
PHYS691 Final Exam
Attempt each of the following problems. Attach the resulting �le to an email

to rhgowdy@vcu.edu.
Due date: Thursday, May 12, 2005.

1 Problem 1: Sound Waves

Use the stress-energy tensor conservation laws to �nd the speed of sound waves
(as a fraction of the speed of light) in a medium that obeys an equation of state
of the form

p = f (�)

Do the calculation for an arbitrary curved spacetime.

1.1 Answer: (�at spacetime version 1)

First get the basic idea by doing the problem out in components in �at Minkowski
spacetime. The conservation law is then

T��;� = 0

or, split into time and space parts

T 00;0 + T
0m

;m = 0

Tm0;0 + T
mn

;n = 0

Assume a �uid with isotropic stress and p = f (�)

T 00 = �

Tmn = f (�) gmn = f (�) �nm

Since we cannot have the coordinates follow the �uid (they are �xed) we have
to allow the �uid to move in order to have sound waves. Thus, there must be
small non-zero components

T 0m = Tm0 = jm

so that the conservation law becomes

�;0 + j
m
;m = 0

jm;0 + (�
mnf (�));n = 0

But

(�mnf (�));n =
@

@xm
f (�) =

df

d�

@�

@xm
= f 0�;m
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and the second equation becomes

jm;0 + f
0�;m = 0

The essential trick is to eliminate the mass-energy �ow variables jm by taking
the spatial divergence of this last result

jm;0m + f
0�;mm + f

0
;m�;m = 0

jm;0m + f
0�;mm + f

"�;m�;m = 0

and comparing that to the time derivative of the �rst conservation equation

�;00 + j
m
;m0 = 0

Subtract the equations and obtain

jm;0m + f
0�;mm + f

"�;m�;m � �;00 � jm;m0 = 0
or

f 0�;mm � �;00 + f "�;m�;m = 0
or

�@
2�

@t2
+ f 0r2�+ f "

�
~r�
�2
= 0

Compare this equation to the wave equation with propagation velocity v

�@
2 

@t2
+ v2r2 = 0

The signal propagation characteristics of the equation are determined by its
second derivative terms, so the sound-speed is

v =

s
df

d�
=

s
dp

d�

1.2 Answer: (curved spacetime version)

The straightforward approach is to replace commas by semicolons in the version
1 calculation above, thus introducing a mess of connection coe¢ cients. The
coe¢ cients, but not their derivatives, can be made to go away by assuming
a local Lorentz Frame. The remaining extra terms do not a¤ect the second
derivatives of �, so we get the same sound speed result as before.

2 Problem 2: Bosons in Curved Spacetime

In Special Relativity, the wave function for a spin-zero massive particle obeys
the Klein Gordon Equation

�@
2 

@t2
+
@2 

@x2
+
@2 

@y2
+
@2 

@z2
= m2 

a) Suppose that such a particle is moving through a curved spacetime and
use minimal coupling to �nd a candidate for its wave equation.
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2.1 Answer a)

In a local Lorentz frame, replace ordinary derivatives by covariant derivatives
or commas by semicolons. The Special Relativity form of the equation is

� ;00 +  ;mm = m2 

so the curved space form (in a local Lorentz frame) would be

� ;00 +  ;mm = m2 

or, putting in the metric tensor

g�� ;�� = m2 

Since this equation is now invariant under coordinate transformations, it will
be true in any coordinate system.

b) Write out the candidate equation in detail for the case of a particle moving
along the z-axis (so that @ @x and

@ 
@y are zero).

