
Scaling of Symmetric Matrices by Positive
Diagonal Congruence

Charles R. Johnson
a

and Robert Reams
b

aDepartment of Mathematics, College of William and Mary, P.O. Box 8795,
Williamsburg, VA 23187-8795

bDepartment of Mathematics, Virginia Commonwealth University,
1001 West Main Street, Richmond, VA 23284

Abstract

We consider the problem of characterizing n-by-n real symmetric matrices A for which
there is an n-by-n diagonal matrix D, with positive diagonal entries, so that DAD has
row (and column) sums 1. Under certain conditions we provide necessary and sufficient
conditions for the existence of a scaling for A, based upon both the positive definiteness of
A on a cone lying in the nonnegative orthant and the semipositivity of A. This generalizes
known results for strictly copositive matrices. Also given are (1) a condition sufficient for
a unique scaling; (2) a characterization of those positive semidefinite matrices that are
scalable; and (3) a new condition equivalent to strict copositivity, which we call total
scalability. When A has positive entries, a simple iterative algorithm (different from
Sinkhorn’s) is given to calculate the unique scaling.

Key words: Sinkhorn’s Theorem diagonal scaling semipositive copositive totally scalable
doubly stochastic stochastic symmetric
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1 Introduction

For x = (x1, . . . , xn)T ∈ Rn we will use the notation that x ≥ 0 when xi ≥ 0 for 1 ≤ i ≤ n,
and x > 0 when xi > 0 for all 1 ≤ i ≤ n. We will say that a vector (or matrix) is
nonnegative in the event that all of its entries are nonnegative. Let e = (1, 1, . . . , 1)T ∈ Rn.
The nonnegative orthant is the set of all x ∈ Rn such that x ≥ 0. We say that A ∈ Rn×n is
semipositive if there exists x > 0 so that Ax > 0. A symmetric matrix A ∈ Rn×n is positive
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semidefinite (positive definite) on a subset S of Rn when xT Ax ≥ 0 (xT Ax > 0) for all
x ∈ S (x ∈ S, x 6= 0). A symmetric matrix A ∈ Rn×n is copositive (strictly copositive)
when xT Ax ≥ 0 (xT Ax > 0) for all x ≥ 0 (x ≥ 0 and x 6= 0). So, a copositive (strictly
copositive) matrix A is positive semidefinite (positive definite) on the nonnegative orthant.
A cone S is a nonempty subset of Rn such that if a, b ∈ S then µa+νb ∈ S, for all µ, ν ≥ 0.
We call a cone an n-cone in the event that the cone contains n linearly independent
vectors. We will say that a matrix A is row scalable if there exists a diagonal matrix
D = diag(d1, . . . , dn) ∈ Rn×n, with di > 0 for 1 ≤ i ≤ n, so that DADe = e, i.e. DAD
has row sums 1. In such a case we shall also say that D row scales A, or D is a row scaling
for A. We will be primarily interested in the case when the matrix A to be row scaled is
symmetric, and so shall drop off the adjective “row”. For A ∈ Rn×n, we will sometimes
say that DAD is a positive diagonal congruence of A if DAD does not necessarily have
row sums 1, but D is a diagonal matrix with positive diagonal entries. For convenience, we
name both a vector and its components in lower case, such as x = (x1, . . . , xn)T ∈ Rn, and
use upper case with the same letter for the diagonal matrix whose diagonal entries are the
components of the vector in lower case. For example, we write X = diag(x1, . . . , xn) for
the diagonal matrix whose diagonal entries are the components of x. A matrix A ∈ Rn×n

with nonnegative entries is said to be row stochastic if Ae = e, and doubly stochastic if
Ae = e and eT A = eT . Obviously, a symmetric row stochastic matrix is doubly stochastic,
and so we shall sometimes just describe such matrices as stochastic. A matrix A ∈ Rn×n

is said to be irreducible if there does not exist a permutation matrix Q ∈ Rn×n so that

QAQT has the form QAQT =
(

A1 0
A2 A3

)

, where A1 ∈ Rk×k, A2 ∈ Rl×k, A3 ∈ Rl×l,

k + l = n, k > 0, l > 0. A nonnegative matrix is said to be primitive (or aperiodic) if Am

has all positive entries, for some integer m ≥ 1. The primitivity of A depends only on
the location of its zero entries [9], and so A is primitive if and only if D1AD2 is primitive,
where D1 and D2 are diagonal matrices with all diagonal entries positive.

Sinkhorn [32] showed that for a matrix A ∈ Rn×n with all entries positive, there are
unique (up to a scalar factor) diagonal matrices D1 and D2, each with all diagonal entries
positive, such that D1AD2 is doubly stochastic. We shall refer to this result as Sinkhorn’s
Theorem. His proof uses an iterative process, and some convexity arguments, to show
that the process converges. His result was later proved in other ways by Menon [21],
Djoković [7], London [18], Letac [17], Bapat [1], and Borobia and Cantó [2]. Sinkhorn
also shows in [32] that if A ∈ Rn×n is symmetric, with all entries positive, then D1 = D2.

A matrix A ∈ Rn×n being fully indecomposable means that there do not exist permu-

tation matrices P and Q so that PAQ =
(

A1 0
A2 A3

)

, with A1 and A3 square and A2 6= 0.

