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Preface to the Third Edition

y goal in writing this book has been to create a very inexpensive

high-quality textbook. The book can be downloaded from my web

page in PDF format for free, and the print version costs considerably less
than comparable traditional textbooks.

In this third edition, Chapter 3 (on counting) has been expanded, and a
new chapter on calculus proofs has been added. New examples and exercises
have been added throughout. My decisions regarding revisions have been
guided by both the Amazon reviews and emails from readers, and I am
grateful for all comments.

I have taken pains to ensure that the third edition is compatible with the
second. Exercises have not been reordered, although some have been edited
for clarity and some new ones have been appended. (The one exception
is that Chapter 3’s reorganization shifted some exercises.) The chapter
sequencing is identical between editions, with one exception: The final
chapter on cardinality has become Chapter 14 in order to make way for the
new Chapter 13 on calculus proofs. There has been a slight renumbering of
the sections within chapters 10 and 11, but the numbering of the exercises
within the sections is unchanged.

This core of this book is an expansion and refinement of lecture notes I
developed while teaching proofs courses over the past 18 years at Virginia
Commonwealth University (a large state university) and Randolph-Macon
College (a small liberal arts college). I found the needs of these two audiences
to be nearly identical, and I wrote this book for them. But I am mindful of a
larger audience. I believe this book is suitable for almost any undergraduate
mathematics program.

Ricaarp Hammack Lawrenceville, Virginia
February 14, 2018



Introduction

This is a book about how to prove theorems.

Until this point in your education, mathematics has probably been
presented as a primarily computational discipline. You have learned to
solve equations, compute derivatives and integrals, multiply matrices and
find determinants; and you have seen how these things can answer practical
questions about the real world. In this setting your primary goal in using
mathematics has been to compute answers.

But there is another side of mathematics that is more theoretical than
computational. Here the primary goal is to understand mathematical
structures, to prove mathematical statements, and even to invent or discover
new mathematical theorems and theories. The mathematical techniques
and procedures that you have learned and used up until now are founded
on this theoretical side of mathematics. For example, in computing the area
under a curve, you use the fundamental theorem of calculus. It is because
this theorem is true that your answer is correct. However, in learning
calculus you were probably far more concerned with how that theorem could
be applied than in understanding why it is true. But how do we know it is
true? How can we convince ourselves or others of its validity? Questions of
this nature belong to the theoretical realm of mathematics. This book is an
introduction to that realm.

This book will initiate you into an esoteric world. You will learn and
apply the methods of thought that mathematicians use to verify theorems,
explore mathematical truth and create new mathematical theories. This
will prepare you for advanced mathematics courses, for you will be better
able to understand proofs, write your own proofs and think critically and
inquisitively about mathematics.

The book is organized into four parts, as outlined below.



ix

PART I Fundamentals

* Chapter 1: Sets

¢ Chapter 2: Logic

* Chapter 3: Counting

Chapters 1 and 2 lay out the language and conventions used in all advanced
mathematics. Sets are fundamental because every mathematical structure,
object, or entity can be described as a set. Logic is fundamental because it
allows us to understand the meanings of statements, to deduce facts about
mathematical structures and to uncover further structures. All subsequent
chapters build on these first two chapters. Chapter 3 is included partly
because its topics are central to many branches of mathematics, but also
because it is a source of many examples and exercises that occur throughout
the book. (However, the course instructor may choose to omit Chapter 3.)

PART II Proving Conditional Statements
¢ Chapter 4: Direct Proof

* Chapter 5: Contrapositive Proof

* Chapter 6: Proof by Contradiction

Chapters 4 through 6 are concerned with three main techniques used for
proving theorems that have the “conditional” form “If P, then @.”

PART III More on Proof

* Chapter 7: Proving Non-Conditional Statements
* Chapter 8: Proofs Involving Sets

* Chapter 9: Disproof

¢ Chapter 10: Mathematical Induction

These chapters deal with useful variations, embellishments and conse-
quences of the proof techniques introduced in Chapters 4 through 6.

PART IV Relations, Functions and Cardinality
¢ Chapter 11: Relations

¢ Chapter 12: Functions

* Chapter 13: Proofs in Calculus

* Chapter 14: Cardinality of Sets

These final chapters are mainly concerned with the idea of functions, which
are central to all of mathematics. Upon mastering this material you will be
ready for advanced mathematics courses such as abstract algebra, analysis,
topology, combinatorics and theory of computation.
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Introduction

The chapters are organized as in the following dependency tree. The
left-hand column forms the core of the book; each chapter in this column
uses material from all chapters above it. Chapters 3 and 13 may be omitted
without loss of continuity. But the material in Chapter 3 is a great source
of exercises, and the reader who omits it should ignore the later exercises
that draw from it. Chapter 10, on induction, can also be omitted with no
break in continuity. However, induction is a topic that most proof courses

will include.

Chapter 1

Sets
|

Chapter 2

Dependency Tree

Logic
!

Chapter 3
Counting

Chapter 4
Direct Proof

_______________

|

Chapter 5
Contrapositive Proof

____________

|

Chapter 6

Proof by Contradiction <

____________

|

Chapter 7

Non-Conditional Proof <

____________

|

Chapter 8
Proofs Involving Sets

____________

|

Chapter 9
Disproof

§3.5 and §3.6 used in some exercises
Ignore them if Chapter 3 is omitted.

|

Chapter 10
Mathematical Induction

Chapter 11
Relations

|

Chapter 12
Functions

PP QR ———
§10.1 used in
two exercises

|

Chapter 13
Proofs in Calculus

Chapter 14
Cardinality of Sets
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To the instructor. The book is designed for a three or four credit course.
A course emphasizing discrete mathematics could cover chapters 1-12. A
course that is more of a preparation for analysis could cover all but Chapter 3.
The following timetable (for a fourteen-week semester) is a hybrid of these
two options. Sections marked with * may require only the briefest mention
in class, or may be best left for the students to digest on their own.

’ Week ‘ Monday ‘ Wednesday ‘ Friday
1 Section 1.1 Section 1.2 Sections 1.3, 1.4
2 Sections 1.5, 1.6, 1.7 Section 1.8 Sections 1.9%, 2.1
3 Section 2.2 Sections 2.3, 2.4 Sections 2.5, 2.6
4 Section 2.7 Sections 2.8%, 2.9 Sections 2.10, 2.11%, 2.12*
5 Sections 3.1, 3.2, 3.3 Section 3.4, 3.5 Sections 3.5, 3.6
6 EXAM Sections 4.1, 4.2, 4.3 | Sections 4.3, 4.4, 4.5*
7 Sections 5.1, 5.2, 5.3* Section 6.1 Sections 6.2 6.3*
8 Sections 7.1, 7.2*, 7.3, 7.4 | Sections 8.1, 8.2 Section 8.3
9 Section 8.4 Sections 9.1, 9.2, 9.3* | Section 10.1
10 Sections 10.1, 10.4* Sections 10.2, 10.3 EXAM
11 Sections 11.1, 11.2 Sections 11.3, 11.4 Sections 11.5, 11.6
12 Section 12.1 Section 12.2 Section 12.2
13 Sections 12.3, 12.4* Section 12.5 Sections 12.5, 12.6*
14 Section 14.1 Section 14.2 Sections 14.3, 14.4*

The entire book could be covered in a 4-credit course, or in a 3-credit
course pitched to a more mature audience.

Acknowledgments. I thank my students in VCU’s MATH 300 courses for
offering feedback as they read the first edition of this book. Thanks especially
to Cory Colbert and Lauren Pace for rooting out typographical and logical
mistakes. Cory proofed early drafts of each chapter before I posted them
to my web page, created the index, suggested some interesting exercises
and wrote some solutions. Thanks to Moa Apagodu, Sean Cox, Brent Cody
and Andy Lewis for suggesting improvements while teaching from the book,
and to John Ganci for proofing the entire third edition. Mehmet Dagli
caught further typos and inconsistencies while painstakingly translating
the book into Turkish. I am indebted to Lon Mitchell, whose expertise with
typesetting and on-demand publishing made the print version of this book
a reality.

And thanks to countless readers all over the world who contacted me
concerning errors and omissions. Because of you, this is a better book.

Free PDF version [@) ev-nc-no ]






Part I

Fundamentals







CHAPTER 1

Sets

11 of mathematics can be described with sets. This becomes more and

more apparent the deeper into mathematics you go. It will be apparent

in most of your upper level courses, and certainly in this course. The theory

of sets is a language that is perfectly suited to describing and explaining all
types of mathematical structures.

1.1 Introduction to Sets

A set is a collection of things. The things are called elements of the set. We
are mainly concerned with sets whose elements are mathematical entities,
such as numbers, points, functions, etc.

A set is often expressed by listing its elements between commas, enclosed
by braces. For example, the collection {2,4,6,8} is a set which has four
elements, the numbers 2,4,6 and 8. Some sets have infinitely many elements.
For example, consider the collection of all integers,

{...,-4,-3,-2,-1,0,1,2,3,4,...}.

Here the dots indicate a pattern of numbers that continues forever in both
the positive and negative directions. A set is called an infinite set if it has
infinitely many elements; otherwise it is called a finite set.

Two sets are equal if they contain exactly the same elements. Thus
{2,4,6,8} = {4,2,8,6} because even though they are listed in a different order,
the elements are identical; but {2,4,6,8} # {2,4,6,7}. Also

{..-4,-3,-2,-1,0,1,2,3,4...} ={0,-1,1,-2,2,-3,3,-4,4,...}.

We often let uppercase letters stand for sets. In discussing the set
{2,4,6,8} we might declare A = {2,4,6,8} and then use A to stand for {2,4,6,8}.
To express that 2 is an element of the set A, we write 2€ A, and read this as
“2is an element of A,” or “2isin A,” or just “2in A.” We alsohave4€ A, 6€ A
and 8€ A, but 5¢ A. We read this last expression as “5 is not an element of
A, or “5 not in A.” Expressions like 6,2 € A or 2,4,8 € A are used to indicate
that several things are in a set.



