Introduction to SAS IML: Interactive Matrix Language

Bios 524: Biostatistical Computing
Getting Help!

- Use the SAS OnLine Documentation for help on SAS IML
 (click the icons – they are links to VCU’s copy of SAS OnlineDoc).

- Language Reference
What is SAS IML?

- From the OnLine Doc: SAS/IML software
 - is a programming language.
 - operates on matrices.
 - possesses a powerful vocabulary of operators.
 - uses operators that apply to entire matrices.
 - is interactive.
 - is dynamic.
 - processes data.
 - produces graphics.
A Simple Example

Solve this system of linear equations:

\[\begin{align*}
3x + 2y - 4z &= 11 \\
5x - 4y &= 9 \\
3y + 10z &= 42
\end{align*} \]

In matrix terms:

\[MA = B \]

Solve for \(A \).
A Simple Example: IML Solution

```
proc iml;
M={3 2 -4, 5 -4 0, 0 3 10};
B={11, 9, 42};
A=solve(M,B);
```

Result:

```
A=
 5
 4
 3
```
Creating Matrices

- Assigning vectors and matrices
- Creating matrices with functions and operators
- Special Matrices
 - Identity
 - Constant
 - Diagonal
Matrix Operators

- Addition, subtraction, negation (+, –)
- Multiplication
 - (*)
 - Matrix multiplication
 - Scalar multiplication
 - Element-wise multiplication (#)
- Division (/)
 - Matrix/Matrix
 - Matrix/scalar or scalar/Matrix
 - Scalar/scalar
More Matrix Operators

- **Power**
 - Based on matrix multiplication (****)
 - Example: \(M \ast M \ast M \) same as \(M \ast \ast 3 \).
 - Based on element-wise multiplication (##)
 - Example: \(M \# M \# M \) same as \(M \# \# \# 3 \).

- **Concatenation**
 - Horizontal (||)
 - Vertical (//)
Comparison Operators

- **Comparisons** (<, ≤, >, ≥, ^=)
 - Matrices are compared element by element. The result is a matrix of 0’s and 1’s, with a 1 indicating that the corresponding element comparison is true.
 - If the comparison is used in a conditional statement, then all element comparisons must be true (=1) for the conditional statement to execute.

- **Logical Operators** (&, |, ^)
 - Element-wise comparisons
 - (&) Element is 1 if both corresponding elements are nonzero.
 - (|) Element is 1 if at least one corresponding element is nonzero.
 - Not prefix (^): Converts zeros to 1 and nonzeros to 0.
Matrix Subscripts

- Select a single element: $X[2,3]$
- Select a row: $X[2,]$
- Select a column: $X[,3]$
- Select a submatrix
 - $X[\{1\ 2\ 3\},\{2\ 3\}]$ or $X[1:3,2:3]$
- Assign values to submatrix
 - $X[2,3]=0$
- Subscripts may also be functions or expressions: $M[(M<0)]=0$
Subscript Reduction Operators

- Operators may be used in place of subscripts that reduce the matrix by operating on certain elements.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>addition</td>
</tr>
<tr>
<td>#</td>
<td>multiplication</td>
</tr>
<tr>
<td><></td>
<td>maximum</td>
</tr>
<tr>
<td>>:<</td>
<td>minimum</td>
</tr>
<tr>
<td><::></td>
<td>index of maximum</td>
</tr>
<tr>
<td>>::<</td>
<td>index of minimum</td>
</tr>
<tr>
<td>:</td>
<td>mean (different from the MATRIX procedure)</td>
</tr>
<tr>
<td>##</td>
<td>sum of squares</td>
</tr>
</tbody>
</table>
Exercise 1

- Assign these two matrices to A and B, respectively:

$A = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 7 \\ 2 & 3 & 3 \end{pmatrix}$

$B = \begin{pmatrix} 5 & 6 \\ 3 & 4 \\ 4 & 6 \end{pmatrix}$

- Find the sum of all values in A.
- Find the sum of each column in B.
- Find the matrix product, AB.
- Find the value of $C = 6(A_1 A_2) - 5B$.
 - Find the sum of the positive elements of C.
 - Set the negative values of C to zero.
- Solve $AU = B$ for U (a 3×2 matrix).
Using IML with SAS Datasets

- Create matrices from the variables and observations of a SAS data set in several ways.
 - Create a column vector for each data set variable.
 - Create a matrix where columns correspond to data set variables.
 - You can use all the observations in a data set or use a subset of them.

- Create a SAS data set from a matrix.
 - The columns correspond to data set variables and the rows correspond to observations.
 - When reading a SAS data set, you can read any number of observations into a matrix either sequentially, directly by record number, or conditionally.
Open a SAS Data Set for Reading into a Matrix

- **Read only:**

  ```
  USE SAS-data-set < VAR operand > < WHERE(expression) > < NOBS name > ;
  ```

 - **SAS-data-set**

 can be specified with a one-word name (for example, A) or a two-word name (for example, SASUSER.A).

 operand

 selects a set of variables.

 - **expression**

 is evaluated for being true or false.

 Selects a set of observations.

 - **name**

 is the name of a variable to contain the number of observations.
Read Data from a
SAS Data Set into a Matrix

Read from the opened SAS data set:

READ < range > < VAR operand > < WHERE(expression) > < INTO name > ;

- range
 specifies a range of observations.

- operand
 selects a set of variables.

- expression
 is evaluated for being true or false. Selects a set of observations.

- name
 names a target matrix for the data.
Create a SAS Data Set
from a Vectors

Create a new SAS data set:
CREATE SAS-data-set <VAR operand>;

operand
selects a set of variables.

- A literal containing variable names
- the name of a matrix containing variable names
- an expression in parentheses yielding variable names
- one of the keywords described below:
 - _ALL_
 - for all variables
 - _CHAR_ for all character variables
 - _NUM_ for all numeric variables
Create a SAS Data Set from a Matrix

Create a new SAS data set:

```sas
CREATE SAS-data-set <From matrix-name>
  <[COLNAME=column-name ROWNAME=row-name]>;
```

- **column-name**
 - is a character matrix or quoted literal containing descriptive names to associate with data set variables.

- **row-name**
 - is a character matrix or quoted literal containing descriptive names to associate with observations on the data set.
Data Management Commands

Look these up, for example:

- **Append**
 adds observations to the end of a SAS data set

- **Show Contents**
 shows contents of the current input SAS data set

- **Show Datasets**
 shows SAS data sets currently open

- **Close**
 closes a SAS data set

- **Setin**
 selects an open SAS data set for input
Exercise 2

Use IML to place the number of FTE physicians in the clinics into a vector.

- Find the average FTE.
- Find the maximum FTE.
- Find the smallest FTE that is greater than the mean.
 - Challenge: Find all clinics corresponding to this value.
 - Challenge: Print the clinic names using $CLINID format.

Note: Use the libref LIBRARY, since CLINICS uses custom formats.
I ML Programming

- Structured programming
- Modules
- Functions and call routines
- IMLMLLIB: Module Library
Regression Example

- Model

\[y = \alpha + \beta_1 X + \beta_2 X^2 + \varepsilon \]

- X: 1, 2, 3, 4, 5
- Y: 1, 5, 9, 23, 36
- Regress Y on X
 - Find estimates of \(\alpha, \beta_1, \beta_2 \)
 - Find predicted values of Y.
Exercise 3

Convert this table of means to a matrix:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>13</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Find values of μ, α_i, β_j, γ_{ij} where

$$E(Y_{ij}) = \mu + \alpha_i + \beta_j + \gamma_{ij}$$