Brualdi, Parter and Schneider [4], and independently Sinkhorn and Knopp [34], showed
that for a matrix A ∈ Rn×n which is nonnegative and fully indecomposable, there are
unique (up to a scalar factor) diagonal matrices D1 and D2, each with positive diagonal
entries such that D1AD2 is doubly stochastic.
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We wish to emphasize that we will be primarily concerned with the case when the
matrix to be scaled is symmetric, and will use the word “scaling” when D1 = D2, although
elsewhere “scaling” can refer to the case in which D1 is not necessarily equal to D2. In
Sinkhorn’s first paper on the subject [32], he credits Marcus and Newman with being the
first to show that when a symmetric matrix A has positive entries then A can be scaled
[24] (also referred to in [25]), although their proof has not appeared in the literature.
Sinkhorn provided his own proof of this result for symmetric matrices in [33] (Sinkhorn’s
proof in [32] does not preserve symmetry at each iteration). Maxfield and Minc claimed in
[28] that A is scalable by an iterative algorithm when A is positive definite (so necessarily
symmetric) with nonnegative entries, although their proof has also not appeared in the
literature. Marshall and Olkin proved in [27] that when A is strictly copositive then A is
scalable. Strict copositivity encompasses positive definiteness. Pereira [30] has extended
Marshall and Olkin’s proof [27] on the existence of a scaling in the real positive definite
case to positive definite matrices with complex entries. Sinkhorn’s Theorem has been
extended to positive operators by Hobby and Pyke [8]. Sinkhorn’s Theorem has also been
extended in a different direction by Sinkhorn [35], [36], for nonnegative matrices and by
Brualdi [3] for symmetric nonnegative matrices, to achieve prescribed row and column
sums not necessarily 1.

Brualdi, Parter and Schneider [4] showed that if A is a symmetric nonnegative matrix
with positive diagonal entries then A is scalable. When A is a symmetric nonnegative
matrix, Csima and Datta [5] showed that A is scalable if and only if there is a symmetric
stochastic matrix with the same zero pattern as A. See [4] and [5] for other results similar
to these.

Marshall and Olkin [27] proved that if A is strictly copositive then A is scalable. This
result not only encompasses the case that A is positive definite, but also the case that A
is nonnegative and has positive diagonal entries; since a matrix A being nonnegative with
positive diagonal entries implies A is strictly copositive. This last statement is true since
x ≥ 0 and 0 = xT Ax =

∑n
i=1 xi(Ax)i implies xi(Ax)i = 0 for each i. But if some xi 6= 0

then (Ax)i = ai1x1 + · · ·+ aiixi + · · ·+ ainxn = 0, which is not possible since aii > 0. The

converse is not true, since for example, the matrix
(

1 −1/2
−1/2 1

)

is strictly copositive.

The computational complexity of algorithms which perform the scaling, usually in
polynomial time, is also of considerable interest because of its connections with linear
programming. See for instance Linial, Samorodnitsky and Wigderson [19], Khachiyan
and Kalantari [14], [15], Nemerovski and Rothblum [29], and Rothblum and Schneider
[31].

The brief survey above serves only to provide background for our results. In Section
2, we give a simple iterative algorithm that row scales a matrix A ∈ Rn×n with positive
entries. We show in Section 3 that, depending on the matrix, we may have finitely many or
infinitely many scalings, and we provide a condition for a unique scaling. In Section 4, we
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show the equivalence of scalability to A being positive definite on a certain n-cone, which
satisfies stated conditions. Since testing whether a matrix is copositive is NP-complete
[23], we do not expect that deciding in general whether a matrix is scalable would be
any easier. Section 5 discusses the scalability of positive semidefinite matrices, which was
also considered by Marcus and Newman [25]. Finally, Section 6 provides an equivalent
condition to strict copositivity, using scalability criteria.

2 A DAD scaling algorithm

Theorem 1 below provides another proof of the fact that a symmetric matrix A ∈ Rn×n

with positive entries can be scaled by an iterative process, where symmetry is preserved
after each iteration. This proof is somewhat simpler than that given by Sinkhorn in [33].
In fact the proof works, as does Sinkhorn’s, when A is not necessarily symmetric, so we
shall not assume symmetry (either).

Theorem 1 Let A ∈ Rn×n have all positive entries. Then there is a diagonal matrix
D ∈ Rn×n with positive diagonal entries so that DADe = e.

Proof Let Ae = s = (s1, . . . , sn)T . Then we can write (S− 1
2 AS− 1

2 )S
1
2 e = S

1
2 e, where

S = diag(s1, . . . , sn). Let S− 1
2 AS− 1

2 e = t = (t1, . . . , tn)T . Then in the same way

(T− 1
2 S− 1

2 AS− 1
2 T− 1

2 )T
1
2 e = T

1
2 e, etc. Iterating like this constitutes the algorithm. Note

that if A is symmetric then the matrices S− 1
2 AS− 1

2 , T− 1
2 S− 1

2 AS− 1
2 T− 1

2 , ..., at each itera-
tion stay symmetric. We now prove the algorithm converges.

If A has equal row sums then Ae = λe = s, and S = λI, so that S− 1
2 AS− 1

2 = λ− 1
2 Aλ− 1

2

and λ− 1
2 Aλ− 1

2 λ
1
2 e = λ

1
2 e, in which case λ− 1

2 Aλ− 1
2 e = e, and we can take D = λ− 1

2 I.

For the rest of the proof suppose that A does not have all row sums equal.