4 Sets

Some sets are so significant that we reserve special symbols for them.
The set of natural numbers (i.e., the positive whole numbers) is denoted
by N, that is,

N=1{1,2,3,4,5,6,7,...}.

The set of integers
z={...,-3,-2,-1,0,1,2,3,4,...}

is another fundamental set. The symbol R stands for the set of all real
numbers, a set that is undoubtedly familiar to you from calculus. Other
special sets will be listed later in this section.

Sets need not have just numbers as elements. The set B = {T,F} consists
of two letters, perhaps representing the values “true” and “false.” The set
C ={a,e,i,o,u} consists of the lowercase vowels in the English alphabet.
The set D = {(0,0),(1,0),(0,1),(1,1)} has as elements the four corner points
of a square on the x-y coordinate plane. Thus (0,0) € D, (1,0) € D, etc.,
but (1,2) ¢ D (for instance). It is even possible for a set to have other sets
as elements. Consider E = {1,{2,3},{2,4}}, which has three elements: the
number 1, the set {2,3} and the set {2,4}. Thus 1€ E and {2,3} € E and
{2,4} €E. But note that 2¢ E, 3¢ E and 4 ¢ E.

Consider the set M ={[39],[39],[1 9]} of three two-by-two matrices. We
have [ 9] € M, but [} 1] ¢ M. Letters can serve as symbols denoting a set’s
elements: Ifa=[J9], 6=[}9] and ¢ =[1 9], then M = {a,b,c}.

If X is a finite set, its cardinality or size is the number of elements
it has, and this number is denoted as |X|. Thus for the sets above, |A| =4,
IB|=2,|C|=5,|D|=4, |E|=3 and [M|=3.

There is a special set that, although small, plays a big role. The empty
set is the set {} that has no elements. We denote it as @, so @ = {}. Whenever
you see the symbol @, it stands for {}. Observe that |#|=0. The empty set
is the only set whose cardinality is zero.

Be careful in writing the empty set. Don’t write {#} when you mean @.
These sets can’t be equal because @ contains nothing while {@} contains
one thing, namely the empty set. If this is confusing, think of a set as a
box with things in it, so, for example, {2,4,6,8} is a “box” containing four
numbers. The empty set ¢ = {} is an empty box. By contrast, {#} is a box
with an empty box inside it. Obviously, there’s a difference: An empty box
is not the same as a box with an empty box inside it. Thus ¢ # {#}. (You
might also note || =0 and |{g}| =1 as additional evidence that ¢ # {®}.)

Richard Hammack  Book of Proof



Introduction to Sets 5

This box analogy can help us think about sets. The set F = {@,{#},{{#}}}
may look strange but it is really very simple. Think of it as a box containing
three things: an empty box, a box containing an empty box, and a box
containing a box containing an empty box. Thus |F|=3. The set G = {N,z}
is a box containing two boxes, the box of natural numbers and the box of
integers. Thus |G| =

A special notation called set-builder notation is used to describe sets
that are too big or complex to list between braces. Consider the infinite set
of even integers E ={...,-6,-4,-2,0,2,4,6,...}. In set-builder notation this
set is written as

E-= {2n ‘ne Z}.

We read the first brace as “the set of all things of form,” and the colon as
“such that.” So the expression E = {2n : n € Z} reads as “E equals the set of
all things of form 2n, such that n is an element of Z.” The idea is that E
consists of all possible values of 2n, where n takes on all values in Z.

In general, a set X written with set-builder notation has the syntax

X = {expression :rule},

where the elements of X are understood to be all values of “expression” that
are specified by “rule.” For example, above E is the set of all values of the
expression 2n that satisfy the rule n € Z. There can be many ways to express
the same set. For example, E = {2n:n € Z} = {n : n is an even integer} =
{n:n=2k,k e€Z}. Another common way of writing it is

E={neZ:nis even},

read “E is the set of all n in Z such that n is even.” Some writers use a bar
instead of a colon; for example, E = {n € Z | n is even}. We use the colon.

Example 1.1 Here are some further illustrations of set-builder notation.

1. {n:nis a prime number}={2,3,5,7,11,13,17,...}
2. {neN:nisprime}=1{2,3,57,11,13,17,...}

3. {n?:nez}=1{0,1,4,9,16,25,...}

4. {xEIR x2-2= 0} {\/§,—\/§}

5. {xezZ:x>-2=0}=9¢

6. {xeZ:|xl<4}={-3,-2,-1,0,1,2,3}

7. {2x:xeZlxl<4}={-6,-4,-2,0,2,4,6}

8. {xez:|2x|<4}={-1,0,1}

Free PDF version [@) ev-nc-no ]



6 Sets

Items 6-8 above highlight a conflict of notation that we must always
be alert to. The expression |X| means absolute value if X is a number
and cardinality if X is a set. The distinction should always be clear from
context. Consider {x € Z: |x| <4} in Example 1.1 (6) above. Here x€ Z, so x
is a number (not a set), and thus the bars in |x| must mean absolute value,
not cardinality. On the other hand, suppose A = {{1,2},{3,4,5,6},{7}} and
B={XeA:|X|<3}. The elements of A are sets (not numbers), so the |X| in
the expression for B must mean cardinality. Therefore B = {{1,2},{7}}.

Example 1.2 Describe the set A ={7a+3b : a,b € Z}.

Solution: This set contains all numbers of form 7a + 3b, where a and b
are integers. Each such number 7a + 35 is an integer, so A contains only
integers. But which integers? If n is any integer, then n = 7n + 3(-2n), so
n="Ta+3b where a =n and b = —2n. Therefore n € A. We’ve now shown that
A contains only integers, and also that every integer is an element of A.
Consequently A =7Z.

We close this section with a summary of special sets. These are sets
that are so common that they are given special names and symbols.

* The empty set: ¢ ={}

*  The natural numbers: N={1,2,3,4,5,...}

* Theintegers: z={...,-3,-2,-1,0,1,2,3,4,5,...}

¢ The rational numbers: Q = {x tx= %, where m,n€Z and n # 0}
* The real numbers: R

We visualize the set R of real numbers as an infinitely long number line.

-4 -3 -2-1 0 1 2 3 4

Notice that Q is the set of all numbers in R that can be expressed as a
fraction of two integers. You may be aware that Q #R, as v2¢ Q but v2eR.
(If not, this point will be addressed in Chapter 6.)

In calculus you encountered intervals on the number line. Like R, these
too are infinite sets of numbers. Any two numbers a,b € R with a < b give
rise to various intervals. Graphically, they are represented by a darkened
segment on the number line between a and b. A solid circle at an endpoint
indicates that that number is included in the interval. A hollow circle
indicates a point that is not included in the interval.

Richard Hammack  Book of Proof



Introduction to Sets 7

* Closed interval: [a,b] = {x€R:a < x < b} . 4
* Openinterval: (a,b)={xeR:a<x<b} 5 4
* Half-open interval: (a,b]={x€R:a<x<b} 5 3
* Half-open interval: [a,b) = {x€R:a <x < b} . 2
* Infinite interval: (a,00)={x€R:a <x} S >
* Infinite interval: [a,00)={x€R:a <x} . >
* Infinite interval: (-o0,b) = {x e R:x < b} « g
* Infinite interval: (-oo0,b] = {x e R:x < b} « l.)

Each of these intervals is an infinite set containing infinitely many
numbers as elements. For example, though its length is short, the interval
(0.1,0.2) contains infinitely many numbers, that is, all numbers between
0.1 and 0.2. It is an unfortunate notational accident that (a,b) can denote
both an open interval on the line and a point on the plane. The difference
is usually clear from context. In the next section we will see yet another
meaning of (a,b).

Exercises for Section 1.1
A. Write each of the following sets by listing their elements between braces.

1. {5x—1:x€7} 9. {xeR:sinmx =0}
2. {8x+2:x€7} 10. {xeR:cosx =1}
3. {xez:-2<sx<T} 11. {x€Z:|x| <5}

4, {xEN:—2<xS7} 12. {xEZ:I2x|<5}
5. {xeR:x%2=3} 13. {xeZ:|6x| <5}
6. {xeR:x%2=9} 14. {5x:x€7,|2x| <8}
7. {xeR:x%+5x=-6} 15. {5a+2b:a,beZ}
8. {xe[RZ:x3+5x2=—6x} 16. {6a+2b:a,beZ}

B. Write each of the following sets in set-builder notation.

17. {2,4,8,16,32,64...} 23. {3,4,5,6,7,8}

18. {0,4,16,36,64,100,...} 24. {-4,-3,-2,-1,0,1,2}

19. {...,-6,-3,0,3,6,9,12,15,...} 25. {...,},1.3.1,2,48,...}

20. {...,-8,-3,2,7,12,17,...} 26. {. .,%,§,§,1,3,9,27,...}

21. {0,1,4,9,16,25,36,...} 27. {...,-n,-2,0,Z,m,3 27,32 ...}
22. {3,6,11,18,27,38,...} 28. {...,-3,-2,0,3,3,93, 159}
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8 Sets

C. Find the following cardinalities.

29. |{{1},{2,{3,4}},0}| 34. [{xeN:|x| <10}
30. |{{1,4},a,0,{{3,4}},{2}}| 35. [{xeZ:x% <10}
31. [{{{1}.{2,{3,4}}.2}}| 36. |{xeN:x?<10}|
32. [{{{1,4},a,5,{{3,4}},{2}}}| 37. |{xeN:x% <0}

33. [{xeZ:lx|<10}

38. |{x€l\|:5x£20}|

D. Sketch the following sets of points in the x-y plane.

39. {(x,y):x€[1,2],y€[1,2]} 46. {(x,y):x,yeRx?+y? <1}

40. {(x,y):x€[0,1],y €[1,2]} 47. {(x,y):x,yeR,y =% -1}

41. {(x,y):xe[-1,1],y=1} 48. {(x,y):x,yeR,x>1}

42, {(x,y):x=2,y€[0,11} 49. {(x,x+y):xeR,ye 7}

43. {(x,y):|x| =2,y €[0,11} 50. {(x,%):xeR,yeN}

44. {(x,x?):xeR} 51. {(x,y)eR? : (y—x)(y+x)=0}
45. {(x,y):x,yeR,x2 +y? =1} 52. {(x,y)eR? : (y —x®)(y +x?) =0}

1.2 The Cartesian Product

Given two sets A and B, it is possible to “multiply” them to produce a new
set denoted as A x B. This operation is called the Cartesian product. To
understand it, we must first understand the idea of an ordered pair.

