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Abstract Let A be an n-by-n matrix with real entries. We show that a necessary and

sufficient condition for A to have positive semidefinite or negative semidefinite symmetric

part H(A) = 1

2
(A + AT ) is that rank[H(A)X] ≤ rank[XTAX], for all X ∈ Mn(R).

Further, if A has positive semidefinite or negative semidefinite symmetric part, and A2 has

positive semidefinite symmetric part, then rank[AX] = rank[XT AX], for all X ∈ Mn(R).

This result implies the usual row and column inclusion property for positive semidefinite

matrices. Finally, we show that if A, A2, . . . , Ak (k ≥ 2) all have positive semidefinite

symmetric part then rank[AX] = rank[XT AX] = · · · = rank[XT Ak−1X], for all X ∈

Mn(R).
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Let A be an n-by-n matrix with real entries (i.e. A ∈ Mn(R)). The symmetric part

of A is defined by H(A) = 1

2
(A + AT ). The principal submatrix of A lying in rows and

columns α ⊆ {1, . . . , n} will be denoted by A[α], and the submatrix lying in rows α and

columns β is denoted A[α, β]. A matrix A ∈ Mn(R) is called positive semidefinite if it is

symmetric (AT = A) and xT Ax ≥ 0 for each x ∈ Rn. A ∈ Mn(R) is said to have positive

semidefinite symmetric part if H(A) is positive semidefinite (Other names have been used

for such matrices in [GV], [WC].) We say that a matrix A ∈ Mn(R) is semidefinite, in the

event that it is either positive semidefinite or negative semidefinite (i.e. xT Ax ≥ 0, for

all x ∈ Rn; or xT Ax ≤ 0, for all x ∈ Rn). We will consider some familiar properties for

positive semidefinite matrices and ask to what extent they hold for matrices with positive
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semidefinite symmetric part, i.e. without the symmetry assumption. This extends the

study of such matrices in [J2,J3,J4,J5,JN]. Not all of the results herein extend directly to

complex matrices with positive semidefinite Hermitian part. It is perhaps worth noting

that xT Ax = 1

2
xT (A + AT )x.

A matrix A ∈ Mn(R) satisfies row (column) inclusion if A[{i}, α] lies in the row

space of A[α] for each i = 1, . . . , n (if A[α, {j}] lies in the column space of A[α] for

each j = 1, . . . , n) and each α ⊆ {1, . . . , n}. The three properties of positive semidefinite

matrices we wish to consider are

(I) xT Ax = 0 implies Ax = 0, for x ∈ Rn.

(II) rank[AX] = rank[XT AX], for all X ∈ Mn(R) (which generalizes the condition that

rank[Y ] = rank[Y T Y ], for all Y ∈ Mn(R)).

(III) A satisfies both row and column inclusion.

None of these properties hold for general matrices A ∈ Mn(R). (I) is a special case

of (II). (III) (found in [BJL], [J1], for example) will be seen to follow easily from (II). We

first focus upon properties (I) and (II).

Theorem 1 For A ∈ Mn(R), the following statements are equivalent:

(a) A has semidefinite symmetric part;

(b) rank[H(A)X] ≤ rank[XT AX], for all X ∈ Mn(R);

(c) xT Ax = 0 implies H(A)x = 0, for x ∈ Rn.

Moreover, if (a), (b) or (c) is true then we have equality in (b) if and only if rank[A+

AT ] = rank[A].

Proof We first show that (a) implies (b). Since H(A) is positive semidefinite or negative

semidefinite we can write A + AT = ±BT B, for some B ∈ Mn(R). Let u ∈ ker[XT AX].

XT AXu = 0 implies that uT XT AXu = 0 and uT XT AT Xu = 0. We have then 0 =

uT XT (A + AT )Xu = ±uT XT BT BXu = ±(BXu)TBXu, so that BXu = 0. But then

BT BXu = 0, and so (A + AT )Xu = 0. Thus, u ∈ ker[(A + AT )X]. We have just shown

that ker[XT AX] ⊆ ker[(A+AT )X]. This implies n−rank[XTAX] ≤ n−rank[(A+AT )X],

which in turn implies rank[(A + AT )X] ≤ rank[XTAX].

For (b) implies (c), just take X ∈ Mn(R) with first column x and all zeros in the

remaining columns.

Suppose (c) is true and (a) is false. Then there exist x, y ∈ Rn such that xT H(A)x >

0 and yT H(A)y < 0. Now consider the quadratic (sx+y)T H(A)(sx+y) = s2xT H(A)x+

s(xT H(A)y + yT H(A)x) + yT H(A)y, with s ∈ R. This has discriminant (xT H(A)y +

yT H(A)x)2−4(xT H(A)x)(yT H(A)y) > 0, so the quadratic has two unequal roots s1 and

s2 in R. Then (s1x + y)T H(A)(s1x + y) = (s1x + y)T A(s1x + y) = 0, which implies
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H(A)(s1x + y) = 0, and similarly H(A)(s2x + y) = 0. Then s1H(A)x + H(A)y = 0 and

s2H(A)x+H(A)y = 0, which on subtracting becomes (s1−s2)H(A)x = 0. So H(A)x = 0

(since s1 6= s2) implying xT H(A)x = 0, contradiction.

