Exercise 16

Please attempt all of the following problems before the due date. Your grade on this assignment will be calculated from the best three answers.

Problem 16.1

Let M be flat two-dimensional space with Cartesian coordinates x, y. Use the definitions of d and δ to calculate Δf for a function $f(x, y)$.

Answer 16.1

$$\Delta f = (\delta d + d\delta) f = \delta df = \delta \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right)$$

The definition of δ is

$$\delta \beta = (-1)^{n+np+1-(n-t)/2} * d * \beta$$

Here, $n = 2, p = 0, t = 2$ so $n + np + 1 - (n-t)/2 = 2 + 1 - (2-2)/2 = 3$

$\delta \beta = (-1)^3 * d * \beta = - * d * \beta$

$$\Delta f = - * d * \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) = - * d \left(\frac{\partial f}{\partial x} * dx + \frac{\partial f}{\partial y} * dy \right)$$

$*dx = g^{-1}(dx) = *\partial_x = \partial_x dx \wedge dy = dy$

$*dy = g^{-1}(dy) = *\partial_y = \partial_y dx \wedge dy = -dx$

$$\Delta f = - * d \left(\frac{\partial f}{\partial x} dy - \frac{\partial f}{\partial y} dx \right) = - * \left(\frac{\partial^2 f}{\partial x^2} dx \wedge dy - \frac{\partial^2 f}{\partial y^2} dy \wedge dx \right)$$

$$= - \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) * (dx \wedge dy)$$

$* (dx \wedge dy) = g^{-1} (dx \wedge dy) = * (\partial_x \wedge \partial_y)$

$*(\partial_x \wedge \partial_y) = \frac{1}{2} (\partial_x \otimes \partial_y - \partial_y \otimes \partial_x).dx \wedge dy = \partial_x \otimes \partial_y, dx \wedge dy = 1$

$$\Delta f = - \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right)$$
Problem 16.2

Let M be flat two-dimensional space with Cartesian coordinates x, y. Use the definitions of d and δ to calculate $\Delta \alpha$ for a one-form $\alpha(x, y) = \alpha_x(x, y) \, dx + \alpha_y(x, y) \, dy$.

Answer 16.2

$\Delta \alpha = d\delta \alpha + \delta d \alpha$

Use the following from the previous problem solution:

$\delta \beta = (-1)^{n+p+1-(n-t)/2} \star d \star \beta$

Here, $n = 2, t = 2$.

For β a one-form, the exponent is $2 + 2 + 1 - (2 - 2)/2 = 5$ so that

$\delta \beta = - \star d \star \beta$

For β a two-form, the exponent is $2 + 4 + 1 - (2 - 2)/2 = 7$ so that we still get

$\delta \beta = - \star d \star \beta$

$\star(dx \wedge dy) = 1$

$\star dx = dy$

$\star dy = -dx$

From the notes,

$\star \star \beta = (-1)^{\rho(n-p)+(n-t)/2} \beta$

For $p = 2$ the exponent is $2(2 - 2) + (2 - 2)/2 = 0$

$\star \star \beta = \beta$ which gives one more result that we will need:

$\star dx \wedge dy = dx \wedge dy$ or $\star 1 = dx \wedge dy$

Collect all of the results we need together:

<table>
<thead>
<tr>
<th>$\delta \beta$ = $- \star d \star \beta$ for one and two-forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\star 1 = dx \wedge dy$</td>
</tr>
<tr>
<td>$\star (dx \wedge dy) = 1$</td>
</tr>
<tr>
<td>$\star dx = dy$</td>
</tr>
<tr>
<td>$\star dy = -dx$</td>
</tr>
</tbody>
</table>

$d\alpha = d(\alpha_x dx + \alpha_y dy) = d\alpha_x \wedge dx + d\alpha_y \wedge dy$

$= \frac{\partial \alpha_x}{\partial y} dy \wedge dx + \frac{\partial \alpha_y}{\partial x} dx \wedge dy = \left(\frac{\partial \alpha_y}{\partial x} - \frac{\partial \alpha_x}{\partial y} \right) dx \wedge dy$

$\delta d\alpha = - \star d \star \left(\frac{\partial \alpha_x}{\partial x} - \frac{\partial \alpha_x}{\partial y} \right) dx \wedge dy$

$= - \star \left(d \left(\frac{\partial \alpha_x}{\partial x} - \frac{\partial \alpha_x}{\partial y} \right) \wedge (dx \wedge dy) \right) = - \star \left(d \left(\frac{\partial \alpha_y}{\partial x} - \frac{\partial \alpha_x}{\partial y} \right) \wedge 1 \right)$