Note that

ti =
ai1

s
1
2
i s

1
2
1

+
ai2

s
1
2
i s

1
2
2

+ · · · + ain

s
1
2
i s

1
2
n

=
1

s
1
2
i

(
ai1

s
1
2
1

+
ai2

s
1
2
2

+ · · ·+ ain

s
1
2
n

). (1)

Then min1≤j≤n s
1
2
j < s

1
2
k for at least one k, so

ti <
1

s
1
2
i min1≤j≤n s

1
2
j

(ai1 + ai2 + · · · + ain) =
s

1
2
i

min1≤j≤n s
1
2
j

, for all i, (2)

and similarly

ti >
1

s
1
2
i max1≤j≤n s

1
2
j

(ai1 + ai2 + · · · + ain) =
s

1
2
i

max1≤j≤n s
1
2
j

, for all i. (3)
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Thus we have

s
1
2
i

max1≤j≤n s
1
2
j

< ti <
s

1
2
i

min1≤j≤n s
1
2
j

, for all i, 1 ≤ i ≤ n. (4)

When i is such that we have a minimal si then
min1≤j≤n s

1
2
j

max1≤j≤n s
1
2
j

< ti < 1, and when i is

such that we have a maximal si then 1 < ti <
max1≤j≤n s

1
2
j

min1≤j≤n s
1
2
j

.

Also from inequality (4), when i is such that we have a minimal ti then

s
1
2
i

max1≤j≤n s
1
2
j

< min
1≤j≤n

tj <
s

1
2
i

min1≤j≤n s
1
2
j

, (5)

so

min1≤j≤n s
1
2
j

max1≤j≤n s
1
2
j

< min
1≤j≤n

tj, and similarly max
1≤j≤n

tj <
max1≤j≤n s

1
2
j

min1≤j≤n s
1
2
j

, (6)

and we can conclude that

min1≤j≤n s
1
2
j

max1≤j≤n s
1
2
j

< min
1≤j≤n

tj < 1 < max
1≤j≤n

tj <
max1≤j≤n s

1
2
j

min1≤j≤n s
1
2
j

. (7)

Multiplying the inequalities in (6) we have

max
1≤j≤n

tj
min1≤j≤n s

1
2
j

max1≤j≤n s
1
2
j

<
max1≤j≤n s

1
2
j

min1≤j≤n s
1
2
j

min
1≤j≤n

tj, (8)

and cross-multiplying we have

min1≤j≤n sj

max1≤j≤n sj

<
min1≤j≤n tj
max1≤j≤n tj

, and
max1≤j≤n tj
min1≤j≤n tj

<
max1≤j≤n sj

min1≤j≤n sj

. (9)

Consider now the sequence (Si)
∞
i=1, where Si = diag(s(i)), and s(i) denotes the vector of

row sums at the ith iteration (so S1 = S, and S2 = T ). The sequence (Si)
∞
i=1 generates the

monotone strictly decreasing sequence of real numbers
max1≤j≤n s

(i)
j

min1≤j≤n s
(i)
j

. In terms of the spectral

norm || · || and the condition number (see e.g. [16]) cond(Si) = ||Si||||S−1
i || =

max1≤j≤n s
(i)
j

min1≤j≤n s
(i)
j

,
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we can see that the sequence cond(Si) is bounded below by 1. So the sequence cond(Si)
is convergent by the Monotone Convergence Theorem to inf i cond(Si).

We now have an infinite sequence of diagonal matrices Si, all of which have positive
diagonal because from inequality (7) the minimal diagonal entry is bounded below, for

i ≥ 2, by cond(S
1
2 ). Since (Si)

∞
i=1 is bounded it has a convergent subsequence (Sik)

∞
k=1

and let us define R = diag(r) to be the limit. Then
max1≤j≤n rj

min1≤j≤n rj
= infi cond(Si), since the

cond(Sik)’s must have the same limit as the cond(Si)’s.

Then r = Re = DADe for some positive diagonal matrix D, where D is the product of

all the matrices S
− 1

2
i in the sequence Si (and not just in the sequence Sik , because of how

the Si’s are defined). Suppose that DAD has unequal row sums, so
max1≤j≤n rj

min1≤j≤n rj
> 1. Now

performing another iteration of the algorithm, so that (R− 1
2 DADR− 1

2 )R
1
2 e = R

1
2 e, we

can define q = Qe = (R− 1
2 DADR− 1

2 )e. Then from the rightmost inequality (9) we have
max1≤j≤n qj

min1≤j≤n qj
<

max1≤j≤n rj

min1≤j≤n rj
= infi

max1≤j≤n s
(i)
j

min1≤j≤n s
(i)
j

, making
max1≤j≤n qj

min1≤j≤n qj
smaller than the infimum of

such ratios, which is not possible. So we must have
max1≤j≤n rj

min1≤j≤n rj
= 1, and r = e.

3 Counting scalings

When A is positive definite, or A has positive entries, the matrix D that scales A is unique
(The former fact was proved in [27] and the latter in [32]). These facts are consequences
of our next theorem.

Theorem 2 Let A ∈ Rn×n. If A has two or more distinct scalings then A is positively
diagonally congruent to a matrix that has both 1 and −1 as eigenvalues.

