1 When you step on the gas in your car, the wheels push against the ground and the ground pushes back. The force that makes the car accelerate is exerted by
 a. the car wheels.
 b. the ground.
 c. your foot.
 d. the car engine.

2 If the force on an object triples while the object moves a given distance, the work that the force does on the object goes up by a factor of
 a. 3.
 b. 2.
 c. 4.
 d. 27.
 e. 9.

3 If you try to push your stalled car North, your stalled car exerts a force back on you pointing toward the
 a. East.
 b. West.
 c. North.
 d. South.

4 If two objects are subjected to the same interactions (other than gravity), one expects that the object with smaller mass will accelerate
 a. the same as the other object.
 b. less than the other object.
 c. more than the other object.

5 Each of the following statements is included in Newton’s three laws. Most of the statements are really just definitions that say something about the language that we use but nothing about the real world. One of the statements says something about physical reality. Which one?
 a. Force is the cause of acceleration. The acceleration of an object is proportional to the force on it.
 b. Mass is resistance to acceleration. The acceleration of an object is inversely proportional to its mass.
 c. An object’s resistance to acceleration depends only on the object and not at all on its surroundings.
 d. An inertial frame is one in which Newton’s Law of inertia is obeyed.

6 Suppose that the nozzle of a fire hose emits a stream of water at a velocity of 30 m/s and a rate of 10 kg/s. Assuming that the water in the hose is moving at 10 m/s, how much force must the nozzle exert on the water?
 a. 0.
 b. 300 N.
 c. 100 N.
 d. 200 N.
7 A horse is pulling a cart. Work is done on the cart by
 a. the force that the ground exerts on the horse.
 b. the force that the cart exerts on the horse.
 c. the force of friction that the ground exerts on the cart.
 d. all of the forces mentioned here.
 e. none of the forces mentioned here.

8 Two men carry identical packages from the front lawn of a building to the building’s second floor that is 3 meters higher than the front lawn. Fred walks up the stairs. David pushes his wheelchair up the handicapped access ramp that is four times as long as the stairs. If the upward force that Fred exerts on his package does 32Nm of work, how much work does the upward force that David exerts on his package do?
 a. 128Nm.
 b. 8Nm.
 c. 32Nm.
 d. 16Nm.
 e. cannot be determined from the information given.

9 The chemical potential energy of 0.1kg of gasoline is higher than the carbon dioxide and water that result from burning it by roughly 4,000,000 joules. If you burn 0.1kg of gasoline in a 2000kg automobile and drive up a long hill, what is the absolute maximum increase in vertical distance that you can achieve?
 a. 2000m.
 b. 200m.
 c. 2500m.
 d. 4,000,000m.

10 Suppose that the weight of a block is 10N. How much work does the force of gravity do on the block when the block moves a distance of 2 meters along a level surface?
 a. 0J.
 b. 40J.
 c. 200J.
 d. 10J.

11 The statement that all of the laws of physics are the same in all inertial reference frames is called
 a. the anthropic principle.
 b. Newton’s first law of motion.
 c. the universality principle.
 d. the principle of relativity.
 e. the principle of equivalence.
12 A joule is equal to
 a. 1N.
 b. 1N·s.
 c. 1kg·m.
 d. 1kg·m/s.
 e. 1N·m.

13 Newton’s First Law, the Law of Inertia
 a. defines the reference frame for the other laws.
 b. is unrelated to Newton’s other laws.
 c. is just a special case of his second law.

14 In the MKS system of units, the kilogram is the unit of
 a. force.
 b. mass.
 c. momentum.
 d. velocity.
 e. acceleration.

15 Anti-lock brakes on a car are designed to make it impossible to apply the brakes so strongly that the car wheels stop turning
and simply drag on the pavement. This system obviously helps to keep the car under control during a panic stop. Which of
the following statements about stopping distance would you expect to be true?
 a. The system can decrease stopping distance by preventing sliding.
 b. The system always increases stopping distance because it limits how strongly the brakes can be applied.
 c. The system has no effect on stopping distance.

16 Suppose that you weigh an object by hanging it from a rope that has a spring-scale that reads the amount of tension. Suppose,
in addition, that you do this on a moving elevator. Under which of the following circumstances would you expect
the scale to read more than the actual weight?
 a. Elevator moving downward and slowing to a stop.
 b. Elevator moving downward at constant velocity.
 c. Elevator moving upward at constant velocity.
 d. Elevator moving upward and slowing to a stop.

17 An airplane with a mass of 10,000 kg is rolling down a runway and experiences an unbalanced upward force of 20,000 N.
Because of this, the airplane must be
 a. taking off with an upward acceleration of 2 m/s².
 b. taking off with an upward acceleration of 0.5 m/s².
 c. accelerating down the runway at 0.5 m/s².
 d. accelerating down the runway at 2 m/s².
18 Suppose that you climb a flight of stairs while carrying a pail of water with a mass of 10 kg. If the top of the stairs is 3 meters higher than the bottom, the potential energy of the pail increases by
 a. 100 J.
 b. 30 J.
 c. 10 J.
 d. 300 J.