$= - \star \left(d \left(\frac{\partial^2 \alpha_y}{\partial x^2} - \frac{\partial^2 \alpha_y}{\partial x \partial y} \right) dx + \left(\frac{\partial^2 \alpha_x}{\partial x \partial y} - \frac{\partial^2 \alpha_x}{\partial y^2} \right) dy \right)$

$= - \left(\frac{\partial^2 \alpha_y}{\partial x^2} - \frac{\partial^2 \alpha_y}{\partial x \partial y} \right) \star dx - \left(\frac{\partial^2 \alpha_x}{\partial x \partial y} - \frac{\partial^2 \alpha_x}{\partial y^2} \right) \star dy$
\[
\delta \alpha = - \left(\frac{\partial^2 \alpha y}{\partial x^2} - \frac{\partial^2 \alpha x}{\partial x \partial y} \right) dy + \left(\frac{\partial^2 \alpha y}{\partial x \partial y} - \frac{\partial^2 \alpha x}{\partial y^2} \right) dx
\]

where

\[
\delta \alpha = -\star d \star \alpha = -\star d (\alpha_x \star dx + \alpha_y \star dy) = -\star d (\alpha_x dy - \alpha_y dx)
\]

\[
= -\star \left(\frac{\partial \alpha_x}{\partial x} dx \wedge dy - \frac{\partial \alpha_x}{\partial y} dy \wedge dx \right) = -\star \left(\frac{\partial \alpha_x}{\partial x} dx \wedge dy + \frac{\partial \alpha_x}{\partial y} dx \wedge dy \right)
\]

\[
\delta \alpha = \left(\frac{\partial \alpha_x}{\partial x} + \frac{\partial \alpha_y}{\partial y} \right) (dx \wedge dy) = - \left(\frac{\partial \alpha_x}{\partial x} + \frac{\partial \alpha_y}{\partial y} \right)
\]

d\delta \alpha = -d \left(\frac{\partial \alpha_x}{\partial x} + \frac{\partial \alpha_y}{\partial y} \right) = - \left(\frac{\partial^2 \alpha_x}{\partial x^2} + \frac{\partial^2 \alpha_y}{\partial x \partial y} \right) dx + \left(\frac{\partial^2 \alpha_x}{\partial x \partial y} + \frac{\partial^2 \alpha_y}{\partial y^2} \right) dy
\]

\[
\Delta \alpha = d \delta \alpha + \delta \alpha
\]

\[
= - \left(\frac{\partial^2 \alpha_x}{\partial x^2} + \frac{\partial^2 \alpha_y}{\partial y^2} \right) dx - \left(\frac{\partial^2 \alpha_x}{\partial x \partial y} + \frac{\partial^2 \alpha_y}{\partial y^2} \right) dy - \left(\frac{\partial^2 \alpha_x}{\partial x \partial y} - \frac{\partial^2 \alpha_y}{\partial y^2} \right) dy + \left(\frac{\partial^2 \alpha_x}{\partial x \partial y} - \frac{\partial^2 \alpha_y}{\partial y^2} \right) dx
\]

\[
= - \left(\frac{\partial^2 \alpha_x}{\partial x^2} + \frac{\partial^2 \alpha_y}{\partial y^2} - \frac{\partial^2 \alpha_x}{\partial x \partial y} + \frac{\partial^2 \alpha_y}{\partial y^2} \right) dx - \left(\frac{\partial^2 \alpha_x}{\partial x \partial y} + \frac{\partial^2 \alpha_y}{\partial y^2} \right) dy + \left(\frac{\partial^2 \alpha_x}{\partial x \partial y} - \frac{\partial^2 \alpha_y}{\partial y^2} \right) dx
\]

\[
\Delta \alpha = - \left(\frac{\partial^2 \alpha_x}{\partial x^2} + \frac{\partial^2 \alpha_y}{\partial y^2} \right) dx - \left(\frac{\partial^2 \alpha_x}{\partial x^2} + \frac{\partial^2 \alpha_y}{\partial y^2} \right) dy
\]
Problem 16.3

Take M to be the unit two dimensional sphere and use the orthonormal basis forms

$$
\omega^1 = d\theta \\
\omega^2 = \sin \theta d\phi
$$

to calculate Δf for a function $f(\theta, \phi)$.

