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Abstract

Let A ∈ Mn(C ). We give a rank characterization of the semidefiniteness of Hermitian
A in two ways. We show that A is semidefinite if and only if rank[X∗AX] = rank[AX],
for all X ∈ Mn(C ), and we show that A is semidefinite if and only if rank[X∗AX] =
rank[AXX∗], for all X ∈ Mn(C ). We show that if A has semidefinite Hermitian part and
A2 has positive semidefinite Hermitian part then A satisfies row and column inclusion.
Let B ∈ Mn(C ), and k an integer with k ≥ 2. If B∗BA, B∗BA2, . . . , B∗BAk each have
positive semidefinite Hermitian part, we show that rank[BAX] = rank[X∗B∗BAX] =
· · · = rank[X∗B∗BAk−1X], for all X ∈ Mn(C ). These results generalize or strengthen
facts about real matrices known earlier.
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1 Introduction

In [6], a number of results about real matrices, not necessarily symmetric, with semidef-
inite real quadratic form were given. In some cases these results generalize to complex
matrices with semidefinite Hermitian part, and, in some, they do not. Here, we sort out
what happens in the complex case, and in some instances give new or stronger results. If
the proofs in the complex case extend naturally from the real case, by merely changing
“transpose” to “transpose complex conjugate”, we skip the proof and only refer to [6].
However, we have allowed some overlap of material, for the purpose of clarity.

Let A ∈ Mn(C ). The Hermitian part of A is defined in [2] by H(A) = 1

2
(A + A∗). A

matrix A ∈ Mn(C ) is called positive semidefinite if it is Hermitian (A∗ = A) and x∗Ax ≥ 0
for all x ∈ C n. A ∈ Mn(C ) is said to have positive semidefinite Hermitian part if H(A)
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is positive semidefinite. We say A ∈ Mn(C ) is semidefinite if either A or −A is positive
semidefinite.

The principal submatrix of A lying in rows and columns α ⊆ {1, . . . , n} will be denoted
by A[α], and the submatrix lying in rows α and columns β will be denoted A[α, β]. A
matrix A ∈ Mn(C ) satisfies row (column) inclusion if A[{i}, α] lies in the row space of A[α]
for each i = 1, . . . , n (if A[α, {j}] lies in the column space of A[α] for each j = 1, . . . , n)
and each α ⊆ {1, . . . , n}.

It is well known that if A ∈ Mn(C ) is semidefinite then A satisfies row and column
inclusion. This follows easily as a corollary of our Theorem 1’s rank characterization of
the semidefiniteness of A ∈ Mn(C ).

Theorem 1 Let A ∈ Mn(C ) be Hermitian. Then the following are equivalent:
(a) A is semidefinite;
(b) rank[X∗AX] = rank[AX], for all X ∈ Mn(C );
(c) x∗Ax = 0 implies Ax = 0, for x ∈ C n.

Proof Similar to reasoning in [6].

Corollary 2 Let A ∈ Mn(C ) be Hermitian. If A is semidefinite then A satisfies row and
column inclusion.

Proof Take X ∈ Mn(C ) diagonal with 1’s and 0’s on the diagonal in rank[X∗AX] =
rank[AX] = rank[X∗A].

Theorem 1 and Lemma 3 imply another rank characterization, in Theorem 4, of the
semidefiniteness of A ∈ Mn(C ).

Lemma 3 Let A ∈ Mn(C ). Then ker[X∗XA] = ker[XA], for all X ∈ Mn(C ).

Proof For u ∈ C n, X∗XAu = 0 implies 0 = u∗A∗X∗XAu = (XAu)∗(XAu), so XAu = 0.

Theorem 4 Let A ∈ Mn(C ) be Hermitian. Then A is semidefinite if and only if we have
rank[X∗AX] = rank[AXX∗], for all X ∈ Mn(C ).

Proof Starring the terms in square brackets in the statement of Lemma 3 we have
rank[AX∗X] = rank[AX∗], for all X ∈ Mn(C ), since A = A∗. With Y = X∗ we have
rank[Y ∗AY ] = rank[AY Y ∗], for all Y ∈ Mn(C ), if and only if A is semidefinite.

We return to the issue of finding sufficient conditions for not necessarily Hermitian
A ∈ Mn(C ) to satisfy row and column inclusion. It is routine to check that the (a)⇒(b)
and (b)⇒(c) parts of the proof of Theorem 4 in [6], extend naturally from the real to the
complex case to give Theorem 5 below, although statement (b) says more than in [6].
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Theorem 5 Let A ∈ Mn(C ). Consider the following statements:
(a) A has semidefinite Hermitian part and A2 has positive semidefinite Hermitian part;
(b) rank[X∗H(A)X] = rank[H(A)X] = rank[AX] = rank[X∗AX], for all X ∈ Mn(C );
(c) x∗Ax = 0 implies Ax = 0, for x ∈ C n.
Then (a) implies (b), and (b) implies (c).

Proof Assuming (a) to prove the equalities in (b) let u ∈ ker[H(A)X]. Then H(A)Xu =
0, so (A + A∗)Xu = 0, and AXu = −A∗Xu. Then A∗AXu = −(A∗)2Xu and there-
fore (AXu)∗(AXu) = u∗X∗A∗AXu = −u∗X∗(A∗)2Xu, which implies AXu = 0. Thus
ker[H(A)X] ⊆ ker[AX], so rank[H(A)X] ≥ rank[AX] ≥ rank[X∗AX].

u ∈ ker[X∗AX] implies X∗AXu = 0, so u∗X∗AXu = 0 and u∗X∗A∗Xu = 0. Adding
these two equations we have u∗X∗(A+A∗)Xu = 0, so H(A)Xu = 0. Thus, ker[X∗AX] ⊆
ker[H(A)X], and so rank[X∗AX] ≥ rank[H(A)X].