Definition 1.1 An ordered pair is a list (x,y) of two things x and y,
enclosed in parentheses and separated by a comma.

For example, (2,4) is an ordered pair, as is (4,2). These ordered pairs are
different because even though they have the same things in them, the order
is different. We write (2,4) # (4,2). Right away you can see that ordered pairs
can be used to describe points on the plane, as was done in calculus, but
they are not limited to just that. The things in an ordered pair don’t have
to be numbers. You can have ordered pairs of letters, such as (¢,m), ordered
pairs of sets such as ({2,5},{3,2}), even ordered pairs of ordered pairs like
((2,4),(4,2)). The following are also ordered pairs: (2,{1,2,3}), (R,(0,0)). Any
list of two things enclosed by parentheses is an ordered pair. Now we are
ready to define the Cartesian product.

Definition 1.2 The Cartesian product of two sets A and B is another
set, denoted as A x B and defined as A x B={(a,b):a € A,beB}.

Richard Hammack  Book of Proof



The Cartesian Product 9

Thus A x B is a set of ordered pairs of elements from A and B. For
example, if A = {k,¢,m} and B ={q,r}, then

A xB={(k,q),(k,1),(£,),(€,1),(m,q),(m,r)}.

Figure 1.1 shows how to make a schematic diagram of A x B. Line up the
elements of A horizontally and line up the elements of B vertically, as if
A and B form an x- and y-axis. Then fill in the ordered pairs so that each
element (x,y) is in the column headed by x and the row headed by »y.

r (k,r) (4,r) (m,r)
q (k,q) (4,q) (m,q)
( k l m )A

Figure 1.1. A diagram of a Cartesian product

B AxB

For another example, {0,1} x {2,1} = {(0,2),(0,1),(1,2),(1,1)}. If you are a
visual thinker, you may wish to draw a diagram similar to Figure 1.1. The
rectangular array of such diagrams give us the following general fact.

Fact 1.1 If A and B are finite sets, then |A xB| =|A|-|B]|. ‘

Example 1.3 Let A = {,(3,(,63,&,63} be the set consisting of the six faces
of a dice. The Cartesian product A x A is diagramed below. By Fact 1.1 (or
by simple counting), |A x A| = 6-6 = 36. We might think of A x A as the set
of possible outcomes in rolling a dice two times in a row. Each element of
the product is an ordered pair of form (result of 1st roll, result of 2nd roll).
Such constructions are useful in the study of probability.

A AxA

(D @D ED @D GED @D )
e OO @O G @B @D
@O @O @O GO @D @O
@EE @ @O GO @O @D
@O @O0 @O GO @O @0

\(E],E]) 3,60 @) EL) GO (,El)/

GomeeB)

(B0 © © ©® _®@)A
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10 Sets

The set R xR = {(x,y) : x,y € R} should be very familiar. It can be viewed
as the set of points on the Cartesian plane, as drawn in Figure 1.2(a). The
set RxN = {(x,y): x € R,y € N} can be regarded as all of the points on the
plane whose second coordinate is a natural number. This is illustrated in
Figure 1.2(b), which shows that R x N looks like infinitely many horizontal
lines at integer heights above the x-axis. The set NxN is the set of all points
on the plane whose coordinates are both natural numbers. It looks like a
grid of dots in the first quadrant, as illustrated in Figure 1.2(c).

ol
|

(a) (b) (c)

y

R xR R xN

— <
&

Figure 1.2. Drawings of some Cartesian products

It is even possible for one factor of a Cartesian product to be a Cartesian
product itself, as in Rx (N x Z) = {(x,(y,2)) :x € R, (y,2) e N x Z}.

We can also define Cartesian products of three or more sets by moving
beyond ordered pairs. An ordered triple is a list (x,y,z). The Cartesian
product of the three sets R, N and Z is RxNx Z = {(x,y,2):x €R, y €N, z € Z}.
Of course there is no reason to stop with ordered triples. In general,

A1 xAgx - x Ay ={(x1,x9,...,x,) : x; €A; for each i =1,2,...,n}.

Be mindful of parentheses. There is a slight difference between Rx (N x Z)
and Rx N x Z. The first is a Cartesian product of two sets; its elements are
ordered pairs (x,(y,z)). The second is a Cartesian product of three sets; its
elements are ordered triples (x,v,z). To be sure, in many situations there is
no harm in blurring the distinction between expressions like (x,(y,z)) and
(x,,2), but for now we regard them as different.

For any set A and positive integer n, the Cartesian power A" is

A" =AxAx--xA={(x1,%2,...,%,) : X1,%2,...,%n € A}.

In this way, R? is the familiar Cartesian plane and R? is three-dimensional
space. You can visualize how, if R? is the plane, then 72 = {(m,n):m,ne 7}
is a grid of points on the plane. Likewise, as R? is 3-dimensional space,
73 ={(m,n,p):m,n,p € Z} is a grid of points in space.
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The Cartesian Product 11

In other courses you may encounter sets that are very similar to R*, but
yet have slightly different shades of meaning. Consider, for example, the
set of all two-by-three matrices with entries from R:

M={[%y%]: u,v,w,x,y,z€R}.
This is not really all that different from the set
RS = {(u,v,w,x,y,2) : u,v,w,x,y,z €R}.

The elements of these sets are merely certain arrangements of six real
numbers. Despite their similarity, we maintain that M # RS, for two-by-
three matrices are not the same things as sequences of six numbers.

Example 1.4 Represent the two sides of a coin by the set S = {u,1} . The
possible outcomes of tossing the coin seven times in a row can be described
with the Cartesian power S”. A typical element of S7 looks like

(4,H,T,H,T,T,T),

meaning a head was tossed first, then another head, then a tail, then a head
followed by three tails. Note that |S”| =27 = 128, so there are 128 possible
outcomes. If this is not clear, then it will be explained fully in Chapter 3.

Exercises for Section 1.2

A. Write out the indicated sets by listing their elements between braces.
1. Suppose A ={1,2,3,4} and B = {a,c}.

(a) AxB (c) AxA (e) xB (g) Ax(BxB)
(b) BxA (d) BxB ) (AxB)xB (h) B3

2. Suppose A = {rm,e,0} and B = {0,1}.
(a) AxB (c) AxA (e) Ax@ (g) Ax(BxB)
(b) BxA (d) BxB (f) (AxB)xB (h) AxBxB

3. {xE[RZ:xZZZ}x{a,c,e} 6. {xER:xzzx}x{xEN:x2=x}

4. {nezZ:2<n<5}x{neZ:|n|=5} 7. {#} x{0,8} x{0,1}

5. {xeR:x%2=2} x {xeR:|x|=2} 8. {0,1}*

B. Sketch these Cartesian products on the x-y plane R? (or R? for the last two).

9. {1,2,3} x{-1,0,1} 15. {1} x[0,1]

10. {-1,0,1} x {1,2,3} 16. [0,1]x {1}

11. [0,1]1x[0,1] 17. NxZ

12. [-1,11x[1,2] 18. ZxZ

13. {1,1.5,2} x[1,2] 19. [0,1]x[0,1]x [0,1]

14. [1,2]x{1,1.5,2} 20. {(x,y)eR%:x%+y% <1} x[0,1]
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12 Sets

1.3 Subsets

It can happen that every element of a set A is an element of another set B.
For example, each element of A = {0,2,4} is also an element of B = {0,1,2,3,4}.
When A and B are related this way we say that A is a subset of B.

Definition 1.3 Suppose A and B are sets. If every element of A is also
an element of B, then we say A is a subset of B, and we denote this as
A cB. We write A £ B if A is not a subset of B, that is, if it is not true that
every element of A is also an element of B. Thus A ¢ B means that there
is at least one element of A that is not an element of B.

Example 1.5 Be sure you understand why each of the following is true.

1. {2,3,71<{2,3,4,5,6,7}

2. {2,3,7}¢{2,4,5,6,7}

3. {2,3,7}<{2,3,7}

4. {(x,sin(x)) : x € R} R

5. {1,3,5,7,11,13,17,...}9!\1
6. NcZcQcR

7. RxNcRxR

8. AcA foranyset A

9. pco.

This brings us to a significant fact: If B is any set whatsoever, then ¢ < B.
To see why this is true, look at the last sentence of Definition 1.3. It says
that ¢ £ B would mean that there is at least one element of @ that is not an
element of B. But this cannot be so because @ contains no elements! Thus
it is not the case that @ £ B, so it must be that ¢ = B.

Fact 1.2 The empty set is a subset of all sets, that is, @ < B for any set B.

Here is another way to look at it. Imagine a subset of B as a thing you
make by starting with braces {}, then filling them with selections from B.
For example, to make one particular subset of B = {a,b,c}, start with {},
select b and ¢ from B and insert them into {} to form the subset {b,c}.
Alternatively, you could have chosen just a to make {a}, and so on. But one
option is to simply select nothing from B. This leaves you with the subset {}.
Thus {} < B. More often we write it as ¢ < B.

Richard Hammack  Book of Proof




Subsets 13

This idea of “making” a subset can help us list out all the subsets of a
given set B. As an example, let B = {a,b,c}. Let’s list all of its subsets. One
way of approaching this is to make a tree-like structure. Begin with the
subset {}, which is shown on the left of Figure 1.3. Considering the element
a of B, we have a choice: insert it into {}, or not. The lines from {} point to
what we get depending whether or not we insert a, either {} or {a}. Now
move on to the element & of B. For each of the sets just formed we can either
insert or not insert b, and the lines on the diagram point to the resulting
sets {}, {b},{a}, or {a,b}. Finally, to each of these sets, we can either insert
¢ or not insert it, and this gives us, on the far right-hand column, the sets
{}, {c}, {8}, {b,¢c}, {a}, {a,c}, {a,b} and {a,b,c}. These are the eight subsets
of B={a,b,c}.

