1 The Classical Embedding Problem

1.1 Surfaces vs Manifolds

The currently accepted way to represent a non-Euclidean geometry is to start
with a manifold, defined only in terms of overlapping coordinate charts. That
method was not how non-Euclidean geometry began, however. The subject
began by considering surfaces embedded in Euclidean space. A circle of radius
R, for example, was embedded in flat two-dimensional cartesian space according
to
22 +y% = R?
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while a two-sphere was the set of number triplets (z,y, z) such that

x2+y2+z2:R2.
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A smooth, flat, two dimensional torus was the set of number quadruplets (z, y, z, w)
such that

.732 + y2 — RQ

2w = 8
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These surfaces inherit their metrics from the embedding space, so they are said
to be isometric embeddings.

The older embedded surface representation and the modern manifold repre-
sentation are very different. It was natural to ask if they are really equivalent.
Surfaces embedded in Euclidean space inherit a torsion-free, metric-compatible
connection. Manifolds with this type of structure are called Riemannian mani-
folds. It is obvious that embedded surfaces must always be Riemannian mani-
folds with varying combinations of the Cartesian coordinates forming the needed
overlapping coordinate patches. In fact, that is a standard homework exercise
in manifold theory. What is not so obvious is that every Riemannian mani-
fold can be represented by a surface isometrically embedded in Euclidean space.
That “embedding problem” had to be solved before the manifold picture could
become accepted as the primary one.

1.2 The Solutions

The first satisfactory solution of the embedding problem was the famous paper
by John Nash [J. Nash, “The Imbedding Problem for Riemannian Manifolds,”
Annals of Mathematics, 63 (1956) pp 20-63.]. His result was that any compact
manifold with a C* metric (for ¥ > 3) can be isometrically embedded in N
dimensional Euclidean space where N = W Later results have cut down
the value of N but Nash was the first to show that there is a finite value of N
that will always work. A good review of that and related work can be found at
http://wwwmaths.anu.edu.au/research.reports/proceedings/040/CMAproc40-andrews.pdf

To understand why large numbers of dimensions might be involved, consider
the simplest imaginable case, flat two dimensional space. A sheet of paper mod-
els an isometric embedding of such a space in three dimensions. It is somewhat
floppy, but one can only bend it in one direction. The sheet can be rolled up to
form a tube. However, if one attempts to bend it around to form a doughnut
shape or 2-torus, one is forced to crease it somewhere. The embedding then
drops from C* to C'. However, as the example a bit earlier in this section
demonstrates, it is possible to have a C*° embedding of the 2-torus in four

dimensions.

If one now attempts to give the sheet a half-twist before identifying its edges,
that works in three dimensions and results in a Mobius strip. However an iden-
tification of the remaining edge to make a Klein bottle requires an embedding
in 5 dimensions.

For embedding spacetimes, the situation is much worse, but it can still be
done. Any spacetime can be embedded isometrically in R with a metric with
constant coefficients and N < 90 and no more than 3 timelike directions. [C.J.S.



Clarke, “On the global isometric embedding of pseudo-Riemannian manifolds,”
Proceedings of the Royal Society, A314, (1970) pp 417-428.

1.3 Why Embed in Flat Spaces?

It is natural to ask about the possibility of embedding a given Riemannian
manifold in a higher dimensional Riemannian manifold other than flat (constant
metric coefficients) RY. However, for the classical embedding problem, that is
not relevant because embedding that higher dimensional manifold in flat RV
would yield an embedding of the original manifold in RY. The key point in the
classical embedding problem is just that IV should be finite even if it turns out
to be very large.

1.4 Is this physics?

A general point that is usually made about the embedding problem is that it
confirms the fact that the surface embedding representation of a Riemannian
manifold has nothing at all to do with physics. On this issue (and others),
Einstein is said to have listened patiently and then declared, “Interesting, but
you had better go back and study some more physics young man”.[Sylvia Nasar,
“A Beautiful Mind: A Biography of John Forbes Nash, Jr.,” Simon & Schuster,
(1998)].