Proof Let X and Y be two unequal diagonal matrices, with positive diagonal entries, so
that XAx = e and Y Ay = e, then

XY Ax = y and XY Ay = x. (10)

Subtracting the two equations in (10) we have XY A(x − y) = y − x, so

(XY )
1
2 A(XY )

1
2 (XY )−

1
2 (x − y) = −(XY )−

1
2 (x − y), (11)

while adding the two equations in (10) leads to

(XY )
1
2 A(XY )

1
2 (XY )−

1
2 (x + y) = (XY )−

1
2 (x + y). (12)

But then (XY )
1
2 A(XY )

1
2 is positively diagonally congruent to A, and has eigenvalues 1

and −1, since x > 0, y > 0, so x + y > 0, and x 6= y.

Theorem 2 implies that there is a unique scaling for some broad subcategories of
matrices, when A is scalable.
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Corollary 3 If A ∈ Rn×n is positive definite, or positive semidefinite and scalable, or A
is primitive (this includes the case of A having all positive entries), or A has nonnegative
entries, is scalable, irreducible, and has the property that there does not exist a permutation

matrix P so that PAP T =
(

0 B
BT 0

)

, then A has a unique scaling.

Proof If A is positive definite or positive semidefinite then clearly A cannot be positively
diagonally congruent to a matrix with a negative eigenvalue. Then, from Theorem 2, the
scaling of A is unique. If A has positive entries, then ZAZ still has positive entries (where
Z is any diagonal matrix with positive diagonal entries), and can’t have eigenvalues 1 and
−1 from Perron’s Theorem [9], as 1 would be the Perron root. If A is primitive, then ZAZ
is primitive, and ZAZ can’t have eigenvalues 1 and −1, because if it did then (ZAZ)m

would have eigenvalues 1 and −1 for m odd, and have all positive entries, which is not
possible from Perron’s Theorem. If A has nonnegative entries, is irreducible, and has the

property that there does not exist a permutation matrix P so that PAP T =
(

0 B
BT 0

)

,

then ZAZ also has this property, and can’t have eigenvalues 1 and −1 from the Perron-
Frobenius Theorem, as 1 would be the Perron root, and PAP T would have the Frobenius
form for an irreducible matrix [22].

Example To illustrate that we do not always have a unique scaling, when there exists a

scaling, consider the matrix A =







1 a b
a 1 b
b b 1





. Then with D = diag(d1, d2, d3) we see that

for DAD =







d2
1 ad1d2 bd1d3

ad1d2 d2
2 bd2d3

bd1d3 bd2d3 d2
3





 to have the first two row sums equal, we must have

d2
1 + bd1d3 = d2

2 + bd2d3 which can be rearranged as (d1−d2)(d1 +d2 + bd3) = 0. If d1 = d2

then dividing DAD by d2
1 and taking D = diag(1, 1, x) we must have 1+a+bx = 2bx+x2

to have equal row sums, in which case x2+bx−(a+1) = 0, so x =
−b±

√
b2+4(a+1)

2
. Suppose

b > 0. If we are to have a scaling at all, we must have b2 + 4(a + 1) > 0. So there is only
one positive value for x, or none. Suppose b < 0. If we are to have positive row sums
we need x(2b + x) > 0, so x > −2b, which implies a + 1 > 0. So again we have just one
positive value for x, or none. If d1 6= d2 then d1 + d2 + bd3 = 0. This is only possible
when b < 0. So suppose b < 0. We already have the first two row sums equal. The first
(or second) row sum, after substituting d1 + d2 + bd3 = 0 becomes d1d2(a− 1) = 1. So we
must have a−1 > 0. The third row summing to 1 means that −b2d2

3 +d2
3 = 1. So we must

have 1 − b2 > 0. Then d3 = 1√
1−b2

. We can eliminate d2 and d3 from d1 + d2 + bd3 = 0

leaving us with the quadratic equation d1 + 1
d1(a−1)

+ b√
1−b2

= 0. So, d1 =
−b±

√

b2−4 1−b2

a−1

2
√

1−b2
,

d2 = 1
d1(a−1)

and d3 = 1√
1−b2

. Where, again, to have a scaling we must have b2−41−b2

a−1
≥ 0,

i.e. a ≥ 4
b2
− 3. So we obtain zero, one (when a = 4

b2
− 3), or two possible positive values
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for d1 (the latter when a > 4
b2
− 3 since 1 − b2 > 0). Thus our 3 × 3 matrix A may have

zero, one, or two scalings, depending on the magnitudes of a and b.

Example It is also possible for a matrix to have infinitely many scalings. Consider the

matrix A =
(

0 a
a 0

)

, where a > 0. Let D = diag(d1,
1

ad1
). Then DAD is stochastic for

any d1 > 0. Of course any n × n matrix with this 2 × 2 matrix A as a direct summand,
and the remaining block scalable, will also have infinitely many scalings.

4 Conditions for scalability

Theorem 4 provides four conditions on A that are almost, but not quite, equivalent to
A being scalable. Thus, in order to show one direction of the theorem, namely that
scalability implies the four conditions, we assume that A, when scalable, has only finitely
many scalings.