Inserta? Insertb? Insert c¢?

|
g
/No/ \Yes\ {c}
i}
NO/ \Yes\{b}/ No— {b}
{}/ Yes {b,c}
—— {a}
\Yes /{a}<zos
N o
\Ye —— {a,b}

S
a, b} °

\Yes —_ {a,b,c}

Figure 1.3. A “tree” for listing subsets

We can see from the way this tree branches that if it happened that
B ={a}, then B would have just two subsets, those in the second column of
the diagram. If it happened that B = {a,b}, then B would have four subsets,
those in the third column, and so on. At each branching of the tree, the
number of subsets doubles. So in general, if |B| = n, then B has 2" subsets.

Fact 1.3 If a finite set has n elements, then it has 2" subsets.
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14 Sets

For a slightly more complex example, consider listing the subsets of
B ={1,2,{1,3}}. This B has just three elements: 1, 2 and {1,3}. At this point
you probably don’t even have to draw a tree to list out B’s subsets. You just
make all the possible selections from B and put them between braces to get

i 115 425 L3 {1.2) {1{1,3}), {2,{1,3}), {1,2,{L,3}}.

These are the eight subsets of B. Exercises like this help you identify what
is and isn’t a subset. You know immediately that a set such as {1,3} is not a
subset of B because it can’t be made by inserting elements from B into {},
as the 3 is not an element of B and thus is not a valid selection. Notice that
although {1,3} ¢ B, it is true that {1,3} € B. Also, {{1,3}} =B.

Example 1.6 Be sure you understand why the following statements are
true. Each illustrates an aspect of set theory that you've learned so far.

1 1e{l{1}} .o 1is the first element listed in {1, {1}}
2. 12{L {1} because 1 is not a set
3. {e{r{1}}...i {1} is the second element listed in {1,{1}}
4. {pef{r {1} make subset {1} by selecting 1 from {1,{1}}
5. {{1}e{r,{1}}......... because {1,{1}} contains only 1 and {1}, and not {{1}}
6. {{1}pc{r,{a}}.....oooiin make subset {{1}} by selecting {1} from {1,{1}}
7. Ne¢N.........oooee. N is a set (not a number) and N contains only numbers
8. NN i because X c X for every set X
9. PeN............. because the set N contains only numbers and no sets
10, BN i e because @ is a subset of every set

=
—
2
m |
—~—
2
—

......................... because {N} has just one element, the set N
120 NN} oo because, for instance, 1 €N but 1 ¢ {N}
13 ge{N} .o note that the only element of {N} is N, and N# @
14, @c{N}o oo because @ is a subset of every set
15, @e{@d,N}ooooeiii @ is the first element listed in {®,N}
16. @<{ad,N} .o because ¢ is a subset of every set
17 {N}be{o,N}.oo make subset {N} by selecting N from {@,N}
18. AN} 4o, AN oo because N ¢ {@, {N}}
19. {N}e{a,{N}}.ooooeoiiinnt, {N} is the second element listed in {@, {N}}
20. {(1,2),(2,2),(T, D} SNXN.................. each of (1,2), (2,2), (7,1) is in NxN

Though they should help you understand the concept of subset, the
above examples are somewhat artificial. But in general, subsets arise very
naturally. For instance, consider the unit circle C = {(x,y) e R?: 22 + y? = 1}.
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This is a subset C < R%2. Likewise the graph of a function y = f(x) is a set
of points G = {(x,f(x)) : x € R}, and G < R%. Surely sets such as C and G
are more easily understood or visualized when regarded as subsets of R.
Mathematics is filled with such instances where it is important to regard
one set as a subset of another.

Exercises for Section 1.3
A. List all the subsets of the following sets.

1. {1,2,3,4} 5. {#}
2. {1,2,¢} 6. {R,Q,N}
3. {{r}} 7. {R.{Q.N}}
4. ¢ 8. {{0,1},{0,1,{2}},{o}}
B. Write out the following sets by listing their elements between braces.
9. {X:X<{3,2,a} and |X|=2} 11. {X:X <{3,2,a} and |X|=4}
10. {XcN:[X|<1} 12. {X:X c{3,2,a} and |X|=1}
C. Decide if the following statements are true or false. Explain.
13. R3cR? 15. {(x,y)eR?:x-1=0}c{(x,y)eR? :x2—x=0}
14. RZcR3 16. {(x,y)E[R2:x2—x=O}§{(x,y)€R2:x—le}

1.4 Power Sets

Given a set, you can form a new set with the power set operation.

Definition 1.4 If A is a set, the power set of A is another set, denoted
as #(A) and defined to be the set of all subsets of A. In symbols, &2(A) =
{X : X QA}.

For example, suppose A = {1,2,3}. The power set of A is the set of all
subsets of A. We learned how to find these subsets in the previous section,
and they are {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3} and {1,2,3}. Therefore the
power set of A is

2@)={p. {1}, {2}, {3}, {1.2}, {1.3}, {2.3}, {1.2.3} |

As we saw in the previous section, if a finite set A has n elements, then
it has 2" subsets, and thus its power set has 2" elements.

Fact 1.4 If A is a finite set, then |22(A)| = 214!
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16 Sets

Example 1.7 You should examine the following statements and make
sure you understand how the answers were obtained. In particular, notice
that in each instance the equation |.22(4)| = 24! is true.

2({0,1,3}) = { . {0}, {1}, {3}, {0.1}, {0,3}, {L.3}. {0,1,3}}

{1.2) ={o, {1}, {2}, {1.2}}
{1}) = { AL

3 8

-~
~ J o N— I N—
—~—
Q @ —

—~—

Q
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| =~

Q
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X

R
—
—_—
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{@.2), (2.{}), ({a}.2), (a}.{2}) }
Ao} o) {o.{2}}}
2, {1}, {12} {L{1.2}}}
=19, {2}, N} {ZN}}

Next are some that are wrong. See if you can determine why they are
wrong and make sure you understand the explanation on the right.

N
S
3

—_—— —

{

e A A I i o
1l

—~—

S

NI I I S
=5

—~ N~~~ —

=
e

N ~
2 =
VN

—~— —A—

11. 2 ={o, {1}}...ccooiii meaningless because 1 is not a set
12. 2 ({1,{1,2}}) ={s,{1},{1,2},{1,{1,2}}} ...... wrong because {1,2} £ {1,{1,2}}
13. 2 ({1,{1,2}}) = {@.{{1}}.{{1.2}}.{1,{1,2}}} ... wrong because {{1}} ¢ {1,{1,2}}

If A is finite, then it is possible (though maybe not practical) to list out
P(A) between braces as was done in the above example. That is not possible
if A is infinite. For example, consider Z2(N). If you start listing its elements
you quickly discover that N has infinitely many subsets, and it’s not clear
how (or if) they could be arranged in a list with a definite pattern:

PN ={2,{1},12},...,11,2},{1,3},...,{39,47},
.,{3,87,131},...,{2,4,6,8,...},... ? ...}

The set #(R?) is mind boggling. Think of R? = {(x,y):x,y € R} as the set
of all points on the Cartesian plane. A subset of R? (that is, an element of
Z(R?)) is a set of points in the plane. Let’s look at some of these sets. Since
{(1,2),(1,1)} < R%, we know that {(1,2),(1,1)} € Z(R?). We can even draw a
picture of this subset, as in Figure 1.4(a). For another example, the graph
of the equation y = x? is the set of points G = {(x,x?) : x € R} and this is a
subset of R?, so G € Z(R?). Figure 1.4(b) is a picture of G. Because this can
be done for any function, the graph of any imaginable function f :R — R is
an element of 2(R?).
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]: ‘ N
e

(a) (b) (c)

NITE

—_—
8

Figure 1.4. Three of the many, many sets in Z2(R?)

In fact, any black-and-white image on the plane can be thought of as
a subset of R?, where the black points belong to the subset and the white
points do not. So the text “INFINITE” in Figure 1.4(c) is a subset of R? and
therefore an element of 22(R?). By that token, #(R?) contains a copy of the
page you are reading now.

Thus, in addition to containing every imaginable function and every
imaginable black-and-white image, Z(R?) also contains the full text of every
book that was ever written, those that are yet to be written and those that
will never be written. Inside of Z(R?) is a detailed biography of your life,
from beginning to end, as well as the biographies of all of your unborn
descendants. It is startling that the five symbols used to write 2(R?) can
express such an incomprehensibly large set.

Homework: Think about Z(Z2(R2)).

Exercises for Section 1.4
A. Write the following sets by listing their elements between braces.

1. 2 ({{a,b}{c}}) 7. 2 ({a.6})x 2 ({0,1})

2. 7({1,2,3,4}) 8. Z({1,2} x{3})

8. 2({{e}.5}) 9. 2 ({a,b} x {0})

4. 7 ({R,Q}) 10. {Xe 2({1,2,3}):1X| =1}
5. 7(7({2})) 1. {Xc2({1,2,3}):1XI<1}
6. 2({1,2})x 2 ({3}) 12. {Xe 2 ({1,2,3}):2e X}

B. Suppose that |A|=m and |B| =n. Find the following cardinalities.

13. | P2(P(P(A)) 17. [{X e 2(A):1X| <1}
14. | 2(2(A)) 18. | P(A x Z(B))

15. |Z(A xB)| 19. | P(P (P (A x p))
16. |2(A) x Z(B)| 20. [{X < 2(4):1X|<1}|
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18 Sets

1.5 Union, Intersection, Difference

Just as numbers are combined with operations such as addition, subtraction
and multiplication, there are various operations that can be applied to sets.
The Cartesian product (defined in Section 1.2) is one such operation; given
sets A and B, we can combine them with x to get a new set A x B. Here are
three new operations called union, intersection and difference.