2.2 Answer b)

 ;�� =  ;�� �  ;�����
g�� ;�� �  ;�����g�� = m2 

Notice that the curved space comes in only through the term

�� = ����g
��

Recall
��� =

1

2
g�� (eg�� + e�g� � e�g�)

so that
���� =

1

2
g�� (e�g�� + e�g�� � e�g��)

�� = g��
1

2
g�� (e�g�� + e�g�� � e�g��)

Assume that the x; y; z; t axes are orthonormal at a particular point, so that the
equation takes the form

�@
2 

@t2
+
@2 

@z2
� �0 @ 

@t
� �3 @ 

@z
= 0

with

�0 =
1

2
g�� (e�g0� + e�g�0 � e0g��)

= �1
2
(e0g00 + e0g00 � e0g00) +

1

2
(emg0m + emgm0 � e0gmm)

= �1
2

@

@t
g00 +

1

2

�
2
@

@xm
g0m �

@

@t
gmm

�
=

@

@xm
g0m �

1

2

@

@t
(g00 + gmm)
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and

�3 =
1

2
g�� (e�g3� + e�g�3 � e3g��)

= �1
2
(e0g30 + e0g03 � e3g00) +

1

2
(emg3m + emgm3 � e3gmm)

= �1
2

�
2
@

@t
g30 �

@

@z
g00

�
+
1

2

�
2emg3m �

@

@z
gmm

�
=

@

@xm
g3m �

@

@t
g30 +

1

2

@

@z
(g00 � gmm)

The key point to notice is that the wave equation is modi�ed by terms con-
structed from the �rst derivatives of the metric tensor. A plane wave expansion
of  along with the assumption that �0 and �3 vary slowly can be used to show
that these terms cause exponential growth or decay of the wave function in both
t and z.

3 Problem 3: Soap Films (Problem of Plateau)

A soap-�lm suspended on a wire frame with no air trapped anywhere will try
to minimize its total surface area because of surface tension.

a) Represent such a �lm in parametric form in Cartesian coordinates.

3.1 Answer a)

Let x and y be coordinates on the �lm and use a Cartesian coordinate position
vector

~X (x; y) = [X (x; y) ; Y (x; y) ; Z (x; y)]

to locate the point (x; y) on the �lm.

b) Find the di¤erential equations that are obeyed by the functions in this
description of a soap �lm.

3.2 Answer b)

The area of the �lm is given by the same sort of expression as the Goto-Nambu
string action that we discussed:

A =

Z
d2x
p
jgHH j

=

Z
d2x

vuut����� @ ~X
@x �

@ ~X
@x

@ ~X
@x �

@ ~X
@y

@ ~X
y � @ ~X@x

@ ~X
@y �

@ ~X
@y

�����
=

Z Z
dxdy

( 
@ ~X

@x
� @

~X

@x

! 
@ ~X

@y
� @

~X

@y

!
�
 
@ ~X

@y
� @

~X

@x

! 
@ ~X

@x
� @

~X

@y

!)1=2
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The di¤erential equations satis�ed by the functions ~X are obtained from the
requirement

�A = 0

which is evaluated just as for the string action but with greek indexes being
summed just from 1 to 2.

�A =
1

2

p
jgHH jgHH���

 
@ ~X

@x�
� @

~X

@x�

!

=
p
jgHH jgHH��

 
@ ~X

@x�
� @�

~X

@x�

!

=
@

@x�

  p
jgHH jgHH��

@ ~X

@x�

!
� � ~X

!
� @

@x�

 p
jgHH jgHH��

@ ~X

@x�

!
� � ~X

so that

�A =

Z Z
dxdy

(
@

@x�

  p
jgHH jgHH��

@ ~X

@x�

!
� � ~X

!
� @

@x�

 p
jgHH jgHH��

@ ~X

@x�

!
� � ~X

)