One indication that the embedding representation might not have much to
do with physics is that it introduces arbitrariness. For example, the embedding
of a circle in two dimensions can be visualized as a loop of string thrown on a

table. ©
O

The loop can arranged as a circle or an ellipse, or in the shape of a daisy with
no effect at all on the one-dimensional manifold that is the circle.

Another indication that the embedding representation might be an unnec-
essary distraction is the quirky way in which embeddings are sometimes mostly
arbitrary and sometimes unique. For example, the embedding of a 2-sphere or
any other convex surface in three dimensions is unique up to translations and
rotations. It is said to be “rigid.” That is the reason that the thin shell of an
egg can hold its shape. However, a sphere with a hole in it has many different



embeddings, so it is “Hoppy.”
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The results of the classical embedding problem, particularly for spacetimes,
provide another indication that this particular problem is not physics. It is
difficult to justify representing four dimensional space time by introducing a 90
dimensional embedding spacetime with as many as three different time direc-
tions.

There are physical theories that treat four dimensional spacetime as a surface
embedded in a larger manifold. However, these theories take the embedding as
a physical hypothesis with physically observable consequences for the embedded
spacetime. For example, assuming that spacetime is isometrically embedded in
a flat Minkowski-like manifold with 89 space dimensions and one time dimension
would automatically rule out any spacetime that permits closed timelike lines.
In most “brane-world” theories, there are far less than 89 space dimensions, so
the embedding hypothesis actually imposes severe restraints on the allowable
spacetimes. Understanding these restraints is, essentially, the opposite of the
classical embedding problem where one seeks to eliminate the restraints.

2 Specializing the Embedding Structure Equa-
tions

2.1 DMetricity

For a surface embedded in a flat Riemannian manifold, it is natural to choose
a normal projection tensor. The metricity of the embedding space is zero and
projecting its various components yields the following equations:

Qf[H“"(; = 0 or Dysgg"” =0
‘}/IH’W(; =0 or DvggH”V =0
HH vv
—qg “ph}}pgl’+h1{’u5pg s 0 or h}}p(;’j:thgV
HH vv *
hvYsog" TP — g VPR st = 0 or Ry = hyps”

The first equation implies that that the projected derivative within the surface
supplies a metric compatible connection within the surface. The second equation
indicates that the Fermi derivative perpendicular to the surface preserves the
surface projected metric tensor. The third and fourth equations mean that there
is no distinction between the projection curvatures and the transpose projection
curvatures.



2.2 Torsion

The torsion of the embedding space is zero and projecting its components normal
to the embedded surface yields

SgH P =0
so that the connection induced on the surface also has zero torsion,
SIYIH p/w =0
so that there is no out-of surface torsion component, and
ngp;w = th;w

which eliminates the remaining cross-projected torsion component by setting it
equal to the projection curvature.
The complementary projections of the torsion yield

V.p _
SyvPmw =0
H *
SyvPuw = 2wy "
\%
SVHPMV = thW

so that all of the cross-projected torsions are eliminated.

2.3 Curvature
2.3.1 Gauss Relations

The curvature of the embedding space is zero. Projecting its components normal
to the embedded surface provides the Gauss relation for the intrinsic curvature
tensor in terms of the extrinsic curvature
RgH pvaﬁ = hH’YBUthaU - hHwafthp,B(7
as well as two additional Gauss-like relations for the cross-curvatures:
REVYas = hiaochvsp — hirpe’ hvog!
R\IijFYaB = hVJ,B’YhVa(xp - hVJaﬂthJﬁa

In each case, the projected curvature is expressed as a quadratic in the projec-
tion curvature. The fully contracted version of the first relation is particularly
important:

HHpa pH HHp« o HHp« o
g ’ RHHp’Ya'y =g ’ hH’Y'yathoz ) r hH’Yaoth'y

or
H
R= QHJQHU - thrpathfya

where 7 R is the scalar curvature of the surface and is the basis for the Hilbert
Action functional for general relativity.