Definition 1.5 Suppose A and B are sets.
The union of A and B is the set AuB={x:x€A or xeBj.
The intersection of A and B istheset AnB={x:x€A and x€B}.
The difference of A and Bistheset @~ A-B={x:xcA and x¢B}.

In words, the union A UB is the set of all things that are in A or in B (or
in both). The intersection A N B is the set of all things in both A and B. The
difference A — B is the set of all things that are in A but not in B.

Example 1.8 Suppose A ={a,b,c,d,e}, B={d,e,f} and C = {1,2,3}.

1. AuB={a,b,c,d,e,f}

2. AnB={d,e}

3. A-B={a,b,c}

4. B-A={f}

5. (A-B)uB-A)={a,b,c,f}

6. AuC={a,b,c,d,e1,2,3}

7. AnC=9

8. A—C={a,b,c,d,e}

9. (AnC)u(A-C)=A{a,b,c,d,e}

10. (AnB)xB={(d,d),(d,e),(d,[),(e,d),(e,e),(e,f)}

11. (AxC)nBxC)={(d,1),(d,2),(d,3),(e,1),(e,2),(e,3)}

Parts 12-15 use interval notation (Section 1.1), so [2,5] = {x e R:2 < x <5},
etc. Sketching these on the number line may aid your understanding.

12. [2,5]ul3,6]1=12,6]
13. [2,5]1n[3,6]=13,5]
14. [2,5]-1[3,6]=1[2,3)
15. [0,3]1-[1,2]=[0,1)u(2,3]

Observe that for any sets X and Y it is always true that XuY =Y uX
and XNY =Y nX, butin general X -Y #Y - X.
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Union, Intersection, Difference 19

Example 1.9 Let A = {(x,x?): x € R} be the graph of the equation y = x?
and let B = {(x,x+2):x € R} be the graph of the equation y = x +2. These sets
are subsets of R?. They are sketched together in Figure 1.5(a). Figure 1.5(b)
shows A UB, the set of all points (x,y) that are on one (or both) of the two
graphs. Observe that AnB ={(-1,1),(2,4)} consists of just two elements,
the two points where the graphs intersect, as illustrated in Figure 1.5(c).
Figure 1.5(d) shows A — B, which is the set A with “holes” where B crossed it.
In set builder notation, we could write AUB = {(x,y):x€R,y =x% or y=x+2}
and A -B={(x,x?):xeR-{-1,2}}.

AUB, . A-B
B AnB

>

(a) (b) (c) (d)

Figure 1.5. The union, intersection and difference of sets A and B

Exercises for Section 1.5
1. Suppose A ={4,3,6,7,1,9}, B = {5,6,8,4} and C = {5,8,4}. Find:

(a) AuB d A-C (g) BnC
(b) AnB (e) B-A (h) BuC
(¢c) A-B f) AnC (i) C-B

2. Suppose A ={0,2,4,6,8}, B=1{1,3,5,7} and C = {2,8,4}. Find:
(a) AUB d A-cC (g) BnC
(b) AnB (e) B-A (h) C-A
(c) A-B ®) AnC i) C-B

3. Suppose A ={0,1} and B ={1,2}. Find:
(a) (AxB)n(BxB) (d) (AnB)xA (8) Z(A)-2(B)
(b) (AxB)uU(BxB) (e) (AxB)nB (h) Z(AnB)
(c) (AxB)-(BxB) ) #A)n2(B) (i) Z(AxB)

4. Suppose A ={b,c,d} and B = {a,b}. Find:
(a) (AxB)n(BxB) (d) (AnB)xA (g) YA)- A (B)
(b) (AxB)u(BxB) (e) (AxB)nB (h) ZAnB)
(c) (AxB)-(BxB) f) ZA)n Z(B) i) Z(A)x Z(B)
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20 Sets

5. Sketch the sets X =[1,3]1x[1,3] and Y =[2,4] x[2,4] on the plane R2. On separate
drawings, shade in the sets XuY,XnY,X-Y and Y -X. (Hint: X and Y are
Cartesian products of intervals. You may wish to review how you drew sets like
[1,3]x[1,3] in the exercises for Section 1.2.)

6. Sketch the sets X =[-1,3]x[0,2] and Y =[0,3]x[1,4] on the plane R2. On separate
drawings, shade in the sets XuY,XnY,X-Y andY - X.

7. Sketch the sets X = {(x,y) eR%:x%+y? <1} and Y = {(x,y) e R? :x = 0} on R%. On
separate drawings, shade in the sets XuY,XnY,X-Y andY - X.

8. Sketch the sets X = {(x,y)eR%:x?+y% <1} and Y = {(x,y) eR?: -1 < y <0} on R%.
On separate drawings, shade in the sets XuY,XnY,X-Y and Y - X.

9. Is the statement (R x Z)N(Z x R) = Z x Z true or false? What about the statement
RxZ)U(ZxR)=RxR?

10. Do you think the statement (R—Z) x N = (R x N) — (Z x N) is true, or false? Justify.

1.6 Complement

This section introduces yet another set operation, called the set complement.
The definition requires the idea of a universal set, which we now discuss.
When dealing with a set, we almost always regard it as a subset of
some larger set. For example, consider the set of prime numbers P =
{2,8,5,7,11,13,...}. If asked to name some things that are not in P, we
might mention some composite numbers like 4 or 6 or 423. It probably
would not occur to us to say that Vladimir Putin is not in P. True, Vladimir
Putin is not in P, but he lies entirely outside of the discussion of what is a
prime number and what is not. We have an unstated assumption that

PcN

because N is the most natural setting in which to discuss prime numbers.
In this context, anything not in P should still be in N. This larger set N is
called the universal set or universe for P.

Almost every useful set in mathematics can be regarded as having some
natural universal set. For instance, the unit circle is the set C = {(x,y) e R?:
%%+ y? =1}, and since all these points are in the plane R? it is natural to
regard R? as the universal set for C. In the absence of specifics, if A is a set,
then its universal set is often denoted as U. We are now ready to define the
complement operation.

Definition 1.6 Let A be a set with a universal set U. The complement
of A, denoted 4, is the set A=U —A.
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Example 1.10 If P is the set of prime numbers, then
P=N-P={1,4,6,8,9,10,12,...}.

Thus P is the set of composite numbers and 1.

Example 1.11 Let A = {(x,x?): x € R} be the graph of the equation y = x2.
Figure 1.6(a) shows A in its universal set R2. The complement of A is A =
R?2—A = {(x,y) e R?: y # x?}, illustrated by the shaded area in Figure 1.6(b).

A A

(a) (b)

Figure 1.6. A set and its complement

Exercises for Section 1.6
1. Let A=1{4,3,6,7,1,9} and B = {5,6,8,4} have universal set U = {0,1,2,...,10}. Find:

(a) A (d) AuA (g A-B
(b) B (e) A-A (h) AnB
(¢) AnA 6 A-B (i) AnB
2. Let A=1{0,2,4,6,8} and B = {1,3,5,7} have universal set U = {0,1,2,...,8}. Find:
(@ A (d) AuA (g) AnB
(b) B (e) A-A (h) AnB
(¢) AnA (f) AuB (i) AxB

3. Sketch the set X =[1,3]x[1,2] on the plane R2. On separate drawings, shade in
the sets X and X n([0,2]x [0, 3]).

4. Sketch the set X =[-1,3]x[0,2] on the plane R2. On separate drawings, shade in
the sets X and X n([-2,4] x[-1,3]).

5. Sketch the set X = {(x,y) € R? : 1 < +y® < 4} on the plane R>. On a separate
drawing, shade in the set X.

6. Sketch the set X = {(x,y) e R?: y <x?} on R?. Shade in the set X.
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1.7 Venn Diagrams

In thinking about sets, it is sometimes helpful to draw informal, schematic
diagrams of them. In doing this we often represent a set with a circle
(or oval), which we regard as enclosing all the elements of the set. Such
diagrams can illustrate how sets combine using various operations. For
example, Figures 1.7(a—c) show two sets A and B that overlap in a middle
region. The sets AuUB, AnB and A — B are shaded. Such graphical repre-
sentations of sets are called Venn diagrams, after their inventor, British
logician John Venn, 1834-1923.

A B A B A B
(a) (b) (c)

Figure 1.7. Venn diagrams for two sets

Though you are unlikely to draw Venn diagrams as a part of a proof of
any theorem, you will probably find them to be useful “scratch work” devices
that help you to understand how sets combine, and to develop strategies
for proving certain theorems or solving certain problems. The remainder of
this section uses Venn diagrams to explore how three sets can be combined
using U and n.

Let’s begin with the set AuBuUC. Our definitions suggest this should
consist of all elements which are in one or more of the sets A, B and C.
Figure 1.8(a) shows a Venn diagram for this. Similarly, we think of AnBnC
as all elements common to each of A, B and C, so in Figure 1.8(b) the region
belonging to all three sets is shaded.

A B A B
AuBuUC AnBnC
(a) (b)

Figure 1.8. Venn diagrams for three sets
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We can also think of AnBnC as the two-step operation (AnB)nC. In
this expression the set AnB is represented by the region common to both A
and B, and when we intersect this with C we get Figure 1.8(b). This is a
visual representation of the fact that AnBnC = (AnB)nC. Similarly, we
have AnBnC=AnMBnNC). Likewise, AUBUC = (AuB)UC=AuU(BuUCQC).

Notice that in these examples, where the expression either contains only
the symbol U or only the symbol n, the placement of the parentheses is
irrelevant, so we are free to drop them. It is analogous to the situations in
algebra involving expressions (a+b)+c=a+(b+c)or (a-b)-c = a-(b-c). We tend
to drop the parentheses and write simply a+b+c or a-b-c. By contrast, in
an expression like (a + b)-c the parentheses are absolutely essential because
(a+b)-c and a +(b-c) are generally not equal.

Now let’s use Venn diagrams to help us understand the expressions
(AuB)NnC and Au(BnC), which use a mix of u and n. Figure 1.9 shows
how to draw a Venn diagram for (A uB)nC. In the drawing on the left, the
set A UB is shaded with horizontal lines, while C is shaded with vertical
lines. Thus the set (A uB)NC is represented by the cross-hatched region
where A UB and C overlap. The superfluous shadings are omitted in the
drawing on the right showing the set (AuB)nC.