Use Green�s Theorem on the total divergence term:Z Z
dxdy

(
@

@x�

  p
jgHH jgHH��

@ ~X

@x�

!
� � ~X

!)
=

I
d`n�

 p
jgHH jgHH��

@ ~X

@x�

!
�� ~X

where d` is the line element along the wire boundary and n� is the outward
directed normal. So long as the variation is held �xed at the boundary, � ~X = 0
and this term vanishes. The condition is thenZ Z

dxdy

(
@

@x�

 p
jgHH jgHH��

@ ~X

@x�

!
� � ~X

)
= 0

for arbitrary � ~X or

@

@x�

 p
jgHH jgHH��

@ ~X

@x�

!
= 0

An equivalent form of this expression is just

(2)r2 ~X = 0

where (2)r2 is the covariant Laplacian on the surface. The famous result of
the Plateau problem follows by noticing that this equation is also the condition
that X;Y; Z are each real or imaginary parts of analytic functions of x + iy.
Thus, we can construct soap bubble �lms from triplets of analytic functions. As
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a result, the entire problem is solved exactly. For example, choose the analytic

functions, X = x; Y = y; Z = Re
�
(x+ iy)

2
�
= x2 � y2 and obtain a "saddle"

shaped �lm of extremal area. Similarly, X = x; Y = y; Z = Re
�
(x+ iy)

3
�

describes an extremal area surface that is sometimes called a "monkey saddle".
This expression is already enough for this part, but we will need a bit more

for the next part of the problem. Notice that a variation that satis�es the
constraint

H� ~X = 0

will not change the surface. It will only change the coordinates x; y on the
surface. Thus the area will not change under such a variation. Thus, the
following equation is an identity:Z Z

dxdy

(
@

@x�

 p
jgHH jgHH��

@ ~X

@x�

!
�H� ~X

)
= 0

But that is the same asZ Z
dxdy

(
H

@

@x�

 p
jgHH jgHH��

@ ~X

@x�

!
� � ~X

)
= 0

Since � ~X is arbitrary, we have the identity

H
@

@x�

 p
jgHH jgHH��

@ ~X

@x�

!
= 0

so that the equation that constrains the surface can also be written as

V
@

@x�

 p
jgHH jgHH��

@ ~X

@x�

!
= 0

Use Leibniz�s product rule to obtain

V

(�
@

@x�

p
jgHH jgHH��

�
@ ~X

@x�
+
p
jgHH jgHH��

@2 ~X

@x�@x�
+

)
= 0

But the vectors @ ~X
@x� lie in the surface, so

V
@ ~X

@x�
= 0

and we get the equation for the soap �lm surface in the simple form

V gHH��
@2 ~X

@x�@x�
= 0:

c) Find the condition(s) satis�ed by the second fundamental form of such a
soap �lm.
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3.3 Answer c)

The straightforward way to do this problem is to take the expression for the
projection curvature tensor from the notes

hH
c
da = Hjd

@Xj

@x�
g��g��

@2Xp

@x�@x�
@Xk

@x�
VpaH

c
k

This expression has way too many uncontracted indexes to compare with the
di¤erential equations that we obtained in part b. Those equations had just one
Cartesian index. The only obvious way to get rid of indexes is to contract them
and the only way that does not give zero is to contract the �rst two (the third
is projected in the complementary direction).

hHa = hH
c
ca = Hjc

@Xj

@x�
g��g��

@2Xp

@x�@x�
@Xk

@x�
VpaH

c
k

= Hjk
@Xj

@x�
g��g��

@2Xp

@x�@x�
@Xk

@x�
Vpa

=
@Xj

@x�
Hjk

@Xk

@x�
g��g��

@2Xp

@x�@x�
Vpa

=
@ ~X

@x�
� @

~X

@x�
g��g��

@2Xp

@x�@x�
Vpa

= g��g
�� @2Xp

@x�@x�
Vpa

= ���g
�� @2Xp

@x�@x�
Vpa

= g��
@2Xp

@x�@x�
Vpa

Now we recognize the result of the previous problem and see that the condition
on the second fundamental form is just that it be trace-free:

hHa = 0.

4 Problem 4: Gravitational Wave Sources

a) Use the results found in class, but ignore polarization e¤ects and derive
an approximate relationship between detector strain, source luminosity,
source distance, and source frequency. For this part, just leave everything
in Planck units.