Theorem 4 Let A ∈ Rn×n be symmetric. Consider the following four conditions:
(i) There exists some closed n-cone S, a nonempty subset of the nonnegative orthant, on
which A is positive definite;
(ii) For the S in (i), define T = S ∩ {x|Ax ≥ 0, xT Ax = n}. Then there is a u > 0 in the
interior of T such that Au > 0 (in particular A is semipositive).
(iii) For any vector u, for which condition (ii) holds, we have for all x on the boundary
of T that u1 · · ·un(Au)1 · · · (Au)n > x1 · · ·xn(Ax)1 · · · (Ax)n.
(iv) For at least one vector x in the interior of T , at which a local maximum is achieved
by f(x1, . . . , xn) = x1(Ax)1 · · ·xn(Ax)n on T , a local minimum is also achieved by the
function h(x1, ..., xn) = 1

x1···xn
− (Ax)1 · · · (Ax)n on T .

If there is an S for which conditions (i), (ii), (iii) and (iv) hold, then A is scalable.
Conversely, if A is scalable and has only finitely many scalings, then there is an S for
which conditions (i), (ii), (iii) and (iv) hold.

Proof Before proving the theorem, we make a few comments about conditions (i)-(iv).

When showing that conditions (i)-(iv) imply scalability, we do not identify the set S
other than to say that it is a closed n-cone S in the nonnegative orthant. However, for
the converse, when A is scalable we will identify S in the course of the proof.

Conditions (ii) and (iv) mention the interior of T ⊂ Rn. For any subset T of Rn, a
subset V of T is said to be open in T if V = U ∩ T , for some subset U which is open in
Rn. By the interior of T we shall mean the union of all subsets of T which are open in
T . Condition (iii) mentions the boundary of T . We will show that T is bounded.

Regarding condition (ii), note that semipositivity is a necessary condition for scalabil-
ity. Condition (ii) states that the matrix A needs to be semipositive with only a certain
type of vector u. Also, since Au > 0, for u > 0, and uTAu = n, we see that A is positive
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definite on an open subset U of Rn, where u ∈ U . Moreover, if we write uTAu in the
form uT Au =

∑n
i=1 λiv

2
i , for λi ∈ R, 1 ≤ i ≤ n, and v = (v1, v2, . . . , vn)T ∈ Rn, then we

see that we can perturb u to other vectors u′ close to u and (still) have u′T Au′ = n, and
Au′ > 0. Since A is positive definite on S from condition (i), and u ∈ S, A is positive
definite on U ∩ S ∩ {x|Ax ≥ 0, xT Ax = n} = U ∩ T , i.e. A is positive definite on the
subset U ∩ T , a set which is open in T .

Although condition (iii) does not state that a vector u, which satisfies a condition
(ii), is a local maximum in T for the function f of condition (iv), it is a consequence of
condition (iii) that if f does achieve a local maximum on T (in fact it must since we’ll
show that T is compact), then it will do so in the interior of T .

Finally, we prove the theorem. Suppose (i),(ii),(iii) and (iv) hold. Then S∩{x| ||x|| =
1} is compact, and min

x∈S and ||x||=1
xT Ax = α > 0, since A is positive definite on S.

This implies yTAy ≥ αyTy, for all y ∈ S. Now consider the function f(x1, . . . , xn) =
x1 · · ·xn(Ax)1 · · · (Ax)n on the set T = S ∩ {x|Ax ≥ 0, xT Ax = n}. If y ∈ T then
yTAy = n and we must have n ≥ αyTy, so T is bounded, and evidently closed. Taking
a vector u ∈ T that satisfies condition (ii), and then using (iii), f(u1, . . . , un) is strictly
greater than f(x1, . . . , xn), where x is on the boundary of T , so the maximum of f is
achieved on the interior of T (Note that z in the interior of T implies that zi > 0 and
(Az)i > 0 for all i). Let us use Lagrange’s Multipliers to maximize f on T , that is,
maximize f subject to g(x1, ..., xn) = xT Ax−n = x1(Ax)1 + · · ·+xn(Ax)n −n = 0. Then
setting ∇f = λ∇g we have













p
x1

0 · · ·
0 p

x2
· · ·

...
...

. . .

0 0 p
xn













e + A















p

(Ax)1
0 · · ·

0 p
(Ax)2

· · ·
...

...
. . .

0 0 p
(Ax)n















e = 2λAx, (13)

with p = x1(Ax)1x2(Ax)2 · · ·xn(Ax)n, where x is a point where the maximum is achieved.
Now multiplying on the left of this equation by xT we deduce that λ = p, then dividing
across by p and multiplying across by X = diag(x1, . . . , xn) we are left with the equation

e + XA















1
(Ax)1

1
(Ax)2

...
1

(Ax)n















= 2XAx. (14)

From (iv) we can again use Lagrange Multipliers, and find the minimum of h on
T . We remark first that from the Arithmetic-Geometric Mean inequality since xT Ax =
x1(Ax)1 + · · ·xn(Ax)n = n for x ∈ T , we know that x1(Ax)1 · · ·xn(Ax)n ≤ 1, that is to
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say 0 ≤ h on the interior of T . Setting ∇h = λ∇g and multiplying across by X we are
left with

−1

(x1 · · ·xn)
e − (Ax)1(Ax)2 · · · (Ax)nXA















1
(Ax)1

1
(Ax)2

...
1

(Ax)n















= 2λXAx, (15)

and multiplying on the left by eT we have 2λ = −1
x1···xn

− (Ax)1 · · · (Ax)n. Substituting for
λ we have

1

x1 · · ·xn

e + (Ax)1 · · · (Ax)nXA















1
(Ax)1

1
(Ax)2

...
1

(Ax)n















=

[
1

x1 · · ·xn

+ (Ax)1 · · · (Ax)n]XAx. (16)