Answer 16.3

The \star operator is strictly local and will work in the same way that it did for dx and dy, so we can use the results of the previous two problems:

$$
\begin{align*}
\star 1 &= \omega^1 \wedge \omega^2 \\
\star (\omega^1 \wedge \omega^2) &= 1 \\
\star \omega^1 &= \omega^2 \\
\star \omega^2 &= -\omega^1
\end{align*}
$$

Since δ reduces the order of a form by one, it must give zero when acting on a zero-form. To confirm this, try it:

$$
\begin{align*}
\delta f &= (-1)^{n+p+1-(n-t)/2} \star d \star f = (-1)^{2+1-0/2} \star d \star f \\
&= - \star d \star f = - \star d (f \omega^1 \wedge \omega^2) \\
\delta f &= - \star (df \wedge \omega^1 \wedge \omega^2 + fd \omega^1 \wedge \omega^2 - f \omega^1 \wedge d\omega^2) \\
&= - \star (df \wedge \omega^1 \wedge \omega^2 + fd \omega^1 \wedge \omega^2 - f \omega^1 \wedge d\omega^2)
\end{align*}
$$

Each term inside the parentheses contains something that is a sum of triple wedge products and all of those are zero.

$$
\begin{align*}
\Delta f &= \delta \delta f + \delta df = \delta df = - \star d \star df \\
df &= \frac{\partial f}{\partial \theta} d\theta + \frac{\partial f}{\partial \phi} d\phi = \frac{\partial f}{\partial \theta} \omega^1 + \frac{\partial f}{\partial \phi} \omega^2 \\
\star df &= - \star \left(\frac{\partial f}{\partial \theta} \omega^1 + \frac{\partial f}{\partial \phi} \omega^2 \right) \\
\Delta f &= - \star \left(\left(\frac{\partial f}{\partial \theta} \right) \wedge \omega^2 + \frac{\partial f}{\partial \phi} d\omega^2 - d \left(\frac{1}{\sin \theta} \frac{\partial f}{\partial \phi} \right) \wedge \omega^1 \right)
\end{align*}
$$

From the definitions of the basis forms,

$$
\begin{align*}
d\omega^1 &= 0 \\
d\omega^2 &= d (\sin \theta d\phi) = \cos \theta d\theta \wedge d\phi = \cot \theta \omega^1 \wedge \omega^2
\end{align*}
$$

$$
\begin{align*}
\Delta f &= - \star \left(\left(\frac{\partial f}{\partial \theta} \right) \wedge \omega^2 + \frac{\partial f}{\partial \phi} \cot \theta \omega^1 \wedge \omega^2 - d \left(\frac{1}{\sin \theta} \frac{\partial f}{\partial \phi} \right) \wedge \omega^1 \right) \\
&= - \star \left(\frac{\partial f}{\partial \theta} \omega^1 \wedge \omega^2 + \frac{\partial f}{\partial \phi} \cot \theta \omega^1 \wedge \omega^2 + \frac{1}{\sin \theta} \frac{\partial^2 f}{\partial \phi^2} \omega^1 \wedge \omega^2 \right) \\
\Delta f &= \left(\frac{\partial^2 f}{\partial \theta^2} + \frac{\partial f}{\partial \phi} \cot \theta + \frac{1}{\sin \theta} \frac{\partial^2 f}{\partial \phi^2} \right) \star (\omega^1 \wedge \omega^2)
\end{align*}
$$
Problem 16.4

Take M to be the unit circle with orthonormal basis form $\omega = d\varphi$. Show that the basis form field ω is itself a non-zero harmonic form. Is there a continuous function f on the circle such that $\omega = df$?

Answer 16.4

Calculate $*\omega = *g^{-1}\omega = *\partial_\varphi = \partial_\varphi | \omega = 1$

$*d* \omega = * (d1) = 0$

so $\delta \omega = 0$.

$d\omega = d^2 \varphi = 0$.

So, wherever the coordinate φ is defined,

$$\Delta \omega = d\delta \omega + \delta d\omega = 0.$$

But we can define φ everywhere except for one point (where φ jumps from 2π to 0, for example). The choice of the point where φ is discontinuous does not affect the form $d\varphi$ so we find that $\Delta \omega = 0$ everywhere and the form ω is harmonic.