4.1 Answer a)

The detector strain is given by the expression

hjk
�
x0; xi

�
=
2

r
P jrP

k
s
�Irs
�
x0 � r

�
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The various projection operators are combinations of trig functions that are of
order one, so if we ignore polarization the result is

strain =
2

r
�I

where I is the dominant component of the quadrupole moment tensor. For a
source oscillating with angular frequency !; di¤erentiating by time just produces
a factor of !. Thus,

strain =
2!2

r
I

The source luminosity is given by the quadrupole formula

L =
1

5

...
I
jk ...
I
jk

which, for an oscillating source, with one dominant quadrupole moment, gives

L =
!6

5
I2

Use this expression to elliminate the quadrupole moment

I =

r
5L

!6
= !�3

p
5L

and obtain the desired relation

strain = 2
!2

r
!�3

p
5L =

2
p
5L

!r

b) For this part, you will need to look up some constants and conversions.
Find the greatest distance (in light years) that a gravitational wave detec-
tor with a strain sensitivity of 10�18 could respond to an event that dumps
one full solar mass of energy into a one second pulse of gravitational waves
at an angular frequency of a kiloHertz.

4.2 Answer b)

The mass of the sun is about 2 � 1030 kg. Converting that much mass into
energy would yield

E = mc2 = 2� 1030 kg �
�
3� 108m= s

�2
= 18� 1046 J

and doing it in one second would yield a luminosity of

L = 18� 1046W
= 18� 1046 � 10�52:560 Planck Power units
= 5:0� 10�6 Planck Power units
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The other input that we need in dimensionless form is the angular frequency

! = 103Hz

= 103 � 10�43:268 = 10�40:268

= 5:4� 10�41

Now solve the relation from the last part

strain =
2
p
5L

!r

for the distance r

r =
2
p
5L

!strain

=
2
p
5� 5� 10�6

5:4� 10�41 � 10�18
= 1: 851 9� 1056

= 2� 1056Planck distance units

= 2� 1056 � 1m

1034:791

= 3� 1021m

A light-year is

1ly = 3� 108m= s� 3:15� 107 s
= 1016m

so the detectability distance is

r = 3� 1021m = 3� 105 light years
= 300; 000 light years

Since our galaxy is about 100,000 light years across, the event would have to
be somewhere within our galaxy or possibly in the Large or Small Magellanic
clouds that orbit our galaxy.
From this calculation, you can also see that each factor of ten improvement

in strain sensitivity multiplies the range by a factor of ten. You can also see
that lower frequency signals can be detected at much longer range. That is one
reason for the LISA proposal to use orbiting spacecraft to detect frequencies
well below one Hertz.

5 Problem 5: Lapse and Shift

Find the lapse and shift functions that correspond to the spacetime metric tensor

ds2 = � (1� 2m=r) dt2 + 2vP�1=2dtdr + r4P�1dr2 + r2d
2
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where v; P are polynomials

P = v2 + (1� 2m=r) r4

v = Kr3=3�H
By the way, this is the metric of a black hole of mass m in peculiar coordi-

nates.

5.1 Answer

The metric components have the form

[g] =

2664
1 (1� 2m=r) vP�1=2 0 0
vP�1=2 r4P�1 0 0
0 0 r2 0
0 0 0 r2 sin2 �

3775
while the inverse metric components are

�
g�1

�
=

2664
1 (1� 2m=r) vP�1=2 0 0
vP�1=2 r4P�1 0 0
0 0 r2 0
0 0 0 r2 sin2 �

3775
�1

or :

�
g�1

�
=

26664
� r4

�r4+v2+2mr3 P v
�
p
Pr4+

p
Pv2+2

p
Pmr3

0 0

P v
�
p
Pr4+

p
Pv2+2

p
Pmr3

2Pm�Pr
�r5+2mr4+rv2 0 0

0 0 1
r2 0

0 0 0 1
r2 sin2 �

37775
Compare these expressions to the ones given in the notes:

[g] =

0@ ��� ~N ���2 �N2 h
�
~N
�T

h
�
~N
�

[h]

