + 27, so the above becomes

347 = 28 + 26 + 27.

From here we can reason out 27 = 16 + 8 + 2 + 1 = 24 + 23 + 21 + 20. Therefore

347 = 28 + 26 + 24 + 23 + 21 + 20.

Powers 27, 25 and 22 do not appear, so we insert them, multiplied by 0:

347 = 1 · 28 + 0 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20.

Therefore 347 is the base-2 number 101011011.

For any integer n > 1 there is a base-n number system that uses n symbols.
Various cultures throughout history have used di↵erent base-n number systems.
The ancient Babylonians used a base-60 system with 60 di↵erent cuneiform digits
(including a blank, used for what we now call 0). The Aztecs used base-20. In
the modern era, some early computers used the base-3 system, with three digits
represented by a positive, zero or negative voltage.

Today the binary system is the foundation for computer circuitry, with 0 repre-
sented by a zero voltage, and 1 by a positive voltage. Though the binary system has
just two digits, it is ine�cient in the sense that many digits are needed to express
even relatively small numbers. The base-16, or hexadecimal system, which we study
next, remedies this. It is closely related to binary, but it is much more compact.

Hexadecimal Numbers

Base-16 is called the hexadecimal number system. It uses 16 symbols, includ-
ing the familiar ten symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 representing the numbers zero
through nine, plus the six additional symbols A, B, C, D, E, and F, representing
the numbers ten through fifteen.

Table 1.3 summarizes this. It shows the numbers zero through fifteen in decimal,
binary and hexadecimal notation. For consistency we have represented all binary
numbers as 4-digit strings of 0’s and 1’s by adding zeros to the left, where needed.
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Table 1.3 The first sixteen integers
in decimal, binary and hexadecimal

decimal binary hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

The number sixteen is represented as 10 in hexadecimal, because sixteen is 1
sixteen and 0 ones. Note 1610 = 1016 = 100002.

Just as powers of two are fundamental to interpreting binary numbers, powers of
sixteen are necessary for understanding hexadecimal. Here are the first few powers.
(Memorizing these is not essential.)

Table 1.4 Powers of 16

· · · 165 164 163 162 161 160

· · · 1, 048, 576 65, 536 4096 256 16 1

We can convert between hexadecimal and decimal in the same way that we
converted between binary and decimal.

Example 1.3. Convert the hexadecimal number 1A2C to decimal.

Solution Simply write 1A2C as a sum of powers of sixteen in hexadecimal, then
convert the sums to decimal. (In interpreting the first line, recall that 10 is the
hexadecimal representation of sixteen, i.e., 1016 = 1610.)

1A2C = 1 · 103 + A · 102 + 2 · 101 + C · 100 (hexadecimal)
= 1 · 163 + 10 · 162 + 2 · 161 + 12 · 160 (decimal)
= 1 · 4096 + 10 · 256 + 2 · 16 + 12 · 1 (decimal)
= 6700 (decimal)

Thus 1A2C16 = 670010, that is, 1A2C (base 16) is 6700 (base 10).
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Converting between hexadecimal and binary is extremely simple. We illustrate
the technique first, before explaining why it works. Suppose we wish to convert the
binary number 111111001000001011 to hexadecimal. The first step is to divide the
digits of this binary number into groups of four, beginning from the right.

11 1111 0010 0000 1011

If necessary, add extra zeros to left end of the left-most grouping, so that it too
contains four digits.

0011 1111 0010 0000 1011

Now use Table 1.3 (or innate numerical reasoning) to convert each 4-digit binary
grouping to the corresponding hexadecimal digit.

0011 1111 0010 0000 1011
3 F 2 0 B

We conclude that 1111110010000010112 = 3F20B16.
The reverse process works for converting hexadecimal to binary. Suppose we

wanted to convert 1A2C to binary. Taking the reverse of the above approach (and
using Table 1.3 if necessary), we write

1 A 2 C
0001 1010 0010 1100.

Ignoring the three 0’s on the far left, we see 1A2C16 = 1 1010 0010 11002.
It is easy to see why this technique works. Just use the computation from

Exercise 1.3 on page 11, but convert 1A2C to binary instead of decimal. (Here we
use the fact that 1016 = 100002.)

1A2C = 1 · 103 + A · 102 + 2 · 101 + C · 100 (base-16)
= 1 · 100003 + 1010 · 100002 + 10 · 100001 + 1100 · 100000 (binary).

Doing the addition in columns, we get:

1 0000 0000 0000
1010 0000 0000

10 0000
+ 1100

1 1010 0010 1100

This is the same number we would get by replacing each digit in 1A2C with its
binary equivalent.
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Exercises for Chapter 1

A. Convert the decimal number to binary and hexadecimal.

1. 347 2. 10,000 3. 2039 4. 64

5. 256 6. 257 7. 258 8. 258

B. Convert the binary number to hexadecimal and decimal.

9. 110110011 10. 10101010 11. 1111111 12. 111000111

13. 101101001 14. 10011010 15. 1000001 16. 100100101

C. Convert the hexadecimal number to decimal and binary

17. 123 18. ABC 19. 5A4D 20. F12

21. B0CA 22. C0FFEE 23. BEEF 24. ABBA

Solutions for Chapter 1

1. 347 = 256+64+16+8+2+1 = 1·28+0·27+1·26+0·25+1·24+1·23+1·22+1·21+1·20.
Thus 347

10

= 101011011
2

= 0001 0101 1011
2

= 15B
16

.

3. 2039 = 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 4 + 2 + 1 =

1 · 210 +1 · 29 +1 · 28 +1 · 27 +1 · 26 +1 · 25 +1 · 24 +0 · 23 +1 · 22 +1 · 21 +1 · 20.
Thus 2039

10

= 11111110111
2

= 0111 1111 0111
2

= 7F7
16

.

5. 256 = 28 = ·28 + 0 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20.
Thus 256

10

= 100000000
2

= 0001 0000 0000
2

= 100
16

.

7. 258 = 256 + 2 = ·28 + 0 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 0 · 20.
Thus 258

10

= 100000010
2

= 0001 0000 0010
2

= 102
16

.

9. 110110011
2

= 0001 1011 0011
2

= 1B3
16

= 1 · 162 + 11 · 161 + 3 · 160 = 435
10

11. 1111111
2

= 0111 1111
2

= 7F
16

= 7 · 16 + 15 = 127
10

.

13. 101101001
2

= 0001 0110 1001
2

= 169
16

= 1 · 162 + 6 · 16 + 9 = 361
10

.

15. 1000001
2

= 0100 0001
2

= 41
16

= 4 · 16 + 1 = 65
10

.

17. 123
16

= 1 · 162 + 2 · 161 + 3 · 160 = 256 + 32 + 3 = 291
10

.

123
16

= 0001 0010 0011
2

= 100100011
2

.

19. 5A4D
16

= 5·163+10·162+4·161+13·160 = 5·4096+10·256+4·16+13 = 23117
10

.

5A4D
16

= 0101 1010 0100 1101
2

= 101101001001101
2

.

21. B0CA
16

= 11·163+0·162+12·161+10·160 = 11·4096+0·256+12·16+10 = 45258
10

.

B0CA
16

= 1011 0000 1100 1010
2

= 101100001100
2

23. BEEF
16

= 11·163+14·162+14·161+15·16011·4096+14·256+14·16+15 = 48879
10

.

BEEF
16

= 1011 1110 1110 1010
2

= 1011111011101010
2

.