== B

Figure 1.9. How to make a Venn diagram for (AuB)nC

Now think about Au(BnC). In Figure 1.10 the set A is shaded with
horizontal lines, and BNC is shaded with vertical lines. The union Au(BNC)
is represented by the totality of all shaded regions, as shown on the right.

A B A B

Figure 1.10. How to make a Venn diagram for Au(BnC)
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Compare the diagrams for (AuB)NC and Au(BnC) in Figures 1.9 and
1.10. The fact that the diagrams are different indicates that (AuB)NnC #
AU(BNC)in general. Thus an expression such as A uBnC is absolutely
meaningless because we can’t tell whether it means (AuB)NC or Au(BnC).
In summary, Venn diagrams have helped us understand the following.

Important Points:

o If an expression involving sets uses only u, then parentheses are optional.
o If an expression involving sets uses only n, then parentheses are optional.
o If an expression uses both u and n, then parentheses are essential.

In the next section we will study types of expressions that use only u or
only n. These expressions will not require the use of parentheses.

Exercises for Section 1.7

Draw a Venn diagram for A, where A is a subset of a universal set U.
Draw a Venn diagram for B - A.

Draw a Venn diagram for (A -B)nC.

Draw a Venn diagram for (AuB)-C.

Draw Venn diagrams for Au(BnC) and (AuB)n(AuC). Based on your drawings,
do you think Au(BnC) =(AuB)n(AuC)?

6. Draw Venn diagrams for An(BuC) and (AnB)U(ANC). Based on your drawings,
do you think An(BuC) = (AnB)U(ANC)?

7. Sup@se_sets A and B are in a universal set U. Draw Venn diagrams for AnB
and A UB. Based on your drawings, do you think it’s true that AnB = AuUB?

8. Sup@se_sets A and B are in a universal set U. Draw Venn diagrams for AUB
and A nB. Based on your drawings, do you think it’s true that AuB = AnB?

9. Draw a Venn diagram for (AnB)-C.
10. Draw a Venn diagram for (A-B)uC.

A

Following are Venn diagrams for expressions involving sets A, B and C. Write a
corresponding expression.

C C C C
1 1. @ 12. @ 13- @ 14. @
A B A B A B A B
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1.8 Indexed Sets

When a mathematical problem involves lots of sets, it is often convenient to
keep track of them by using subscripts (also called indices). Thus instead of
denoting three sets as A, B and C, we might instead write them as A1, Ag
and As. These are called indexed sets.

Although we defined union and intersection to be operations that com-
bine two sets, you by now have no difficulty forming unions and intersections
of three or more sets. (For instance, in the previous section we drew Venn
diagrams for the intersection and union of three sets.) But let’s take a
moment to write down careful definitions. Given sets A1,As,...,A,, the set
Ai1UA9UA3U---UA, consists of everything that is in at least one of the
sets A;. Likewise AjnAsnAgn---NnA, consists of everything that is common
to all of the sets A;. Here is a careful definition.

Definition 1.7 Suppose A;,Aq,...,A, are sets. Then
AjUA3UA3U---UA, = {x:x€A, foratleast one set A;, for 1 <i<n},

Ai1nAgnAsn---nA, = {x:xeA,;foreveryset A;, for 1<i=<n}.

But if the number n of sets is large, these expressions can get messy. To
overcome this, we now develop some notation akin to sigma notation. You
already know that sigma notation is a convenient symbolism for expressing
sums of many numbers. Given numbers a1,as,as,...,a,, then

n
Y aj=ai+as+ag+---+an.
i=1
Even if the list of numbers is infinite, the sum
o0
Zai =ai1tag+tag+---+a;+--

i=1

is often still meaningful. The notation we are about to introduce is very
similar to this. Given sets A1,A9,As3, ..., A,, we define

n n
UAi:A1UA2UA3U~"UAn and ﬂAiZAlﬂAzﬂAgﬁ---ﬁAn.
i=1 =1

Example 1.12 Suppose A; ={0,2,5}, Ag ={1,2,5} and A3 ={2,5,7}. Then

3 3
UAi=A1UA2UA3={O,1,2,5,7} and ﬂAi=A10A20A3={2,5}.
i=1 i=1
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This notation is also used when the list of sets A;, As, A3, Ay,... is infinite:

o0

JA; = AtuAqUAzU--- = {x:x€A, for at least one set A; with 1 <i}.
i=1

o0

(A = AinA2nAsn--- = {x:x€A, for every set A; with 1<i}.

i=1

Example 1.13 This example involves the following infinite list of sets.
Al = {_ 170)1}7 A2 = {_27052}7 A3 = {_3’0,3}1 Y Ai = {_i709i}7

Observe that | JA; =7, and () A; ={0}.
i=1 i=1

Here is a useful twist on our new notation. We can write
3
Ua, = U A4,
i=1 i€{1,2,3}

which is understood to be the union of the sets A; for i =1,2,3. Likewise:

3
N = N A
=1

1€{1,2,3}

o0

Uai = UA
i=1 ieN

o0

N4 = NA;
i=1 ieN

Here we are taking the union or intersection of a collection of sets A; where
i is an element of some set, be it {1,2,3} or N. In general, the way this works
is that we will have a collection of sets A; for i € I, where I is the set of
possible subscripts. The set I is called an index set.

It is important to realize that the set I need not even consist of integers.
(We could subscript with letters or real numbers, etc.) Since we are pro-
grammed to think of i as an integer, let’s make a slight notational change:
Use a, not i, to stand for an element of I. Thus we are dealing with a
collection of sets A, for a € I. This leads to the following definition.

Definition 1.8 If A, is a set for every « in some index set I # @, then

UAs = {x:=xeA,for at least one set A, with a eI}
acl

(NAx = {x:x€A, for every set A, with a€I}.

acl
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Example 1.14 In this example, all sets A, are all subsets of the plane R?.
Each a belongs to the index set I =[0,2] = {x€R : 0 <x <2}, which is the set
of all real numbers between 0 and 2. For each number a € I, define A, to be
the set A, =[a,2] x [0, a], which is the rectangle on the xy-plane whose base
runs from a to 2 on the x-axis, and whose height is . Some of these are
shown shaded below. (The dotted diagonal line y = x is not a part of any of
the sets, but is shown for clarity, as the upper left corner of each A, touches
it.) Note that these sets are not indexed with just integers. For example, as
V2el, thereis aset A /3> which shown below on the right.

2 - 2 2 2

NI

Note that Ay =[0,2]x[0,0]1=[0,2] x {0} is the interval [0,2] on the x-axis
(a “flat” rectangle). Also, Ag =[2,2]x[0,2] = {2} x[0,2] is the vertical side of
the dotted triangle in the above pictures.

Now consider the infinite union | J A,. It is the shaded triangle shown
ael
below, because any point (x,y) on this triangle belongs to the set A,, and is

therefore in the union. (And any point not on the triangle is not in any A,.)

2

U Aa

ael

1 2

Now let’s work out the intersection [) A,. Notice that the point (2,0) on
ael
the x-axis is the lower right corner of any set A,, so (2,0)e A, for any a € 1.

Therefore the point (2,0) is in the intersection of all the A,. But any other
point (x,y) #(2,0) on the triangle does not belong to all of the sets A,. The
reason is that if x <2, then (x,y) ¢ A, for any x < @ <2. (Check this.) And if
x =2, then (x,y) ¢ A, for any 0 < a < y. Consequently

M Aq = {20

acl

This intersection consists of only one element, the point (2,0).
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Example 1.15 Here our sets are indexed by R%. For any (a,b) € R?, let P, p)
be the following subset of R3:

Py =1(x,7,2)€R® : ax+by=0}.

In words, given a point (a,b) € R%, the corresponding set P, ) consists of
all points (x,y,z) in R? that satisfy the equation ax + by =0. From previous
math courses you will recognize this as a plane in R3, that is, P, p) is a plane
in R3. Moreover, since any point (0,0,z) on the z-axis automatically satisfies
ax+by =0, each P, ) contains the z-axis.

Figure 1.11 (left) shows the set P(; 2) = {(x,y,2) € R3 : x+2y =0}. It is the
vertical plane that intersects the xy-plane at the line x + 2y = 0.

Pazl N

(=2,1,0)

Figure 1.11. The sets P, ) are vertical planes containing the z-axis.

For any point (a,b) € RZ with (a,b) # (0,0), we can visualize P ) as the
vertical plane that cuts the xy-plane at the line ax+by = 0. Figure 1.11
(right) shows a few of the P, 5). Since any two such planes intersect along
the z-axis, and because the z-axis is a subset of every P(, ), it is immediately
clear that

(\ Pup = {(0,0,2) : zeR} = “the z-axis”.
(a,b)cR?

For the union, note that any given point (a, b, c) € R? belongs to the set
P(_p q) because (x,y,2) = (a,b,c) satisfies the equation —bx+ay =0. (In fact,
any (a,b,c) belongs to the special set P o) = R3, which is the only P ) that
is not a plane.) Since any point in R® belongs to some P, 5, we have

3
U Puap =R
(a,b)eR?
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Exercises for Section 1.8

1. Suppose A1 ={a,b,d,e,g,f}, Az ={a,b,c,d}, As=1{b,d,a} and A4 ={a,b,h}.
4 4
@ UAai= b) NA;=
i=1 i=1
A = {0,2,4,8, 10,12,14,16, 18,20,22,24},
2. Suppose { Ay = {0,3,6,9,12,15,18,21,24},
As = {0,4,8,12,16,20,24}.
3 3
@ A= (b) NA;=
i=1 i=1
3. ForeachneN, let 4, ={0,1,2,3,...,n}.
@ A= b) NAi=
ieN 1eN
4. For each neN, let A, ={-2n,0,2n}.
@ UYAi= (b) NAi=
ieN 1eN
5. (@ Jli,i+1]= M) (li,i+1]=
ieN 1eN
6. (@ JI0,i+1]= (b) (I0,i+1]=
ieN ieN
7. (@) URx[,i+1]= (b) MRx[i,i+1]=
ieN 1eN
8. (a J{a}xI0,11= ) () {a}xIl0,11=
acR aeR
9. (a) U X = (b) m X =
XeZ(N) XeP(N)
10. (@) | [x,11x[0,4%]= ®) ) [x11x[0,x%]=
x€[0,1] x€[0,1]
11. Is [ Aq = |J A, always true for any collection of sets A, with index set I?