1A
�
g�1

�
=

�
�1=N2 ~NT =N2

~N=N2 [h]
�1 � ~N ~NT =N2

�
The spacelike metric is evidently

[h] =

24 r4P�1 0 0
0 r2 0
0 0 r2 sin2 �

35
and we can read o¤ the shift vector components with their indexes lowered by
this metric:

Ni = g0i
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or

N1 = vP�1=2

N2 = N3 = 0

Raise the index using h�1

N1 = r�4PvP�1=2 =
v

r4

p
P

N2 = N3 = 0

The lapse function is obtained by comparing the inverse metric expressions

1=N2 =
r4

�r4 + v2 + 2mr3 =
1

v2r�4 � (1� 2m=r)

N =
p
v2r�4 � (1� 2m=r) = r�2

p
v2 � (1� 2m=r) r4

Collect the �nal non-zero results in the form

N1 =
v

r4

p
v2 + (1� 2m=r) r4

N = r�2
p
v2 � (1� 2m=r) r4

The important thing to notice about these results is that they are well-behaved
at r = 2m. Thus, these t =constant surfaces are regular across the black hole
event horizon and t is a well-behaved time coordinate there. One might not
have guessed that from the original form of the metric tensor.
The example is a static, regular slicing of a black hole by a set of hyperbolic

constant-time surfaces that are asymptotically lightlike.

6 Problem 6: Initial Data

Suppose that you wish to set up time-symmetric initial data for two black holes
of identical mass separated by about ten Schwarzschild radii. The data is to be
set up on a Cartesian coordinate grid (x; y; z) with the holes on the z-axis.
For a single black hole the horizon corresponds to the minimal area r =

constant surface at the instant of time symmetry. Assume that this relationship
is approximately true for these interacting black holes so that their minimal area
surfaces (now somewhat distorted) correspond to their horizons and give the
spacetime Cartesian metric tensor components as functions of the coordinates
(x; y; z).

6.1 Answer

The spatial metric tensor is taken to be

gij = �4�ij

11



where a single black hole with mass m would be represented by

� = 1 +
2m

~r

with ~r the radius in terms of the �at space metric

~r =
p
x2 + y2 + z2

The area at constant ~r is just

A (~r) = 4�

�
1 +

2m

~r

�4
~r2

which goes through a minimum at ~r = 2m so that is the location of the "throat"
in these coordinates.
For two identical black holes, we would have

� = 1 +
2m

~r1
+
2m

~r2

where ~r1 and ~r2 are distances from di¤erent points calculated using the �at
metric. The simplest starting assumption to make is that these distance are
calculated from points a distance 20m apart in the �at metric. Put one at
z = �10m and the other at z = 10m along the z-axis so that

~r1 =

q
x2 + y2 + (z + 10m)

2

~r2 =

q
x2 + y2 + (z � 10m)2

and thus the proposed initial metric is

gij =

0@1 + 2mq
x2 + y2 + (z + 10m)

2
+

2mq
x2 + y2 + (z � 10m)2

1A4

�ij

Of course, the �at metric does not measure physical distances, so we still
need to check what the actual distance between these black holes is. Along the
z-axis,

ds2 =

0@1 + 2mq
(z + 10m)

2
+

2mq
(z � 10m)2

1A4

dz2

so that the distance element is

ds =

�
1 +

2m

jz + 10mj +
2m

jz � 10mj

�2
dz
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Integrate this from z = 0 to the approximate surface of one of the holes at
z = 8m to get half the physical separation

1

2
D =

Z 8m

0

�
1 +

2m

z + 10m
� 2m

z � 10m

�2
dz

=

Z 8m

0

�
1 + 2m

�
1

z + 10m
� 1

z � 10m

��2
dz

=

Z 8m

0

�
1� 2m

�
20m

z2 � 100m2

��2
dz

=

Z 8m

0

�
1� 40m2

z2 � 100m2

�2
dz

= m

Z 8

0

�
1� 40

x2 � 100

�2
dx

=

�
22

5
ln 18� 22

5
ln 2 +

88

9

�
m

= 19:45m

Evidently we have the holes separated by about twenty Shwarzschild radii, so
try putting them closer at z = �5m and integrate half the distance from zero
to 3m.