Initbers = /d4$\/@(HR)



2.3.2 Codazzi Relations

The Codazzi relations are somewhat more complex and require the use of the
torsion relations. There are two distinct relations that reflect the flatness of
the embedding space:

HﬁHﬁh*Hpcﬂ - ﬁHVahEpﬁ” =
SHHUth;IpUW - SHHO-OLﬁh'VA/O'p
Dy ghigpa + Drrahvs, =
Stivaphiios” = Sy ashvop
and their complements
‘Plfﬁ’ﬁ/pa7 ~ Dvaly 5" =
Syvaphy ps’ = Syyapha’op
Drghiy pa” + Dvahis, =
SQ//HUthT/pH’Y - SgHU@ﬁhHFYUp
Assume a normal embedding to equate the two types of projection curvature

and then replace the cross-projected torsions. In that case, the last equation is
the same as the second and just three distinct relations remain:

-DH,Bthoz’Y - DHocthﬁ’y =0

-DVBthoz’Y + -DHahV’YBp = hHgoz,Bthpa’Y + hVUﬁathap
—Dvhyap + Dvahyv sy = 20y as”hi po!

Notice that these relations contain only the projection curvatures and their
projected derivatives.

3 Describing Embeddings

3.1 Intrinsic Description
3.1.1 Minkowski Bulk Coordinates as Functions on the Manifold

The intrinsic description of an embedded manifold uses the coordinate patches
on the manifold as parameters. Denote the coordinates on the flat embedding
space B by X% where a ranges from 0 to N. The basis vectors on the tangent
spaces to B are then

= 0
= oxa
The metric on B is required to be diagonal with components equal to +1.

- _ 0 for a#b
a“'ab_n“b_{s(a) for a=10



Denote coordinates on the embedded manifold M by z® where « ranges from 0
to n. The embedding is then described by specifying the N + 1 functions X ®as
functions on the manifold M by giving the values

X (mo,xl, ,a:”)
for coordinates z° in each chart on M.

X0 1

{X0C x7), X'(x0x7), X2(x0 x") }

XT

3.1.2 Manifold Metric and Projection Tensor from Minkowski Bulk
Coordinates

In this description, one constructs the basis vectors tangent to the embedded
manifold 5 axe
o= 2 X5

ozt Ozt
and the induced manifold metric components

Ly g L 0X"OXP X 0X
Juw = O O = 5 gz b = Pan v
The projection into the embedded surface tangent space can then be defined by

H(v) = (v-9u)g"" 0,
Check this expression by assuming that v is tangent to the surface. It can then
be expanded in terms of the tangent basis vectors
v =%,
and
H(w) = (v%0-0,)¢"" 0y = v%gaug"’ 0y

= 0950, = v904 = v.

In terms of the embedding space basis, the projection tensor is defined by
a b

(250)s
o 3o (1)

,OX* OX? - 3
" e g or 0 IX) O

H (v)




so that 5 o
X% 00X =
my — 1, dX" ® O

H =
g ox* Oxv

or, in components
b
L 0X 0X
dzi §zv o
The component expressions are simplified by using commas to denote derivatives
and raising and lowering indexes with the appropriate metrics.

Hbr =g

H®, = X"X,,=VX’. VX,

3.1.3 Proection Curvature from Minkowski Bulk Coordinates

Covariant derivatives in the embedding space are just ordinary derivatives with
respect to the coordinates X®. Thus, we can evaluate the projection curvature
directly

hi (v) 4 = hgpav® = HS H" o g H0?

