
Introduction to
SAS Macro Language

Bios 524: Biostatistical Computing

Bios 524: Introduction to SAS Macro Language 2

Getting Help!
! Use the SAS OnLine Documentation for

help on this subject. Follow this path:
! Base SAS Software
! SAS Macro Language Reference

! Introduction – follow these pages to learn
about the macro facility

! Macro Language Dictionary – find help on all
macro statements, functions, etc.

Bios 524: Introduction to SAS Macro Language 3

What is the SAS Macro Facility?

! From the OnLine Doc:
! “The macro facility is a tool for extending and

customizing the SAS System and for reducing the
amount of text you must enter to do common
tasks.”

! “The macro facility allows you to assign a name to
character strings or groups of SAS programming
statements. From that point on, you can work with
the names rather than with the text itself.”

Bios 524: Introduction to SAS Macro Language 4

What is the SAS Macro Facility?

! From the OnLine Doc:
! “When you use a macro facility name in a

SAS program or from a command prompt,
the macro facility generates SAS
statements and commands as needed.”

! “The rest of the SAS System receives those
statements and uses them in the same way
it uses the ones you enter in the standard
manner.”

Bios 524: Introduction to SAS Macro Language 5

What is the SAS Macro Facility?

! Two components
! Macro Processor

! This compiles your macro and integrates it with
your SAS job.

! Macro Language
! This is how you communicate with the macro

processor.

Bios 524: Introduction to SAS Macro Language 6

Triggering the Macro Processor

! Two delimiters will trigger the macro
processor in a SAS program
! &name

! This refers to a macro variable. The current
value of the variable will replace &name.

! %name
! This refers to a macro, which may generate a

section of a statement, one or more complete
SAS statements, or even whole data or proc
steps.

Bios 524: Introduction to SAS Macro Language 7

Defining and Using Macro Variables

! %let
! Example

%let keyvar = DOEntry;

libname library "c:\bios524\classlib";

proc print data=classlib.clinics;

id clinicid;

var &keyvar;

proc freq data=classlib.clinics;

tables &keyvar;

run;

DOEntry is assigned to macro
variable keyvar. Leading and
trailing blanks are ignored.

As the proc
step is

compiled,
&keyvar is

replaced with
DOEntry.

Bios 524: Introduction to SAS Macro Language 8

Macro Variable Values
! Values are character strings
! No distinction is made between numeric and

character type.
! However, see the macro function %eval.

! Embedded special symbols require the use of
a macro quote function when assigning or
using macro variables.
! See macro functions %str, %nstr, %quote,

%nquote, to mention a few.

Bios 524: Introduction to SAS Macro Language 9

Recognizing a Macro Variable
! The key is the leading “&”.
! SAS views &leadvar and &leadvar1 as two

different macro variables.
! %let leadvar = x;

! &leadvar resolves to x.
! &leadvar1 is not resolved to x1. An error message may

appear.

! When the end of the macro variable is not clear,
delimit it with a “.”

! &leadvar.1 resolves to x1.
! Note: &leadvar..1 resolves to x.1.

Bios 524: Introduction to SAS Macro Language 10

Resolving Macro Variable
within Quotes
! Example

! %Let project = Assignment 4;
! Title ‘Results for &project’;

! Resolves to Results for &project .
! Title “Results for &project”;

! Resolves to Results for Assignment 4 .

! Example
%Let refd = 01JAN2000;
%Let dob = 12APR1955;
age = int((intck("month","&dob"d,"&refd"d) -

(day("&refd"d)<day("&dob"d)))/12);

Bios 524: Introduction to SAS Macro Language 11

Scope of Macro Variables
! Local versus Global

! Global variables may be used anywhere in
your SAS program after they are defined.

! Local variables are defined and used within
a SAS macro – more about this later.

Bios 524: Introduction to SAS Macro Language 12

Global Macro Variables
! Global variables include

! All automatic macro variables except SYSPBUFF.
See Online Doc’s "Macro Language Dictionary" for
more information on SYSPBUFF and other
automatic macro variables.

! Macro variables created outside of any macro,
such as with a %let .

! Macro variables created in %GLOBAL statements.
! Most macro variables created by the CALL

SYMPUT routine.

Bios 524: Introduction to SAS Macro Language 13

SAS Macros
! Define a SAS macro using the basic

syntax

! Example

! Usage:

%MACRO macro-name;
macro definition

%MEND macro-name;

%macro whereby;

where (age ge 18 and eligible=1);
by ClinicId;

%mend whereby;

proc print data=Clinics;
%whereby

run;

Bios 524: Introduction to SAS Macro Language 14

Producing SAS code with Macros

! %DO…%TO; %END;
%macro loopit;

%let var1 = Age;
%let var2 = Height;
%let var3 = Weight;

%do i = 1 %to 3;
proc means;

var &&var&i;
Title "Analysis for the Variable &&var&i";

%end;

%mend loopit;

data one;
input age height weight @@;
datalines;

34 60 130 45 70 201 50 68 188
;

%loopit
run;

First time through the loop:
1. Resolves to &var1
2. Resolves to Age

This generates:
proc means;
var Age;
Title "Analysis for
the Variable Age";

proc means;
var Height;
Title "Analysis for
the Variable Height";

proc means;
var Weight;
Title "Analysis for
the Variable Weight";

Bios 524: Introduction to SAS Macro Language 15

Producing SAS code with Macros

! %IF…%THEN; %ELSE;
%macro wantrslt;

%let results = %upcase(&giverslt);

%if &results = YES %then %do;

proc means;
var _numeric_;
Title "Results for Numeric Variables";

%end;

%else %put No results requested; %* Appears in log;

%mend wantrslt;

%let giverslt = NO;

%wantrslt

Convert to
upper case

Places text
in SAS log. Macro

comment

Bios 524: Introduction to SAS Macro Language 16

Passing Parameters to Macros
! Character values may be passed to

parameters that are local macro
variables.