From (iv), since the maximum for f coincides with the minimum for h at some x in
the interior of T we can substitute from (14) into (16) to obtain

1

x1 · · ·xn

e + (Ax)1 · · · (Ax)n [2XAx − e] =

[ 1
x1···xn

+ (Ax)1 · · · (Ax)n]XAx, (17)

and after cancelling the (Ax)1 · · · (Ax)nXAx term from both sides we have

[
1

x1 · · ·xn

− (Ax)1 · · · (Ax)n]e = [
1

x1 · · ·xn

− (Ax)1 · · · (Ax)n]XAx. (18)

Finally, if 1
x1···xn

− (Ax)1 · · · (Ax)n = 0 then we have equality in the Arithmetic-
Geometric Mean inequality, so x1(Ax)1 = · · · = xn(Ax)n > 0, which means we have
scaled A. On the other hand, if 1

x1···xn
− (Ax)1 · · · (Ax)n 6= 0, then e = XAx, which also

means that we have scaled A, completing the proof of the first implication.

Conversely, suppose that A is scalable and A has only finitely many scalings. Then
XAx = e, for some x > 0. The idea behind proving (i) is simple enough, namely, since
xT Ax = n then there must be a cone of vectors around x, in the nonnegative orthant and
as narrow as is needed, on which A is positive definite. We present the details.

Let β = min(Ax)T v=0,||v||=1 vTAv. Note that for each v 6= 0 such that (Ax)T v =
xT (Av) = 0, each v and each Av must have at least one negative component and at least
one positive component, since x > 0 and Ax > 0. Let γi = min||v||=1(Av)i, for 1 ≤ i ≤ n,
and γ = min1≤j≤n γj. Then it follows from the preceding sentence that γ < 0.
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Define S by S = {λ(x + tv)|(Ax)T v = 0, ||v|| = 1, λ ≥ 0}, where 0 ≤ t ≤ tm and
tm is the maximum value that satisfies each of the following requirements: tm is small
enough that S only contains one scaling vector x; 0 < tm ≤ min1≤j≤n xj; 0 < tm ≤
1
γ

min1≤j≤n(δ − 1
xj

) (with δ any real number satisfying 0 < min1≤j≤n(δ − 1
xj

), that is to

say max1≤j≤n
1
xj

< δ); if β < 0 we also require 0 < tm ≤
√

ε−n
β

(with ε any real number

satisfying 0 < ε < n).

In the definition of S, note that ε, δ, and the vector x are fixed, v is any unit vector
such that (Ax)T v = 0, and the assumption on t, about S only containing the one scaling
vector x, is allowed since A has only finitely many scalings.

S is a subset of the nonnegative orthant. This is true because ||v|| = 1 which implies
1 ≥ vi ≥ −1, then xi + tvi ≥ 0 is clearly true for any vi ≥ 0. Whereas if 0 > vi ≥ −1,
from the way we chose tm such that 0 ≤ tm ≤ min1≤j≤n xj we again have xi + tvi ≥ 0. A is
positive definite on S, since when y = λ(x+ tv) ∈ S we have yTAy = [λ(x+ tv)]T A[λ(x+
tv)] = λ2[xT Ax + t2vT Av] ≥ λ2[n + t2β]. If β ≥ 0 then yTAy > 0, unless λ = 0. If β < 0
then yT Ay ≥ λ2[n + ( ε−n

β
)β] = λ2ε > 0, unless λ = 0.

S is a cone, since for a = λ1(x + t1v1) and b = λ2(x + t2v2) in S (with λ1 + λ2 6= 0) we
have a + b = (λ1 + λ2)[x + 1

λ1+λ2
t1λ1v1 + 1

λ1+λ2
λ2t2v2], and x ≥ −t1v1, x ≥ −t2v2 implies

λ1

λ1+λ2
x ≥ − 1

λ1+λ2
t1λ1v1 and λ2

λ1+λ2
x ≥ − 1

λ1+λ2
t2λ2v2, which imply x ≥ −( 1

λ1+λ2
t1λ1v1 +

1
λ1+λ2

λ2t2v2), so a + b ∈ S, and evidently any µa + νb ∈ S, for any µ, ν ≥ 0. Also, if

we write 1
λ1+λ2

t1λ1v1 + 1
λ1+λ2

λ2t2v2 = sv, where ||v|| = 1, then s2 = 1
(λ1+λ2)2

[t21λ
2
1||v1||2 +

2t1t2λ1λ2v
T
1 v2+t22λ

2
2||v2||2] = 1

(λ1+λ2)2
[t21λ

2
1+2t1t2λ1λ2v

T
1 v2+t22λ

2
2] ≤ 1

(λ1+λ2)2
(t1λ1+t2λ2)

2 ≤
t2m, where we used the fact that vT

1 v2 ≤ ||v1||||v2|| = 1. S is an n-cone since there are
n − 1 linearly independent choices for v, and we also have x ∈ S. Since S is closed we
now have condition (i).