Finally, we prove the “equality” part of the theorem. The “only if” part of this is

clear. For the “if” part, notice that Au = 0 implies uT Au = 0, so uT (A + AT )u = 0,

and hence (A + AT )u = 0. Thus ker[A] ⊆ ker[A + AT ], but then since rank[A + AT ] =

rank[A] we have that ker[A] = ker[A + AT ]. Also, we saw in the proof of Theorem 1

that ker[XT AX] ⊆ ker[(A + AT )X]. Suppose that (A + AT )Xu = 0. This implies

Xu ∈ ker[A + AT ] = ker[A], and then AXu = 0, i.e. ker[(A + AT )X] ⊆ ker[AX]. We

can now conclude with rank[XTAX] ≤ rank[AX] ≤ rank[(A + AT )X] ≤ rank[XT AX], as

required.

Remarks Notice that if A is skew-symmetric (i.e. AT = −A), then A has semidefinite

symmetric part, and we generally have strict inequality in the inequality of statement (b).

In fact, if A has all diagonal entries equal to zero and A satisfies inequality (b) then A is

skew-symmetric (to see this take X = Eii, for 1 ≤ i ≤ n).

Corollary 2 If A ∈ Mn(R) is symmetric, the following statements are equivalent:

(a) A is semidefinite;

(b) rank[AX] = rank[XT AX], for all X ∈ Mn(R);

(c) xT Ax = 0 implies Ax = 0, for x ∈ Rn.

Proof Corollary 2 follows from Theorem 1, where statement (b) is just a consequence of

rank[AX] ≥ rank[XT AX].

We can now consider property (III).

Corollary 3 Let A ∈ Mn(R) be symmetric. If A is semidefinite then A satisfies both row

and column inclusion.

Proof In the equality rank[AX] = rank[XT A] = rank[XT AX], take X as the diagonal

matrix with 1’s in the (i1, i1), (i2, i2), . . . , (ik, ik) positions, and all zeros elsewhere.

The row and column inclusion property (III) has been used in the completion theory

of positive semidefinite matrices [BJL], and is also easily proved by factoring A = RT R.

Row and column inclusion has been shown to hold more generally [J1]. A similar fact is

known for distance matrices [HRW] (see the proof of their Theorem 3.1), and for a class of

matrices in [CF] that are closely related to positive semidefinite matrices (usually called

almost positive semidefinite matrices).

We next turn to consideration of where a matrix A ∈ Mn(R) has powers which have

positive semidefinite symmetric part, and row and column inclusion. We note that row and
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column inclusion fails if we simply drop the symmetry assumption. For example, consider

A =

[

0 1
−1 1

]

. Then H(A) is positive semidefinite but both row and column inclusion fail

for A.

We now prove an analog of Theorem 1, to arrive closer to the symmetric case of

Corollary 2. This will then lead in Corollary 5 to row and column inclusion for matrices

which are not necessarily symmetric.

Theorem 4 Let A ∈ Mn(R). Given the following statements:

(a) A has semidefinite symmetric part and A2 has positive semidefinite symmetric part;

(b) rank[AX] = rank[XT AX], for all X ∈ Mn(R);

(c) xT Ax = 0 implies Ax = 0, for x ∈ Rn.

Then (a) implies (b), (b) implies (c), and (c) implies A has semidefinite symmetric part.

Proof Similar arguments are used to those in the proof of Theorem 1. We first show that

(a) implies (b). Write A + AT = ±BT B. Let u ∈ ker[XT AX]. Then XT AXu = 0, so

uT XT BT BXu = 0, which implies BXu = 0, and BT BXu = 0. Then (A + AT )Xu =

0, so AXu = −AT Xu, and AT AXu = −(AT )2Xu, in which case uT XT AT AXu =

−uT XT (AT )2Xu. But uT XT AT AXu = (AXu)T (AXu) ≥ 0, and so uT XT (AT )2Xu ≤

0. This implies uT XT A2Xu ≤ 0, from which we have that uT XT (A2 + (A2)T )Xu ≤ 0.

But since uT XT (A2 + (A2)T )Xu ≥ 0, we must have that uT XT (A2)T Xu = 0, and so

(AXu)T (AXu) = 0, i.e. AXu = 0, which implies u ∈ ker[AX]. We have just shown that

ker[XT AX] ⊆ ker[AX], which implies n − rank[XTAX] ≤ n − rank[AX], so rank[AX] ≤

rank[XT AX], and clearly rank[AX] ≥ rank[XT AX].

That (b) implies (c) is proved in the way same as in Theorem 1.

For the last part of the theorem we will assume (c). In order to obtain a contradiction

suppose there exist x, y ∈ Rn such that xT Ax > 0 and yT Ay < 0. Then we use

an argument which is similar to that used in Theorem 1 (albeit in Theorem 1 we were

working with H(A), whereas here we are working with A) in showing that (c) implies (a).