Now assume that there is a function f such that $\omega = df$ everywhere and consider the integral

$$\int_M \omega = \int_0^{2\pi} d\varphi = 2\pi.$$

By using the coordinate φ to evaluate the integral, only one point is left out and we can assume that point to have measure zero. But we also have the integral identity

$$\int_M \omega = \int_M df = \int_{\partial M} f$$

and the boundary ∂M of a circle is empty, so

$$\int_M \omega = 0$$

and the assumption yields a contradiction.
Problem 16.5

Consider plane waves in a flat spacetime. Take the orthonormal frame to be
\[\omega^\mu = dx^\mu \]
and the transverse and longitudinal parts of the vector potential to be
\[a_T = A_T e^{ik \cdot x}, \quad a_L = A_L e^{ik \cdot x} \]
where \(A_T, A_L, \) and \(k \) are all one-forms. Use the equations \(da_L = 0 \) and \(\delta a_T = 0 \) and \(\Delta a_T = 0 \) to find the resulting contraints on these one-forms. Express the field two-form \(f \) in terms of these one-forms.

Answer 16.5

There are two things we can do here.

First, the abstract relations:
\[f = da = d(a_T + a_L) = da_T + da_L \]

which solves the \(df = 0 \) Maxwell equations. The remaining Maxwell equations
\[\delta f = 4\pi j \]
then become
\[\delta da_T = 4\pi j \]
or, since \(\delta a_T = 0 \),
\[(\delta d + d\delta) a_T = \Delta a_T = 4\pi j. \]
so that, in a vacuum, \(\Delta a_T = 0 \).

Second we work out what these relations look like for the proposed expressions:
\[da_L = d(A_L e^{ik \cdot x}) = A_L \wedge de^{ik \cdot x} = A_L \wedge (ik \cdot dx) e^{ik \cdot x} = 0 \]
\[A_L \wedge (k_0 dx^0 + k_1 dx^1 + k_2 dx^2 + k_3 dx^3) = 0. \]
Notice that we can regard \(k \) as the one-form
\[k = k_0 dx^0 + k_1 dx^1 + k_2 dx^2 + k_3 dx^3 \]
in which case, the constraint is just
\[A_L \wedge k = 0 \]

A solution to this constraint is
\[A_L = Ck \]
where \(C \) can be any constant. It is easy to see that any components that are linearly independent of \(k \) will give a non-zero wedge product with \(k \) so this solution for \(A_L \) is the only one.
Recall that
\[
\delta \beta = (-1)^{n+p+1-(n-t)/2} * d * \beta
\]
For spacetime, \(n + np + 1 - (n - t) / 2 = 4 + 4p + 1 - 0 = 3 + 4p \) so
\[
\delta \beta = - * d * \beta
\]
Now look at the condition \(\delta a_T = 0 \) or \(* d * a_T = 0 \)
\[
* d * (A_T e^{ik \cdot x}) = * d (* (A_T) e^{ik \cdot x}) = * ((* A_T) \wedge d e^{ik \cdot x}) = * ((* A_T) \wedge i k e^{ik \cdot x})
\]
so the condition becomes
\[
* ((* A_T) \wedge k) = 0
\]
which is equivalent to
\[
A_T \cdot k = 0
\]
and requires \(A_T \) to be orthogonal to the propagation form \(k \).
Finally, the harmonic condition becomes
\[
\Delta a_T = \Delta (A_T e^{ik \cdot x}) = \delta d (A_T e^{ik \cdot x}) + d \delta (A_T e^{ik \cdot x}) = 0
\]
or
\[
\delta (A_T \wedge d e^{ik \cdot x}) + d * ((* A_T) \wedge k e^{ik \cdot x}) = 0
\]
or
\[
\delta (A_T \wedge k e^{ik \cdot x}) + d * ((* A_T) \wedge k e^{ik \cdot x}) = 0
\]
or
\[
* d * (A_T \wedge k e^{ik \cdot x}) + d * (* A_T \wedge k e^{ik \cdot x}) = 0
\]
The second term is really zero because of the \(\delta a_T = 0 \) constraint. However, it turns out to be useful to leave it there and work out what it is. The star operator acts on the basis one-forms according to
\[
* \omega^0 = * (g^{-1} (\omega^0)) = -* e_0 = e_{0,T} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3) = -\omega^1 \wedge \omega^2 \wedge \omega^3
\]
\[
* \omega^1 = * (g^{-1} (\omega^1)) = * e_1 = e_{1,T} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3) = -\omega^2 \wedge \omega^3 \wedge \omega^0
\]
\[
* \omega^2 = * (g^{-1} (\omega^2)) = * e_2 = e_{2,T} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3) = -\omega^3 \wedge \omega^1 \wedge \omega^0
\]
\[
* \omega^3 = * (g^{-1} (\omega^3)) = * e_3 = e_{3,T} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3) = -\omega^1 \wedge \omega^2 \wedge \omega^0
\]
so that
\[
* A_T \wedge k = A_T (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)
\]
\[
= A_T (\omega^0 \wedge \omega^1 \wedge \omega^2 + A_T \omega^3 \wedge \omega^0)
\]
\[
= -A_T (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)
\]
\[
= -A_T (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)
\]
\[
* (a_T \wedge k e^{ik \cdot x}) = - (A_T \cdot k) e^{ik \cdot x} \]
* \((\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3) = -* (e_0 \wedge e_1 \wedge e_2 \wedge e_3)
\]
\[
= -1/2 e_0 \wedge e_1 \wedge e_2 \wedge e_3 (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)
\]
\[
= -(e_0 \otimes e_1 \otimes e_2 \otimes e_3) (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3) = -1
\]
\[
* (A_T \wedge k e^{ik \cdot x}) = (A_T \cdot k) e^{ik \cdot x}
\]
\[d \star (A_T \wedge ke^{ik_x}) = d((A_T \cdot k)e^{ik_x}) = (A_T \cdot k)de^{ik_x} = (A_T \cdot k)ke^{ik_x} \]