Next, Ax > 0 so A is semipositive. x is in the interior of T = S∩{y|Ay ≥ 0, yTAy = n},
since Ax > 0, xT Ax = n, and for every v 6= 0, such that (Ax)T v = 0, we have for all
t ∈ [0, tm] that λ(x + tv) ∈ S and λ(x − tv) ∈ S, for any λ, and since also for each
y = λ(x + tv), we have yTAy = n for an appropriate choice of λ > 0. Finally, we
know that Ay > 0, since Ay = Aλ(x + tv) = λ( 1

x1
+ t(Av)1, ...,

1
xn

+ t(Av)n)T , and
1
xi

+ t(Av)i ≥ 1
xi

+ tγ ≥ δ > 0, for each i, 1 ≤ i ≤ n. Hence, x serves as the vector u in
condition (ii).

Now consider any y ∈ T . From the Arithmetic-Geometric Mean inequality we know
that y1(Ay)1 · · · yn(Ay)n ≤ 1. Also, we know that we have equality in the Arithmetic-
Geometric Mean inequality if and only if y1(Ay)1 = · · · = yn(Ay)n, in which case y scales
A. Since T only contains the one scaling vector x, we must have y1 · · · yn(Ay)1 · · · (Ay)n <
1 = x1 · · ·xn(Ax)1 · · · (Ax)n for all y ∈ T where y 6= x, giving conditions (iii) and (iv).

Let A be the matrix of the example at the end of Section 3. Condition (iii) fails
for A as f(x1, x2) = x1(Ax)1x2(Ax)2 can be seen to be constant on T . So A scalable
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(without the finiteness condition) will not imply the four conditions. We do not have an
example of a matrix with infinitely many scalings that satisfies conditions (i)-(iv), and
are currently unable to characterize when a symmetric matrix A ∈ Rn×n has only finitely
many scalings. It seems likely to us that, under the additional condition that all diagonal
entries are positive, there are only finitely many scalings.

We note that the strongest, previously known, sufficient condition for scalability now
follows easily from our theorem.

Corollary 5 (Marshall-Olkin) Let A ∈ Rn×n be strictly copositive. Then A is scalable.

Proof In the event that A is strictly copositive then S may be chosen to be the nonnegative
orthant, which provides condition (i) of the theorem. It is possible to show that A is
semipositive by arguing as follows. Define α = min||x||=1,x≥0 xT Ax > 0, then xT Ax ≥
αxT x, for all x ≥ 0. If the minimum is achieved at x0 ≥ 0, so xT

0 (A − αI)x0 = 0, since
A − αI is copositive it follows that (A − αI)x0 ≥ 0 (for instance by using Lemma 1
in [12]) ensuring that Ax0 ≥ 0, and then use induction on n to demonstrate that A is

semipositive. If Au = v > 0 for u > 0, then taking w =
√

n
uT v

u > 0, we have wTAw = n

and Aw =
√

n
uT v

v > 0, which is condition (ii). The statement that x is on the boundary

of S ∩ {x|Ax ≥ 0, xT Ax = n} means that xi = 0 or (Ax)i = 0 for some i, so that
w1 · · ·wn(Aw)1 · · · (Aw)n > 0, which is condition (iii). Condition (iv) follows from the
Arithmetic-Geometric Mean inequality, since xT Ax = n on T , as in the remark in the
proof of the theorem.

Of course, Marshall and Olkin’s result (their different proof may be found in [27])
implies that if A has all positive entries or if A is positive definite then A is scalable.
Alfred Horn constructed an n × n copositive matrix (see [11]), which is not the sum of a
nonnegative matrix and a positive semidefinite matrix. It is perhaps worth mentioning
that Corollary 5 does not address scalability when it is only known that a given matrix
A is copositive (and not strictly copositive). Alfred Horn’s example is

A =















1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1















, (19)

which is copositive, not strictly copositive, neither nonnegative nor positive semidefinite,
and is scalable (in fact is already scaled). An example of a copositive matrix that is not
scalable can be found in the paragraph just after Lemma 6 (below).
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5 Scalability and positive semidefiniteness

Marcus and Newman claimed in [25] (see also [24], [26] and [28]) that if a matrix A is
positive semidefinite, has nonnegative entries, and doesn’t have a zero row, then A is
scalable (their proof has not appeared in the literature). Our next theorem determines
when a positive semidefinite matrix is scalable. We will use the fact that for A positive
semidefinite, xT Ax = 0 implies Ax = 0. This is true since if A = BT B for B ∈ Rn×n,
then 0 = xT Ax = xT BT Bx = (Bx)T Bx, in which case Bx = 0 and BT Bx = Ax = 0. We
begin with a lemma which is one variation of the Theorem of the Alternative [20].

Lemma 6 Let A ∈ Rn×n be symmetric. Then it is not possible to have both statements
I and II below.
I A is semipositive
II There exists w ≥ 0 (w 6= 0) such that Aw ≤ 0

Proof Statement I means that Ax = y > 0 for some x > 0. If we also have statement II
then 0 ≥ wTAx = wT y > 0, which is not possible.

Evidently, if A is scalable we cannot have statement II of the lemma. We will find this
fact to be useful while considering the scalability of positive semidefinite matrices. For

instance, A =
(

1 −1
−1 1

)

is not scalable, using the lemma with w = e.