19 A 1000 kg boat is slowly lowered into the water on a ramp that starts out 10 m above sea-level. The potential energy of the boat
 a. decreases by 10,000 J.
 b. increases by 100,000 J.
 c. increases by 10,000 J.
 d. decreases by 100,000 J.
 e. stays the same.

20 A ten newton weight is hung from the ceiling with the pulley system shown here. The force that must be exerted on the end of the string to hold the weight in equilibrium is

 a. 20 N.
 b. 10 N.
 c. 5 N.
 d. $3 \frac{1}{3}$ N.

21 Suppose that the average force that is needed to draw a bow is 400 Newtons. If the arrow moves back by one meter when the bow is drawn, how much potential energy is stored in the bow?
 a. 2000 J.
 b. 400 J.
 c. 200 J.
 d. 4000 J.
 e. 0 J.

22 A snow-blower shoots snow at the rate of 0.1 kg/s and an initial velocity of 20 m/s. The resulting force that pushes back on the blower is
 a. 0.1 N.
 b. 200 N.
 c. 0.005 N.
 d. 2 N.
 e. 20 N.
23 At the surface of the earth, a 2 kg mass weighs approximately

 a. 10 lb.
 b. 20 N.
 c. 2 N.
 d. 5 N.
 e. 30 N.

24 A 1000 kg car travels north with a speed of 30 m/s. A 2000 kg truck is traveling south with a speed of 20 m/s. Taking north as the positive velocity direction, the total momentum of these two vehicles is

 a. +70,000 kg m/s.
 b. +30,000 kg m/s.
 c. −10,000 kg m/s.
 d. +10,000 kg m/s.
 e. −40,000 kg m/s.

25 Which of the following objects is in equilibrium?

 a. A thrown stone at its highest point.
 b. A rocket rising at a constant rate.
 c. Any object in free fall.
 d. A baseball being thrown.

26 An airplane is rolling down a runway with its engines at full throttle. The engines are generating a forward thrust of 30,000 N. There is also a drag force of 10,000 N due to air friction. The total force on this airplane is

 a. 10,000 N backward.
 b. 10,000 N upward.
 c. 40,000 N forward.
 d. 30,000 N forward.
 e. 20,000 N forward.
Answer Key: Fall 2007 PHX2B

1 Choice b. (the ground.)
2 Choice a. (3.)
3 Choice d. (South.)
4 Choice c. (more than the other object.)
5 Choice c. (An object’s resistance to acceleration depends only on the object and not at all on its surroundings.)
6 Choice d. (200 N.)
7 Choice c. (the force of friction that the ground exerts on the cart.)
8 Choice c. (32Nm.)
9 Choice b. (200m.)
10 Choice a. (0J.)
11 Choice d. (the principle of relativity.)
12 Choice e. (1N·m.)
13 Choice a. (defines the reference frame for the other laws.)
14 Choice b. (mass.)
15 Choice a. (The system can decrease stopping distance by preventing sliding.)
16 Choice a. (Elevator moving downward and slowing to a stop.)
17 Choice a. (taking off with an upward acceleration of 2m/s^2.)
18 Choice d. (300J.)
19 Choice d. (decreases by 100,000J.)
20 Choice d. (3\frac{1}{3} N.)
21 Choice b. (400J.)
22 Choice d. (2 N.)
23 Choice b. (20 N.)
24 Choice c. (−10,000 kg m/s.)
25 Choice b. (A rocket rising at a constant rate.)
26 Choice e. (20,000N forward.)
Solutions

1. Module 018 Action and Reaction: Question 2.1
2. Module 019 Work: Question 2.3
3. Module 018 Action and Reaction: Question 1.3
4. Module 015 Mass, Measure of Inertia: Question 1.3
5. Module 015 Mass, Measure of Inertia: Question 2.2
8. Module 019 Work: Question 1.2
9. Module 020 Potential Energy: Question 5.1
10. Module 019 Work: Question 4.2
11. Module 014 The Law of Inertia: Question 3.3
12. Module 019 Work: Question 5.4
13. Module 014 The Law of Inertia: Question 1.1
14. Module 015 Mass, Measure of Inertia: Question 3.2
15. Module 017 Some Forces: Question 2.3
16. Module 017 Some Forces: Question 4.1
17. Module 016 The Law of Force and Mass: Question 2.1
18. Module 020 Potential Energy: Question 2.1
20. Module 018 Action and Reaction: Question 3.2
22. Module 018 Action and Reaction: Question 4.3
23. Module 017 Some Forces: Question 1.2
24. Module 018 Action and Reaction: Question 5.1