
PHYS691 Final Exam
Attempt each of the following problems. Attach the resulting �le to an email

to rhgowdy@vcu.edu.
Due date: Thursday, May 12, 2005.

1 Problem 1: Sound Waves

Use the stress-energy tensor conservation laws to �nd the speed of sound waves
(as a fraction of the speed of light) in a medium that obeys an equation of state
of the form

p = f (�)

Do the calculation for an arbitrary curved spacetime.

2 Problem 2: Bosons in Curved Spacetime

In Special Relativity, the wave function for a spin-zero massive particle obeys
the Klein Gordon Equation
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a) Suppose that such a particle is moving through a curved spacetime and
use minimal coupling to �nd a candidate for its wave equation.

b) Write out the candidate equation in detail for the case of a particle moving
along the z-axis (so that @ @x and

@ 
@y are zero).

3 Problem 3: Soap Films (Problem of Plateau)

A soap-�lm suspended on a wire frame with no air trapped anywhere will try
to minimize its total surface area because of surface tension.

a) Represent such a �lm in parametric form in Cartesian coordinates.

b) Find the di¤erential equations that are obeyed by the functions in this
description of a soap �lm.

c) Find the condition(s) satis�ed by the second fundamental form of such a
soap �lm.
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4 Problem 4: Gravitational Wave Sources

a) Use the results found in class, but ignore polarization e¤ects and derive
an approximate relationship between detector strain, source luminosity,
source distance, and source frequency. For this part, just leave everything
in Planck units.

b) For this part, you will need to look up some constants and conversions.
Find the greatest distance (in light years) that a gravitational wave detec-
tor with a strain sensitivity of 10�18 could respond to an event that dumps
one full solar mass of energy into a one second pulse of gravitational waves
at an angular frequency of a kiloHertz.

5 Problem 5: Lapse and Shift

Find the lapse and shift functions that correspond to the spacetime metric tensor

ds2 = � (1� 2m=r) dt2 + 2vP�1=2dtdr + r4P�1dr2 + r2d
2

where v; P are polynomials

P = v2 + (1� 2m=r) r4

v = Kr3=3�H

By the way, this is the metric of a black hole of mass m in peculiar coordi-
nates.

6 Problem 6: Initial Data

Suppose that you wish to set up time-symmetric initial data for two black holes
of identical mass separated by about ten Schwarzschild radii. The data is to be
set up on a Cartesian coordinate grid (x; y; z) with the holes on the z-axis.
For a single black hole the horizon corresponds to the minimal area r=constant

surface at the instant of time symmetry. Assume that this relationship is ap-
proximately true for these interacting black holes so that their minimal area
surfaces (now somewhat distorted) correspond to their horizons and give the
spacetime Cartesian metric tensor components as functions of the coordinates
(x; y; z).

7 Problem 7: Isometries

Use the procedures that we applied to the case of static spherical symmetry
and construct a simple form for the metric of a static, cylindrically symmetric
spacetime. Take the coordinates to be (t; r; z; �). In this case, the Killing vectors
are @

@t ;
@
@z ;

@
@� . Be sure to justify each specialization.
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8 Problem 8:

For this problem, you will have to draw some pictures.
Use a Kruskal Diagram to show the geometry near the surface of a star that

is collapsing to a black hole. An observer is standing o¤ from the collapse at a
constant luminosity distance of r = 3m.

a) What happens to the initial r = 0 singularity of the Kruskal metric in this
picture?

b) Suppose that a clock is on the surface of the star and is sending out light
signals are regular intervals. Use the Kruskal Diagram to explain what
the r = 3m observer will see in terms of the time, t for which the external
geometry is static.
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