Theorem 7 Let A ∈ Rn×n be positive semidefinite. Then the following are equivalent.
(i) A is semipositive
(ii) A is strictly copositive
(iii) A does not have a nonnegative vector in its null space
(iv) A is scalable

Proof Suppose (i) is true. We know that xT Ax ≥ 0 for all x ∈ Rn, since A is positive
semidefinite, so certainly xT Ax ≥ 0 for all x ≥ 0. If xT Ax = 0 for some x ≥ 0 (x 6= 0),
then Ax = 0 (since A is positive semidefinite) but then from the lemma, with w = x, we
have contradicted (i), proving (ii). Suppose now that (ii) is true, then A is scalable from
Corollary 5, so (ii) implies (iv), and clearly (iv) implies (i). Also, (i) implies (iii) or else
the null vector would serve as a w in the lemma. We show now that (iii) implies (i). (ii)
is equivalent to (i), and we shall show that if (ii) does not hold then (iii) does not hold.
If A is not strictly copositive then since A is positive semidefinite there must exist some
x ≥ 0 such that xT Ax = 0 (x 6= 0). But then Ax = 0, which was what we wanted to
prove.

Marcus and Newman’s result, mentioned in the paragraph before Lemma 6, follows
immediately now, since if A is positive semidefinite and nonnegative and doesn’t have a
zero row then Ae > 0, so A is semipositive. Our next two corollaries follow from Corollary
5 and Theorem 7. Corollary 8 implies that if A is scalable then A2 is scalable.
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Corollary 8 Let A ∈ Rn×n be symmetric. If A is semipositive then A2 is scalable.

Proof Suppose A is semipositive. If A is nonsingular then A2 is positive definite, then
Corollary 5 implies that A2 is scalable. If A is singular then A2 is positive semidefinite.
If A2 is not scalable then from the theorem A2 has a nonnegative null vector, so A2x = 0
for some x ≥ 0. But then xT A2x = (Ax)T (Ax) = 0, so Ax = 0, but then x would serve
as w in the lemma.

It is not necessarily true that if A and B are symmetric and scalable then AB is

scalable. For example when A =
(

2 −1
−1 1

)

and B =
(

3 2
2 1

)

then AB =
(

4 3
−1 −1

)

,

then if AB
(

d1

d2

)

=
(

1/d1

1/d2

)

, this contradicts both di’s being positive. If we demand that

AB is symmetric, then with A =
(

1 2
2 3

)

and B =
(

2 −1
−1 1

)

we have AB =
(

0 1
1 1

)

.

But AB is not scalable, since, with D = diag(d1, d2), if DABD were stochastic we would
have d1d2 = 1 and d1d2 + d2

2 = 1, which is not possible. We do however have the
following result, which relies on AB being positive semidefinite (so AB must necessarily
be symmetric), so that this corollary does not say much more than Theorem 7. This
requires that A commutes with B, since AB is symmetric iff (AB)T = AB iff BT AT = AB
iff BA = AB.

Corollary 9 Let both A, B ∈ Rn×n be both symmetric and semipositive, with B having
nonnegative entries, and AB positive semidefinite. Then AB is scalable.

Proof If AB is nonsingular then AB is positive definite, so AB is scalable. Suppose
AB is singular. If AB is not scalable then AB has a nonnegative null vector w, from
the theorem, so ABw = 0. We can’t have Bw = 0 (w 6= 0) from the lemma, since B
is semipositive. But if A has the nonnegative null vector Bw, this contradicts A being
semipositive, since from the lemma A cannot be both semipositive and have A(Bw) = 0.

6 Total scalability and strict copositivity

Equivalent conditions for a matrix to be copositive or strictly copositive have appeared
already in the literature. See [10] for a survey. Cottle, Pang and Stone [6] proved Theorem
10.

Theorem 10 Let A ∈ Rn×n be symmetric. Then A is copositive if and only if every
r × r principal submatrix B of A has a vector x ∈ Rr such that x ≥ 0 and Bx ≥ 0, for
1 ≤ r ≤ n.

Kaplan [13] proved Theorem 11, which we will use to prove Theorem 12.
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Theorem 11 Let A ∈ Rn×n be symmetric. Then A is strictly copositive if and only if
every r × r principal submatrix B of A does not have an eigenvector v ∈ Rr such that
v > 0 with corresponding eigenvalue λ ≤ 0, for 1 ≤ r ≤ n.

We say that a symmetric matrix A ∈ Rn×n is totally scalable if every r × r principal
submatrix B of A is scalable, for 1 ≤ r ≤ n. A matrix being totally scalable extends the
list of conditions equivalent to strict copositivity, as we now show.

Theorem 12 Let A ∈ Rn×n be symmetric. Then the following are equivalent.
(i) A is totally scalable
(ii) Every principal submatrix B of A is semipositive
(iii) No principal submatrix B of A has an eigenvector v ∈ Rr such that v > 0 with
corresponding eigenvalue λ ≤ 0
(iv) A is strictly copositive

Proof Suppose that (i) holds. Every principal submatrix of A being scalable implies
in particular that every principal submatrix B is semipositive, which is statement (ii).
But then, no principal submatrix can have an eigenvector v ∈ Rr such that v > 0 with
corresponding eigenvalue λ ≤ 0, because of Lemma 6, which proves (iii). Theorem 11 then
implies (iv). A being strictly copositive implies that every principal principal submatrix
B is strictly copositive, so every B is scalable from Corollary 5, so (i) holds.
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