12.

13.

14.

acl acl

If () Aq = |J Aq, what do you think can be said about the relationships between
ael ael

the sets A,?

If J # @ and J =1, does it follow that | J Aq = |J A,? What about [ Ae <= () As?

acd acl aed ael

If J # ¢ and J < I, does it follow that () A, = [ ] A? Explain.

acl acd
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1.9 Sets That Are Number Systems

In practice, the sets we tend to be most interested in often have special
properties and structures. For example, the sets Z, Q and R are familiar
number systems: Given such a set, any two of its elements can be added
(or multiplied, etc.) together to produce another element in the set. These
operations obey the familiar commutative, associative and distributive
properties that we all have dealt with for years. Such properties lead to
the standard algebraic techniques for solving equations. Even though we
are concerned with the idea of proof, we will not find it necessary to define,
prove or verify such properties and techniques; we will accept them as the
ground rules upon which our further deductions are based.

We also accept as fact the natural ordering of the elements of N, Z,Q and
R, so that (for example) the meaning of “5 < 7” is understood and does not
need to be justified or explained. Similarly, if x < y and a # 0, we know that
ax <ay or ax = ay, depending on whether a is positive or negative.

Another thing that our ingrained understanding of number order tells
us is that any non-empty subset of N has a smallest element. In other words,
if A=N and A # @, then there is an element xg € A that is smaller than
every other element of A. (To find it, start at 1, then move in increments to
2, 3, 4, etc., until you hit a number x( € A; this is the smallest element of
A.) Similarly, given b € Z, any non-empty subset A< {b,b+1,b+2,b+3,...}
has a smallest element. This fact is sometimes called the well-ordering
principle. There is no need to remember this term, but do be aware that
we will use this simple, intuitive idea often in proofs, usually without a
second thought.

The well-ordering principle seems innocent enough, but it actually says
something very fundamental and special about the positive integers N.
In fact, the corresponding statement for the positive real numbers is false:
The subset A = {1:neN} of the positive reals has no smallest element
because for any xo = 1 € A we might pick, there is a smaller element —1- € A.

One consequence of the well-ordering principle (as we will see below) is
the familiar fact that any integer a can be divided by a non-zero integer b,
resulting in a quotient ¢ and remainder r. For example, b = 3 goes into
a =17 g =5 times with remainder r = 2. In symbols, 17=5-3+2,0ora =qb+r.
This significant fact is called the division algorithm.

Fact 1.5 (Division Algorithm) Given integers a and b with b > 0,
there exist unique integers ¢ and r for whicha=¢b+r and 0 <r <b.
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Although there is no harm in accepting the division algorithm without
proof, note that it does follow from the well-ordering principle. Here’s how:
Given integers a,b with b > 0, form the set

A={a-xb:x€Z, 0sa—-xb}<{0,1,2,3,...}.

This is the set of non-negative integers got by subtracting multiples of b
from a. (Example: If a =17 and b = 3, then we get A ={2,5,8,11,14,17,20,...}
by subtracting multiples of 3 from 17. Note that the remainder r =2 of 17+ 3
is the smallest element of A.) In general, by the well-ordering principle, the
set A={a—-xb:x€Z, 0<a—xb} has a smallest element r. Then r =a—gb
for some x=g€Z,s0a=qgb+r. Because re A <{0,1,2,3...}, we know 0 <r.
In addition, it cannot happen that r = b: If this were the case, then the
non-negative number r—b =(a—¢b)—b =a—(g+1)b having form a —xb would
be a smaller element of A than r, and r was explicitly chosen as the smallest
element of A. Since it is not true that r = b, it must be that r < b. Therefore
0=<r<b. We've now produced a g and an r for whicha=¢gb+r and 0<r <b.
(Exercise 28 of Chapter 7 asks you to prove g and r are unique in the sense
that no other values of ¢ and r have these properties.)

Moving on, it is time to clarify a small issue. This chapter asserted that
all of mathematics can be described with sets. But at the same time we
maintained that some mathematical entities are not sets. (For instance,
our approach was to say that an individual number, such as 5, is not itself
a set, though it may be an element of a set.) We have made this distinction
because we need a place to stand as we explore sets: After all, it would
appear suspiciously circular to declare that every mathematical entity is a
set, and then go on to define a set as a collection whose members are sets!

But to most mathematicians, saying “The number 5 is not a set,” is like
saying “The number 5 is not a number.”

The truth is that any number can itself be understood as a set. One
way to do this is to begin with the identification 0 = . Then 1 = {@} =
{0}, and 2 = {g,{g}} = {0,1}, and 3 = {@,{},{®,{(®}}} = {0,1,2}. In general the
natural number 7 is the set n = {0,1,2,...,n -1} of the n numbers (which are
themselves sets) that come before it.

We will not undertake such a study here, but the elements of the number
systems Z, Q and R can all be defined in terms of sets. (Even the operations
of addition, multiplication, etc., can be defined in set-theoretic terms.) In
fact, mathematics itself can be regarded as the study of things that can
be described as sets. Any mathematical entity is a set, whether or not we
choose to think of it that way.
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1.10 Russell’s Paradox

This section contains some background information that may be interesting,
but is not used in the remainder of the book.

The philosopher and mathematician Bertrand Russell (1872-1970) did
groundbreaking work on the theory of sets and the foundations of math-
ematics. He was probably among the first to understand how the misuse
of sets can lead to bizarre and paradoxical situations. He is famous for an
idea that has come to be known as Russell’s paradox.

Russell’s paradox involves the following set of sets:

A={X: Xisasetand X ¢X }. (1.1)

In words, A is the set of all sets that do not include themselves as elements.
Most sets we can think of are in A. The set Z of integers is not an integer
(i.e., Z ¢ 7Z) and therefore Z€ A. Also ¢ € A because @ is a set and @ ¢ @.

Is there a set that is not in A? Consider B = {{{{...}}}}. Think of B as a
box containing a box, containing a box, containing a box, and so on, forever.
Or a set of identical Russian dolls, nested one inside the other, endlessly.
The curious thing about B is that it has just one element, namely B itself:

B={{{{-- 4} }

—_——
B
Thus B € B. As B does not satisfy B ¢ B, Equation (1.1) says B¢ A.

Russell’s paradox arises from the question “Is A an element of A?”

For a set X, Equation (1.1) says X € A means the same thing as X ¢ X.
So for X = A, the previous line says A € A means the same thing as A ¢ A.
Conclusions: If A € A is true, then it is false. If A € A is false, then it is true.
This is Russell’s paradox.

Initially Russell’s paradox sparked a crisis among mathematicians. How
could a mathematical statement be both true and false? This seemed to be
in opposition to the very essence of mathematics.

The paradox instigated a very careful examination of set theory and
an evaluation of what can and cannot be regarded as a set. Eventually
mathematicians settled upon a collection of axioms for set theory—the
so-called Zermelo-Fraenkel axioms. One of these axioms is the well-
ordering principle of the previous section. Another, the axiom of foundation,
states that no non-empty set X is allowed to have the property X nx # @ for
all its elements x. This rules out such circularly defined “sets” as B = {B}
mentioned above. If we adhere to these axioms, then situations like Russell’s
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paradox disappear. Most mathematicians accept all this on faith and happily
ignore the Zermelo-Fraenkel axioms. Paradoxes like Russell’s do not tend
to come up in everyday mathematics—you have to go out of your way to
construct them.

Still, Russell’s paradox reminds us that precision of thought and lan-
guage is an important part of doing mathematics. The next chapter deals
with the topic of logic, a codification of thought and language.

Additional Reading on Sets. For a lively account of Bertrand Russell’s
life and work (including his paradox), see the graphic novel Logicomix: An
Epic Search For Truth, by Apostolos Doxiadis and Christos Papadimitriou.
Also see cartoonist Jessica Hagy’s online strip Indexed—it is based largely
on Venn diagrams.
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CHAPTER 2

Logic

ogic is a systematic way of thinking that allows us to parse the meanings

of sentences and to deduce new information from old information. You

use logic informally in everyday life and certainly also in doing mathematics.

For example, say you are working with a certain circle (call it “Circle X”),
and suppose you have available the following two pieces of information.

1. Circle X has a radius of 3 units.
2. If any circle has radius r, then its area is 7r? square units.

You have no trouble putting these two facts together to get:
3. Circle X has area 97 square units.

In doing this you are using logic to combine existing information to
produce new information. Because deducing new information is central to
mathematics, logic plays a fundamental role. This chapter is intended to
give you a sufficient mastery of it.

It is important to realize that logic is a process of deducing information
correctly, not just deducing correct information. For example, suppose we
were mistaken and Circle X actually had a radius of 4, not 3. Let’s look at
our exact same argument again.

1. Circle X has a radius of 3 units.
2. If any circle has radius r, then its area is 72 square units.

3. Circle X has area 97 square units.

The sentence “Circle X has a radius of 3 units.” is now untrue, and so is our
conclusion “Circle X has area 97 square units.” But the logic is perfectly
correct; the information was combined correctly, even if some of it was false.
This distinction between correct logic and correct information is significant
because it is often important to follow the consequences of an incorrect
assumption. Ideally, we want both our logic and our information to be
correct, but the point is that they are different things.
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In proving theorems, we apply logic to information that is considered
obviously true (such as “Any two points determine exactly one line.”) or is
already known to be true (e.g., the Pythagorean theorem). If our logic is
correct, then anything we deduce from such information will also be true
(or at least as true as the “obviously true” information we began with).