\[= (-A_{T0}k_0 + A_{T1}k_1 + A_{T2}k_2 + A_{T3}k_3)k_\alpha \omega^\alpha \]

To work the other term out, we need to calculate how the star operator acts on the basis two forms in a spacetime. From the notes,

\[\star (\omega^0 \wedge \omega^1) = \star (g^{-1}(\omega^0 \wedge \omega^1))\]
\[= -\star (e_0 \wedge e_1)\]
\[= - \frac{1}{2} (e_0 \wedge e_2)_{\wedge_1} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)\]
\[= - (e_0 \otimes e_1)_{\wedge} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)\]
\[= (e_0 \otimes e_2)_{\wedge} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)\]
\[= \omega^1 \wedge \omega^3\]

Similarly

\[\star (\omega^0 \wedge \omega^2) = \star (g^{-1}(\omega^0 \wedge \omega^2))\]
\[= -\star (e_0 \wedge e_1)\]
\[= - \frac{1}{2} (e_0 \wedge e_2)_{\wedge_1} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)\]
\[= - (e_0 \otimes e_1)_{\wedge} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)\]
\[= (e_0 \otimes e_2)_{\wedge} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)\]
\[= -\omega^2 \wedge \omega^3 = \omega^3 \wedge \omega^2\]

and

\[\star (\omega^1 \wedge \omega^2) = \star (g^{-1}(\omega^1 \wedge \omega^2))\]
\[= \star (e_1 \otimes e_2)\]
\[= \frac{1}{2} (e_1 \wedge e_2)_{\wedge_1} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)\]
\[= (e_1 \otimes e_2)_{\wedge} (\omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3)\]
\[= - (e_1 \otimes e_2)_{\wedge} (\omega^1 \wedge \omega^2 \wedge \omega^3 \wedge \omega^0)\]
\[= -\omega^3 \wedge \omega^0 = \omega^0 \wedge \omega^3\]

The others work out the same way.
For the \(p = 2 \) forms, the results are:

\[
\begin{align*}
\star (\omega^0 \wedge \omega^1) &= -\omega^4 \wedge \omega^4 & \text{& cyclic in 1, 2, 3} \\
\star (\omega^1 \wedge \omega^2) &= \omega^0 \wedge \omega^3 & \text{& cyclic in 1, 2, 3}
\end{align*}
\]

Now work out \(*d \star (A_T \wedge ke^{ik_x}) \).