1

2
D =

Z 3m

0

�
1 +

2m

z + 5m
� 2m

z � 5m

�2
dz

=

Z 3m

0

�
1 + 2m

�
1

z + 5m
� 1

z � 5m

��2
dz

=

Z 3m

0

�
1� 2m

�
10m

z2 � 25m2

��2
dz

=

Z 3m

0

�
1� 20m2

z2 � 25m2

�2
dz

= m

Z 3

0

�
1� 20

z2 � 25

�2
dz

= m

�
24

5
ln 8� 24

5
ln 2 +

9

2

�
= 11:154m

Now we are closer, with the holes separated by about 11 Schwarzschild radii.

7 Problem 7: Isometries

Use the procedures that we applied to the case of static spherical symmetry
and construct a simple form for the metric of a static, cylindrically symmetric
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spacetime. Take the coordinates to be (t; r; z; �). In this case, the Killing vectors
are @

@t ;
@
@z ;

@
@� . Be sure to justify each specialization.

7.1 Answer

Because the spacetime is static, there is a timelike Killing vector �eld that we
can take to be @

@t . There is also a re�ection symmetry under time reversal, so the
spactime metric cannot have cross-terms between time and space coordinates.
The spacetime metric then takes the form

ds2 = �fdt2 + d`2

where d`2 is a three-dimensional space metric and, along with f is independent
of the time t.
For cylindrical symmetry, there are two more Killing vector �elds. These

generate group orbits that are cylinders. Choose one of these group orbits and
put the usual coordinates z; � on it, with � an angle so that its metric is

(2)dc2 = Bdz2 + Cd�2

with

�1 < z <1
�� < � � �

The family of curves perpendicular to the group orbits can then be used to
map these z; � coordinates onto all of the other orbits. The function f in the
spacetime metric will then be independent of z; � as well as t. With orbits
labeled by a coordinate r the space metric is then

d`2 = A (r) dr2 +B (r) dz2 + C (r) d�2

and the spacetime metric is

ds2 = �f (r) dt2 +A (r) dr2 +B (r) dz2 + C (r) d�2

Just as for the Schwarzschild metric, the radial coordinate that labels the
orbits can be de�ned, thus eliminating one function. If r is de�ned to be 1

2�
times the orbit circumference, then the metric becomes

ds2 = �f (r) dt2 +A (r) dr2 +B (r) dz2 + r2d�2

8 Problem 8:

For this problem, you will have to draw some pictures.
Use a Kruskal Diagram to show the geometry near the surface of a star that

is collapsing to a black hole. An observer is standing o¤ from the collapse at a
constant luminosity distance of r = 3m.

a) What happens to the initial r = 0 singularity of the Kruskal metric in this
picture?
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8.1 Answer a)

The picture is actually in the notes.

The initial singularity is the bottom branch of the hyperbola. It is replaced
by the spacetime geometry inside the star. Thus, the initial singularity is not
actually present in this spacetime.

b) Suppose that a clock is on the surface of the star and is sending out light
signals are regular intervals. Use the Kruskal Diagram to explain what
the r = 3m observer will see in terms of the time, t for which the external

15



geometry is static.

The Schwarzschild time coordinate goes to in�nity near the horizon, so
the signals from regular events reach the r = 3m hyperbola at increasing
time intervals as the surface nears the horizon. Light from the star would
be red-shifted until it becomes undetectable.
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