2.1 Statements

The study of logic begins with statements. A statement is a sentence or
a mathematical expression that is either definitely true or definitely false.
You can think of statements as pieces of information that are either correct
or incorrect. Thus statements are pieces of information that we might
apply logic to in order to produce other pieces of information (which are also
statements).

Example 2.1 Here are some examples of statements. They are all true.
If a circle has radius r, then its area is 7r? square units.
Every even number is divisible by 2.
2¢7
V2¢Z
NcZ
The set {0,1,2} has three elements.

Some right triangles are isosceles.

Example 2.2 Here are some additional statements. They are all false.
All right triangles are isosceles.
5=2
V2¢R
Z<N
{0,1,2}nN=¢

Example 2.3 Here non-statements are paired with similar statements.

NOT a statement: Statement:

Add 5 to both sides. Adding 5 to both sides of x —5 =37 gives x = 42.
VA 42¢7

42 42 is not a number.

What is the solution of 2x = 84? | The solution of 2x = 84 is 42.
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Example 2.4 We will often use the letters P, @, R and S to stand for
specific statements. When more letters are needed we can use subscripts.
Here are more statements, designated with letters. You decide which of
them are true and which are false.

P : For every integer n > 1, the number 2" —1 is prime.
@ : Every polynomial of degree n has at most n roots.
R : The function f(x) = x? is continuous.

S1:Z2c @

S9:{0,-1,-2}nN=¢

Designating statements with letters (as was done above) is a very useful
shorthand. In discussing a particular statement, such as “The function
f(x) = x? is continuous,” it is convenient to just refer to it as R to avoid having
to write or say it many times.

Statements can contain variables. Here is an example.

P : If an integer x is a multiple of 6, then x is even.

This is a sentence that is true. (All multiples of 6 are even, so no matter
which multiple of 6 the integer x happens to be, it is even.) Since the sentence
P is definitely true, it is a statement. When a sentence or statement P
contains a variable such as x, we sometimes denote it as P(x) to indicate that
it is saying something about x. Thus the above statement can be denoted as

P(x): If an integer x is a multiple of 6, then x is even.

A statement or sentence involving two variables might be denoted P(x, y),
and so on.

It is quite possible for a sentence containing variables to not be a state-
ment. Consider the following example.

®(x): The integer x is even.

Is this a statement? Whether it is true or false depends on just which integer
x is. It is true if x =4 and false if x = 7, etc. But without any stipulations on
the value of x it is impossible to say whether Q(x) is true or false. Since it
is neither definitely true nor definitely false, @(x) cannot be a statement.
A sentence such as this, whose truth depends on the value of one or more
variables, is called an open sentence. The variables in an open sentence
(or statement) can represent any type of entity, not just numbers. Here is
an open sentence where the variables are functions:

Richard Hammack  Book of Proof
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R(f,g): The function f is the derivative of the function g.

This open sentence is true if f(x) = 2x and g(x) = x2. It is false if f(x) = x®
and g(x) = 22, etc. A sentence such as R(f,g) (that involves variables) can be
denoted either as R(f,g) or just R. We use the expression R(f,g) when we
want to emphasize that the sentence involves variables.

We will have more to say about open sentences later, but for now let’s
return to statements.

Statements are everywhere in mathematics. Any result or theorem
that has been proved true is a statement. The quadratic formula and the
Pythagorean theorem are both statements:

—-b+VbZ-4ac

P: The solutions of the equation ax?+bx+c¢=0 are x = 5
a

Q@ : If aright triangle has legs of lengths a and 4 and hypotenuse of
length ¢, then a2 + b2 = ¢2.

Here is a very famous statement, so famous, in fact, that it has a name.
It is called Fermat’s last theorem after Pierre Fermat, a seventeenth-
century French mathematician who scribbled it in the margin of a book.

R : For all numbers a,b,c,n € N with n > 2, it is the case that a™ +b™ # c".

Fermat believed this statement to be true. He noted that he could prove it
was true, except the book’s margin was too narrow to contain his proof. It
is doubtful that he really had a correct proof in mind, for after his death
many generations of brilliant mathematicians tried unsuccessfully to prove
that his statement was true (or false). Finally, in 1993, Andrew Wiles of
Princeton University announced that he had devised a proof. Wiles had
worked on the problem for over seven years, and his proof runs through
hundreds of pages. The moral of this story is that some true statements
are not obviously true.

Here is another statement famous enough to be named. It was first
posed in the eighteenth century by the German mathematician Christian
Goldbach, and thus is called the Goldbach conjecture:

S : Every even integer greater than 2 is a sum of two prime numbers.

You must agree that S is either true or false. It appears to be true, because
when you examine even numbers that are bigger than 2, they seem to be
sums of two primes: 4=2+2, 6=3+3, 8=3+5, 10=5+5, 12=5+717,
100 = 17+ 83 and so on. But that’s not to say there isn’t some large even
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number that’s not the sum of two primes. If such a number exists, then S
is false. The thing is, in the over 260 years since Goldbach first posed this
problem, no one has been able to determine whether it’s true or false. But
since it is clearly either true or false, S is a statement.

This book is about the methods that can be used to prove that S (or any
other statement) is true or false. To prove that S is true, start with obvious
statements (or other statements that have been proven true) and use logic
to deduce more and more complex statements until finally we obtain the
statement S. Of course some statements are more difficult to prove than
others, and S appears to be notoriously difficult; we will concentrate on
statements that are easier to prove.

But the point is this: In proving that statements are true, we use logic
to help us understand statements and to combine pieces of information
to produce new pieces of information. In the next several sections we
explore some standard ways that statements can be combined to form new
statements, or broken down into simpler statements.

Exercises for Section 2.1

Decide whether or not the following are statements. In the case of a statement,
say if it is true or false, if possible.

Every real number is an even integer.

Every even integer is a real number.

If x and y are real numbers and 5x =5y, then x = y.
Sets Z and N.

Sets Z and N are infinite.

Some sets are finite.

The derivative of any polynomial of degree 5 is a polynomial of degree 6.
. N¢ Z(N).

. cos(x)=-1.

. RxN)N(NxR)=NxN.

. The integer x is a multiple of 7.

© 0P ; R ® N s

ke
N = O

. If the integer x is a multiple of 7, then it is divisible by 7.

[a—y
w

. Either x is a multiple of 7, or it is not.

[y
'

. Call me Ishmael.

e
(9]}

. In the beginning, God created the heaven and the earth.
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2.2 And, Or, Not

The word “and” can be used to combine two statements to form a new
statement. Consider for example the following sentence.

R1: The number 2 is even and the number 3 is odd.

We recognize this as a true statement, based on our ingrained understanding
of the meaning of the word “and.” Notice that R; is made up of two simpler
statements:

P : The number 2 is even.
Q : The number 3 is odd.

These are joined together by the word “and” to form the more complex
statement R1. The statement R; asserts that P and @ are both true. Since
both P and @ are in fact true, the statement R; is also true.

Had one or both of P and @ been false, then R; would be false. For
instance, each of the following statements is false.

Rs5: The number 1 is even and the number 3 is odd.
R3: The number 2 is even and the number 4 is odd.
R4 : The number 3 is even and the number 2 is odd.

From these examples we see that any two statements P and @ can be
combined to form a new statement “P and @.” In the spirit of using letters
to denote statements, we now introduce the special symbol A to stand for the
word “and.” Thus if P and @ are statements, P A @ stands for the statement
“Pand @.” The statement P AQ is true if both P and @ are true; otherwise
it is false. This is summarized in the following table, called a truth table.

P/\Q

ﬁ:*qsﬂﬂ

N NS

RGO

In this table, T stands for “True,” and F stands for “False.” (T and F are
called truth values.) Each line lists one of the four possible combinations
or truth values for P and @, and the column headed by P A Q tells whether
the statement P A @ is true or false in each case.
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Statements can also be combined using the word “or.” Consider the
following four statements.

S1: The number 2 is even or the number 3 is odd.
Ss : The number 1 is even or the number 3 is odd.
Ss3: The number 2 is even or the number 4 is odd.
S4: The number 3 is even or the number 2 is odd.

In mathematics, the assertion “P or @” is always understood to mean that
one or both of P and @ is true. Thus statements S, Sy, S3 are all true,
while S, is false. The symbol v is used to stand for the word “or.” So if P
and @ are statements, P v @ represents the statement “P or @.” Here is the
truth table.

h:ﬁ:ssﬂ

’H'ﬂ'ﬁ'ﬂa
~
<
P

SN R

It is important to be aware that the meaning of “or” expressed in the
above table differs from the way it is often used in everyday conversation.
For example, suppose a university official makes the following threat:

You pay your tuition or you will be withdrawn from school.

You understand that this means that either you pay your tuition or you will
be withdrawn from school, but not both. In mathematics we never use the
word “or” in such a sense. For us “or” means exactly what is stated in the
table for v. Thus P v @ being true means one or both of P and @ is true. If
we ever need to express the fact that exactly one of P and @ is true, we use
one of the following constructions:

P or @, but not both.
Either P or Q.
Exactly one of P or Q.

If the university official were a mathematician, he might have qualified his
statement in one of the following ways.

Pay your tuition or you will be withdrawn from school, but not both.

Either you pay your tuition or you will be withdrawn from school.
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To conclude this section, we mention another way of obtaining new
statements from old ones. Given any statement P, we can form the new
statement “It is not true that P.” For example, consider the following
statement.

The number 2 is even.

This statement is true. Now change it by inserting the words “It is not true
that” at the beginning:

It is not true that the number 2 is even.

This new statement is false.

For another example, starting with the false statement “2 € @,” we get
the true statement “It is not true that 2€ ¢.”

We use the symbol ~ to stand for the words “It’s not true that,” so ~ P
means “It’s not true that P.” We can read ~ P simply as “not P.” Unlike
A and v, which combine two statements, the symbol ~ just alters a single
statement. Thus its truth table has just two lines, one for each possible
value of P.

PP
T F
Fl| T

The statement ~ P is called the negation of P. The negation of a specific
statement can be expressed in numerous ways. Consider

P : The number 2 is even.
Here are several ways of expressing its negation.

~ P : It’s not true that the numb