\[\star (A_T \wedge k) = \star (A_{T\alpha} \omega^\alpha \wedge k_\beta \omega^\beta) = A_{T\alpha}k_\beta \star (\omega^\alpha \wedge \omega^\beta)\]
\[= A_{T0}k_1 \star (\omega^0 \wedge \omega^1) + A_{T0}k_2 \star (\omega^0 \wedge \omega^2) + A_{T0}k_3 \star (\omega^0 \wedge \omega^3)\]
\[+ A_{T1}k_0 \ast (\omega^1 \land \omega^0) + A_{T1}k_2 \ast (\omega^1 \land \omega^2) + A_{T1}k_3 \ast (\omega^1 \land \omega^3) \\
+ A_{T2}k_0 \ast (\omega^2 \land \omega^0) + A_{T2}k_1 \ast (\omega^2 \land \omega^1) + A_{T2}k_3 \ast (\omega^2 \land \omega^3) \\
+ A_{T3}k_0 \ast (\omega^3 \land \omega^0) + A_{T3}k_1 \ast (\omega^3 \land \omega^1) + A_{T3}k_2 \ast (\omega^3 \land \omega^2) \\
= (A_{T0}k_1 - A_{T1}k_0) \ast (\omega^0 \land \omega^1) + (A_{T0}k_2 - A_{T2}k_0) \ast (\omega^0 \land \omega^2) \\
+ (A_{T0}k_3 - A_{T3}k_0) \ast (\omega^0 \land \omega^3) \\
+ (A_{T1}k_2 - A_{T2}k_1) \ast (\omega^1 \land \omega^2) + (A_{T2}k_3 - A_{T3}k_2) \ast (\omega^2 \land \omega^3) \\
+ (A_{T3}k_1 - A_{T1}k_3) \ast (\omega^3 \land \omega^1) \]

\[\ast (\omega^0 \land \omega^1) = -\omega^2 \land \omega^3 \\
\ast (\omega^0 \land \omega^2) = -\omega^3 \land \omega^1 \\
\ast (\omega^0 \land \omega^3) = -\omega^1 \land \omega^2 \\
\ast (\omega^1 \land \omega^2) = \omega^0 \land \omega^3 \\
\ast (\omega^2 \land \omega^3) = \omega^0 \land \omega^1 \\
\ast (\omega^3 \land \omega^1) = \omega^0 \land \omega^2 \]

\[\ast (A_T \land k) = (A_{T0}k_1 - A_{T1}k_0) (\omega^3 \land \omega^2) + (A_{T0}k_2 - A_{T2}k_0) (\omega^1 \land \omega^3) \\
+ (A_{T0}k_3 - A_{T3}k_0) (\omega^2 \land \omega^1) \\
+ (A_{T1}k_2 - A_{T2}k_1) (\omega^0 \land \omega^3) + (A_{T2}k_3 - A_{T3}k_2) (\omega^0 \land \omega^1) \\
+ (A_{T3}k_1 - A_{T1}k_3) (\omega^0 \land \omega^2) \]

\[d \ast (A_T \land ke^{ikx}) = d \ast ((A_{T0}k_1 - A_{T1}k_0) (\omega^3 \land \omega^2 e^{ikx}) + (A_{T0}k_2 - A_{T2}k_0) (\omega^1 \land \omega^3 e^{ikx}) \\
+ (A_{T0}k_3 - A_{T3}k_0) (\omega^2 \land \omega^1 e^{ikx}) \\
+ (A_{T1}k_2 - A_{T2}k_1) (\omega^0 \land \omega^3 e^{ikx}) + (A_{T2}k_3 - A_{T3}k_2) (\omega^0 \land \omega^1 e^{ikx}) \\
+ (A_{T3}k_1 - A_{T1}k_3) (\omega^0 \land \omega^2 e^{ikx}) \]

\[e^{-ikx}d \ast (A_T \land ke^{ikx}) = (A_{T0}k_1 - A_{T1}k_0) (\omega^3 \land \omega^2 \land k) \\
+ (A_{T0}k_2 - A_{T2}k_0) (\omega^1 \land \omega^3 \land k) \\
+ (A_{T0}k_3 - A_{T3}k_0) (\omega^2 \land \omega^1 \land k) \\
+ (A_{T1}k_2 - A_{T2}k_1) (\omega^0 \land \omega^3 \land k) \\
+ (A_{T2}k_3 - A_{T3}k_2) (\omega^0 \land \omega^1 \land k) \\
+ (A_{T3}k_1 - A_{T1}k_3) (\omega^0 \land \omega^2 \land k) \]
Now take the final Hodge star:

\[(\omega^3 \wedge \omega^2 \wedge \omega^0) = - * (e_3 \otimes e_2 \otimes e_0, \omega^0) = e_3 \otimes e_2 \otimes e_0 \omega^0 \wedge \omega^1 \wedge \omega^2 \wedge \omega^3 \]

Now combine the two parts of the expression:

\[-e^{-ik \cdot x} \Delta a_T = e^{-ik \cdot x} \Delta a_T\]
\[-e_\alpha \cdot e^{-ik \cdot x} \Delta a_T = A_{T\alpha} (k \cdot k)\]
so that

\[
\Delta a_T = - (k \cdot k) a_T
\]

and the \(\Delta a_T = 0\) equation simply requires the propagation form \(k\) to be lightlike:

\[
k \cdot k = 0
\]