! Syntax %MACRO macro-name (parm1, parm2, … , parmk);
macro definition

%MEND macro-name;

Bios 524: Introduction to SAS Macro Language 17

Passing Parameters to Macros
! Example

%macro wantrslt (giverslt);

%let results = %upcase(&giverslt);

%if &results = YES %then %do;

proc means;
var _numeric_;
Title "Results for Numeric Variables";

%end;

%else %put No results requested; %* Appears in log;

%mend wantrslt;

%wantrslt(no);

%wantrslt(yes);

Local macro variable giverslt is
defined.

Values are passed to the local
macro variable giverslt .

Bios 524: Introduction to SAS Macro Language 18

Passing Parameters to Macros:
An Alternative Method
! Character values may be passed to

named parameters.
! The named parameters may be placed in

any order.
! If omitted, the parameter receives a

default value (that may be null).
%MACRO macro-name (parm1=deflt1, parm2=deflt2, … , parmk=defltk);

macro definition
%MEND macro-name;

Bios 524: Introduction to SAS Macro Language 19

Passing Parameters to Macros:
An Alternative Method
! Example
%macro agecalc (dob=, refd=01JAN2000);

%if &dob= %then %do;
%put Date of birth is missing;
age = .;
%end;

%else
age = int((intck("month","&dob"d,"&refd"d) -

(day("&refd"d)<day("&dob"d)))/12);
%mend agecalc;

Bios 524: Introduction to SAS Macro Language 20

Local Macro Variables
! A local macro variable is defined within

a macro if
! It is defined as a macro parameter.
! It is used in a %LOCAL statement.
! It is defined within the macro using a

macro statement, assuming the variable
does not already exist globally or a
%GLOBAL statement is not used.

Bios 524: Introduction to SAS Macro Language 21

Storing SAS Macros
! Assign a library reference to the directory that

will hold the macro catalog
! Libname mymacs “c:\bios524\sasmacros”;

! Assign a file reference to the macro catalog (will
create the catalog)
! Filename mymacros catalog

“mymacs.stat524macros”;

! Set system options
! Options mstored=yes sasmstored=mymacs;

Bios 524: Introduction to SAS Macro Language 22

Compiling and Storing Macros
! Add the store option to the %macro

statement.
! %macro example / store;
! Run the macro to compile and store it.
! A catalog named Sasmacr will be created

in directory referred to by mymacs. This
will contain the macros you compile and
store.

Bios 524: Introduction to SAS Macro Language 23

Good Ideas about Stored Macros

! Store your macro source code in the same
directory as your macro catalog. Use the file
name extension .sas . You cannot
reconstruct source code from compiled code.

! Define any macro variables used in your
compiled macros as local using the %Local
command. This avoids changing macros with
the same name in the rest of your program.

Bios 524: Introduction to SAS Macro Language 24

Using Stored Compiled Macros
! Point to the directory containing your

macro catalog and set the system
options.
! Libname mymacs “c:\bios524\sasmacros”;
! Options mstored=yes sasmstore=mymacs;

! Use the macro in your program.

Bios 524: Introduction to SAS Macro Language 25

Macro Error Messages
and Debugging
! OnLine Documentation

! Errors
http://views.vcu.edu/ucsmcv/sas/sashtml/macro/z1302436.htm

! Debugging
http://views.vcu.edu/ucsmcv/sas/sashtml/macro/z1066200.htm

http://views.vcu.edu/ucsmcv/sas/sashtml/macro/z1302436.htm
http://views.vcu.edu/ucsmcv/sas/sashtml/macro/z1066200.htm

Bios 524: Introduction to SAS Macro Language 26

Select Macro Functions
and Call Routines
! CALL SYMPUT(macro-variable,value);

! http://views.vcu.edu/ucsmcv/sas/sashtml/macro/z0210266.htm#znid-364

! Cautions:
! A macro reference resolves when the data or proc step is

compiled, but symput assigns a value to the macro
variable during execution. Thus you cannot refer to that
macro variable in the same step.

! SYMGET(argument)
! http://views.vcu.edu/ucsmcv/sas/sashtml/macro/z0210322.htm

! Use this to assign the value of a macro variable to a data step variable.
This assignment takes place during execution.

http://views.vcu.edu/ucsmcv/sas/sashtml/macro/z0210266.htm#znid-364
http://views.vcu.edu/ucsmcv/sas/sashtml/macro/z0210322.htm