The derivative is projected tangent to the embedded manifold, so it is enough
to evaluate the components

hH (aﬁ)ca = HCT‘HTCL,(S

oXkoxr = -
Hy=g¢"——"—n,=VX" VX,
9z P ke
15} Xk axr
Hra - af v
0 Ozd (g dz OzP nka)
_ ap OXPOXT g0 PXF axT N apOXF °XT
T 9 ga 9B e T Gapgs 9B ke T Gpa 9B ogs Tka
note that
9% 6 = =9 9po.59°"
so that
op OXFOXT o 05 OXF X7
g 92> OxP NMka = 9 "Ypo,69 91 0P Nka
_ 0XPoX®
Jpo = OxP Ox° "Tps
B 9°Xr 9X* +8Xp 02X
Ipo8 = 5zr0zd 9xo P Dup 91000 P

Notice that the expression for g,, uses the dummy index p instead of r because
the expression that we will be substituting into is already using r as a dummy



index. Now do the substitution:

o oxkoxr

g a o Or [3771m

wp s [ OPXP OX°  OXP 92X oxX* 9x"

-9 <8x/’8x5 Bz s T G 8x”8m5nps> Bz 9z ke
_ op op OPXP OX® oXkoxr

I 9rxd 9z P Gre §B ka

ap s 0XP 02X OX*OXT

dxP Dzodxd P Gra 9P ke

It is useful to switch as much of this expression to index-free notation as possible.

as oxXkoxr
g a.%‘a 81‘5 7.3 Nka
, O2XP (axr gﬁaxs) ox*

= BxP8x5 928 9 fgo ) ps pa Tka
oxk ., 0XP 0%Xs 9XT
97" oze 9 oxP Mlps 0x°0x9 OxP "Tka
92Xr /. - oXF
— _ ap T . S
g 0zrOzs (VX VX ) ps oz Mka

= > 9?X® oX"
—q°B k. P —_- =
9 (VX VX ) Ips 920 920 9P ka
Use the bulk metric tensor 7 to raise and lower bulk indexes to eliminate still
more index clutter.

ozB Xk oxr
g 8 o Or ﬁnka
PXP o, 0X,
= 0" g (VX V%) G0
- > 0°X*® 90X
B . - T
(VXS VXa) 0x90x% OxP

Rename some dummy indexes to get these terms to look alike.

s | oxkoxr
g” S 90 9P .3 Nka
" (9%,9x,) *Xi
= g | (T 9%) G+ (9%, 9x)



Next, put this first term into the expression for the projection gradient

. N G ) & oX"
Hos = —g%5os [(VX - VX,) T +(VX, VX, axa}
op PXF OXT 0p0XF ?XT

920028 928 ke T I Gra gpBage Tka

Rename dummy indexes to get the second derivative terms to look alike.

. 82Xp N 0X, oXr
Hlas = =9 839/’8365 [(VX 'VXP) oz <VX VX > [«)xa}
o DXV OXT L, X7 0XE
9 0zroz® oz ! 9" 81’/’8:55 Do Tka
92 XP - - oxX" - 0X, 0X" oXF
g o= g 2 | (ex .ox. )% _(oxr.ox .
o8 g 3ZE98$5 [ (v p v a) 8.%‘1 <V v ) a o + a‘«ra pa+6pa a Tka
H2Xr Xk , . . .
- paxpaxé Dz (=Hpa0y — H" g + e + 6pka)
92XP 9XF
— ap T r
= 9 0000 O (Vpalk + V" pka)

Now project this result with H to get the final result:

H(aé)ca = H° Hraé
82X3” oXk
9" Burdat B
X7 ot
OxrOzd Oz
9?XP oXF

_ ap Y A" VAT c
= 9 Burord 9zo Vo

= H° Voadk + V" pla)

Voadi HSr + H Vi)

The full expression for the projection curvature is then

2Xp Xk
, 0 0 X" e,

(%) 0 = 9" dxrdxd P P

where the components g“# are defined by
0X 00X _ 5o
Ozr 2B ) P
and

Voo = 1pe— VX, VX,
H¢, = VX VX

10



One last task remains. The manifold tangent basis vectors ds need to be
replaced by bulk tangent vectors in HTp

Hiy = M30s

Find the coefficients M g by using the chain rule

0. =25,
to obtain .
gf; 8; - Hiy = M)0s - 9,
or :
%de = MJ9so
so that ,
My =g gfj Hjq
and thus
Hb; = gii: H;ag%° s
= (VX 9x0) %gﬂ‘*aé