Thus (sx + y)T A(sx + y) = 0 for two unequal real values s = s1 and s = s2. This time

(s1x+y)T A(s1x+y) = 0 implies A(s1x+y) = 0, and similarly A(s2x+y) = 0. In which

case, (s1 − s2)Ax = 0, so Ax = 0 and xT Ax = 0, contradiction.

Remarks It is not enough to only assume that A has semidefinite symmetric part in (a), in

order to conclude that (b) holds. What we saw for A =

[

0 1
−1 1

]

is that row and column

inclusion fail. It is also not enough to assume just that A has a semidefinite symmetric

part in (a), in order to conclude that (c) holds. This may be seen by taking A =

[

1 2
0 1

]

.
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This matrix A has positive semidefinite symmetric part, but for x =

[

1
−1

]

, xT Ax = 0,

although Ax 6= 0. Finally, (c) does not imply (a), because when A =

[

2 3
0 2

]

it is routine

to check that (b) holds, but A2 does not have positive semidefinite symmetric part.

Corollary 5 Let A ∈ Mn(R). If A has semidefinite symmetric part, and A2 has positive

semidefinite symmetric part, then A satisfies both row and column inclusion.

Proof A having semidefinite symmetric part and A2 having positive semidefinite symmet-

ric part implies that rank[AX] = rank[XT AX]. But it also implies that AT has semidefinite

symmetric part and (AT )2 has positive semidefinite symmetric part. Then rank[AT X] =

rank[XT AT X] from Theorem 4, and this implies rank[XT A] = rank[XT AX]. The rest is

the same as in the proof of Corollary 3.

In order to prove our final theorem we need a lemma, which will indicate that A and

A2 having positive semidefinite symmetric part is rather special.

Lemma 6 Let A ∈ Mn(R). If A and and A2 each have positive semidefinite symmetric

part, then ker(A) = ker(Am), for any positive integer m.

Proof The validity of this lemma is unchanged under orthogonal similarity, so we may

assume that the symmetric part of A is H ⊕ O, in which H ∈ Mp(R) is positive definite.

The skew-symmetric part of A, partitioned conformally, is denoted

[

S11 S12

−ST
12 S22

]

, in which

S11 ∈ Mp(R), S22 ∈ Mq(R), and p + q = n. Then

A2 =

[

(H + S11)
2 − S12S

T
12 (H + S11)S12 + S12S22

−ST
12(H + S11) − S22S

T
12 S2

22 − ST
12S12

]

.

Since A2 has positive semidefinite symmetric part and S2
22 − ST

12S12 is (symmetric)

negative semidefinite we must have S2
22 − ST

12S12 = 0. This means that both S22 = 0 and

S12 = 0, which implies that A =

[

H + S11 0
0 0

]

. Since H is positive definite, H + S11 is

nonsingular and ker(Am) is precisely all vectors of the form

[

0
x

]

∈ Rn, for any x ∈ Rq,

and for m = 1, 2, . . ..

Remarks It was shown in [J5] that (among other things) for A ∈ Mn(C) any number of

positive integer powers A, A2, . . . , Ak could have positive definite Hermitian part, without

Ak+1 having positive definite Hermitian part; however if Ak has positive definite Hermitian

part for all positive integer powers k, then A is Hermitian. If the first k consecutive powers

have positive semidefinite symmetric part, we may generalize the (a) implies (b) part of

Theorem 4 as follows.
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Theorem 7 Let A ∈ Mn(R). If A, A2, . . . , Ak (k ≥ 2) each have positive semidefinite

symmetric part, then

rank[AX] = rank[XT AX] = · · · = rank[XT Ak−1X], for all X ∈ Mn(R).

Proof It follows from Theorem 4 that the claim is valid for k = 2. We verify by in-

duction that it is also valid for all k ≥ 3. Suppose that we know the claim for k − 1,

so that rank[AX] = rank[XT AX] = · · · = rank[XT Ak−2X], for all X ∈ Mn(R). Let

XT Ak−1Xu = 0. Then uT XT Ak−1Xu = 0, but since we can write Ak−1 + (AT )k−1 =

CT C, we must have uT XT CT CXu = 0, which implies CXu = 0, so then 0 = CT CXu =

(Ak−1 + (AT )k−1)Xu. Ak−1Xu = −(AT )k−1Xu implies AT Ak−1Xu = −(AT )kXu so

uT XT AT Ak−1Xu = −uT XT (AT )kXu. That is (AXu)TAk−2(AXu) = −uT XT AkXu,

and since both Ak and Ak−2 have positive semidefinite symmetric part we must have

(AXu)TAk−2(AXu) = 0, so by induction A(AXu) = 0. This means that Xu ∈ ker(A2),

which using Lemma 6 implies that Xu ∈ ker(A), so AXu = 0. We have just shown that

ker[XT Ak−1X] ⊆ ker[AX]. Finally, as in the proof of Theorem 4, rank[XT Ak−1X] =

rank[AX], and the induction step is complete.
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