The full expansion of the projection curvature tensor is then

J

L NOX .
i€ = (VXj - vxd) 9% R (95)° o

ox°
or . 5 K
oxX’ 0°XP 0X
B € 0= H. od ap Vch
Hod 34 G I dxPOz® Ogo POk

where we recall the definitions
0X 0X
ap | 22 22 ) 5o
g <8xp 8565) B

Voo = 1pe— VX, VX,
H¢ = VX°.VX,

and

Notice that the other projection curvature, hy is not defined when H projects
onto a single embedded manifold. The definition of hy requires differentiation
in directions perpendicular to the manifold and that is only possible when the
projection tensor fields are defined away from the manifold. In other words,
a local foliation of the embedding space by manifolds is required for hy to be
defined.

11



3.2 Extrinsic Description

The extrinsic description of a surface provides N — n functions y* : B — R and
defines the surface by
y* =0

for A=1,2,...,N —n. The forms dy” and the corresponding gradient vectors
ﬁyA _ 971 (dyA)
can then be used to construct the projection perpendicular to the surface:
V = gasVy* @ dy”
where gap is defined by the condition
gan (dy® - dyc) =64
Check that this is a projection tensor.
ViV(v) = V (QABﬁyA (dy” ~v)> =gagV (?y“‘) (dy® -v)
= gapgopVy© (dyD - %A) (dy” -v)
= 9angenVy© (dy” g7 (dy")) (dy” - v)
= gagenVy“gt (dy”, dy*) (dy” -v)
= gapgepVy© (dy® - dy?) (dy® - v)
= gapdaVy© (dy” -v)

= gCBﬁyC (dyB'U)
= V(v)

so that
Vi=V.

Check that it annihilates any vector tangent to the surface. For such a vector,
v
v(yA) =v-dy? =0

for all A. Thus
V(v) = <9AB€ZIA ® dyB> v =gapVy? (dy® -v) = 0.
The complementary projection
H=1-V=1-gapVy* @ dy®

then projects into the surface.

12



3.2.1 In Terms of Bulk Coordinates
Each of the functions y* is a function of the N + 1 bulk coordinates X* so that

= 0
vyA _ gfl (dyA) — gfl (ag(” dXT)

or

vy 8XT77 s

and the definition of g4p becomes just the inverse
9apg”C =64
where B oac
BC _ 8y 8y ,r)rs
0XT 0Xs
and the components of the projection tensor V are

oyt oyP

Ve, =n* gABan 90

3.2.2 Arbitrariness

Although there is no need for arbitrary coordinate patches on the surface, this
description does harbor its own kind of arbitrariness. The functions y4 can be
replaced by combinations ) 5 f ‘gyB without changing the surface that they are
describing. The array of coefficients fﬁ just needs to have a non-zero determi-
nant everywhere.

3.2.3 Projection Curvature in Extrinsic Form

The curvature of the surface has components

hHCba = HcrHrdedb

8 rk ayA 8yB

Hpy = —— 2
,d aan gABan aX“
_ ok RS oy Pyt oyP oy
= 17 9ARY ,ngBanaXa n" gABanaXdaXa n" gABanaXaaXd
where
rs 0 oy ayS .
g4 T x4 X oxe
2. R s R 2.8
*y™ Oy¥ o Oyt O0%yR

oxioxioxs" T oxioxsoxd

13

823



so the projection gradient is

oyt oyt 9%yl oy°

81/'4 8yB 8yR 82yS

HTad

Pyt oy” L oyt 9yP
nd gABanaXdaXa T IAB HXE X apXd

Now notice that many terms of the expression H.H", 4 involve the combination

kay

which is zero. The surviving term is just

. ) 0%yt oyP
HCTHT wd = —Hc»,- rk
. T IAB HXkoX 19X 4
and the projection curvature components are
82 A 83/
hipa = —H, HY
H b n" gAB@X’“aXdaX“
where Sul b
Yy oy
H® — 5(1 _ ak g YId
b b — 1 9AB OXF OXb

and gap is the matrix inverse of

BC _ ayB 8yc nrs
dXT 0Xs

4 Dynamical Actions

4.1 Action Principles

The most efficient way to obtain consistent (and thus solvable) equations of
motion for a system is to define an action functional I that assigns a number
I (K) to each possible history K of the system. For a given one-parameter family
of histories K (¢) one can define the variational derivative of any function f that
is associated with these histories by

5f = SFK(E)

The simplest example would be a free particle in one dimension with position
x (t) at time ¢. The action functional is just

] ()

14
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so that the variational derivative is
ol = / (mzox) dt
The variational principle would require
0l=0

for arbitrary distance variations dx that vanish outside of a finite time interval.
One then used integration by parts to obtain

[105

d (mi)
dt
Notice, however, that we had to specify that it is dz that is arbitrary. We
could just as easily have specified that 6z is the quantity that is supposed to be
arbitrary. In that case, the variational principle would have led to

or, since dx is arbitrary,

=0.

max = 0.

Thus, one can have different theories from the same action functional by speci-
fying different things to be arbitrary.

4.2 String Theory

The action functional of a Goto-Nambu string has the form

Ion = Pz |gr |

oX oX  oX  oX
— /d2$ 0z% 9z 0z Izl

89X 09X 98X  0X
Ozl 920 9zl  Oz!

C [ faa [ (25 02 (250X (0% 0x) (0 ox
0z9 0z0 ozl Ox! ozt 0x0 0z0 Ozl

Now evaluate a variation with respect to an arbitrary deformation of the
string metric gy Hgag-

0/ |9HH |gHH gHH(X/BégHHaﬁ

In this case, the requirement
0gNn=0
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leads to conditions
Vi0grmlgtHe? =0

that can only be met by a null or "lightlike" string.
Next, evaluate a variation with respect to an arbitrary deformation (over a

—

compact region) of the embedding functions X.
5v/| | = 1/| |HHaB5 67)?67)?
gaH| = B 9gHH|9 9ze Oz
X 96X
— HHap | > YU
V0grulg (5‘1:0‘ OB )
) oz 0X - o 0z 0X ~
= W (( |gHH‘gHH ﬂax“) (SX) - a? (\/ |gHH|gHH ﬁ&r‘*) -0X

The variation of the action is then

d 0X .
o HHaf )
0lgN = /d T {axﬁ ( lgre|g axa> 5X}

where the total divergence just leads to a suface integral that is zero if §X
vanishes outside of a compact region. The equations of motion of the string are

then .
0 HHap 0X |
2P ( l9rmlg pe 0

and the string need no longer be lightlike.

4.3 Stringlike Actions for General Relativity

Einstein’s field equations can be obtained from the Hilbert Action functional

Titbert = /d4$\/ lguu| (" R)

in a surprising variety of ways. Here, we are thinking of spacetime as embed-
ded in a larger manifold with H to projection onto the spacetime surface. To
complete the action principal, one must say what quantities will be varied arbi-
trarily. Letting dgm g be arbitrary yields the Einstein Vacuum field equations
in the form

Hageb =,

One can decide that the connection coefficients I'“gs will also be arbitrary and
get this same result, together with the expression for the metric-compatible
connection coefficients in terms of derivatives of the metric tensor. That version
is called the Pallatini Action Principle.
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Now suppose we use the Gauss equation to write the scalar curvature in
terms of the projection curvature. The action functional then becomes

Inivere = [ d*@/|gun| (0ns0u° — b shi i)

and we can express it entirely in terms of derivatives of the embedding functions
X% Now do the variation with respect to these embedding functions. Work
this through and you will find that the resulting field equations are just

02X

0xX
0z 0xb ( ox

H ~ap
¢ )+5'z0‘

("G%p) =0

or, using the contracted Bianchi Identities,

’?X
—— (Hg*P) =o.
dz*dxh ( )
Thus, Einstein spacetimes with
HGocB =0

are certainly solutions but there can be other solutions as well.
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