Combining the inequalities of the last two paragraphs we have that rank[H(A)X] =
rank[AX] = rank[X∗AX]. Since H(A) is positive semidefinite we have rank[X∗H(A)X] =
rank[H(A)X], from Theorem 1.

An example of a matrix that satisfies (c), but does not imply either of the two hy-

potheses of (a) in Theorem 5 is A =







1 + 2i 0 0
0 −1 + 2i 0
0 0 0





.

Our next theorem gives us a better understanding of the rank statements of Theorem
1 and Theorem 5. For A ∈ Mn(C ), F (A) denotes the classical field of values [3] defined
by F (A) = {x∗Ax|x ∈ C , x∗x = 1}.

Theorem 6 For A ∈ Mn(C ), the following statements are equivalent:
(i) x∗Ax = 0 implies Ax = 0, for x ∈ C n;

(ii) there is a unitary V ∈ Mn(C ) so that V ∗AV =
(

A1 0
0 0

)

with 0 6∈ F (A1), where

A1 ∈ Mk(C ) and k ≤ n;
(iii) rank[AX] = rank[X∗AX], for all X ∈ Mn(C ).

Proof Suppose (i). There is a unitary V ∈ Mn(C ) which upper triangularizes A so

that V ∗AV =
(

A1 A2

0 A3

)

, where A1 ∈ Mk(C ) is nonsingular and A3 ∈ Mn−k(C ) has

all eigenvalues 0, with k ≤ n. Taking x = V ei we have e∗
i
V ∗AV ei = 0 which implies

AV ei = 0 and V ∗AV ei = 0, for k + 1 ≤ i ≤ n, so V ∗AV =
(

A1 0
0 0

)

. If 0 ∈ F (A1) then

for some x ∈ C k, x 6= 0, we have 0 = x∗A1x = y∗Ay, where y = V ( x 0 )∗ ∈ C n. But
then Ay = 0 and so A1x = 0, which is not possible since A1 is nonsingular, so (ii) holds.

Suppose (ii). If X∗AXu = 0 then 0 = u∗X∗AXu = (V ∗Xu)∗
(

A1 0
0 0

)

V ∗Xu. If we

write V ∗Xu =
(

v1

v2

)

, we have v∗

1
A1v1 = 0, which implies v1 = 0. Writing V =

(

V1 V2

V3 V4

)

,
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gives AXu = V

(

A1 0
0 0

)

V ∗Xu =
(

V1A1 0
V3A1 0

) (

0
v2

)

= 0, so that u ∈ ker[AX]. Then

ker[AX] = ker[X∗AX] implies (iii).

Corollary 7 If A ∈ Mn(C ) satisfies (i), (ii) or (iii) in Theorem 6 then A satisfies row
and column inclusion.

Corollary 8 If A ∈ Mn(C ) has semidefinite Hermitian part and A2 has positive semidef-
inite Hermitian part then (i), (ii), (iii) of Theorem 6 hold.

Proof Follows from Theorem 5.

When A =
(

1 + 2i −1
−1 1 − 2i

)

, we have A with semidefinite Hermitian part, A2 has

negative semidefinite Hermitian part, but we do not have statement (i) when x = ( 1 1 )∗.
We can extend Theorem 5 even further as follows.

Theorem 9 Let A, B ∈ Mn(C ). Given the following statements:
(a) B∗BA has semidefinite Hermitian part and B∗BA2 has positive semidefinite Hermi-
tian part;
(b) rank[BAX] = rank[X∗B∗BAX], for all X ∈ Mn(C );
(c) x∗B∗BAx = 0 implies BAx = 0, for x ∈ C n.
Then (a) implies (b), and (b) implies (c).

Proof Similar to the proof of Theorem 5.

Theorem 12 uses Lemmas 10 & 11, which improve on the corresponding lemma in [6].

Lemma 10 Let A, B ∈ Mn(C ) with B∗BA having semidefinite Hermitian part. Then
ker[BA] = ker[BA2].

Proof BA2x = 0 implies x∗A∗B∗BAAx = 0, x∗A∗A∗B∗BAx = 0, and x∗A∗(B∗BA +
A∗B∗B)Ax = 0. But then since B∗BA + A∗B∗B = ±C∗C, for some C ∈ Mn(C ), so
x∗A∗(C∗C)Ax = 0, (CAx)∗(CAx) = 0, CAx = 0, C∗CAx = 0, so (B∗BA+A∗B∗B)Ax =
0. Rewriting this as B∗BA2x+A∗B∗BAx = 0, and using BA2x = 0 we have A∗B∗BAx =
0. So 0 = x∗A∗B∗BAx = (BAx)∗(BAx), and BAx = 0. This shows that ker[BA2] ⊆
ker[BA]. Evidently, rank[BA2] ≤ rank[BA], and so dim(ker[BA2]) ≥ dim(ker[BA]).

Lemma 11 Let A, B ∈ Mn(C ) and let B∗BA have semidefinite Hermitian part. Then
ker[BA] = ker[BAm], for any positive integer m.
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Proof By induction on m. We will show that ker[BAm] ⊆ ker[BA]. Now BAmx =
0 implies x∗(A∗)m−1B∗BAAm−1x = 0 and x∗(A∗)m−1A∗B∗BAm−1x = 0, which imply
x∗(A∗)m−1(B∗BA + A∗B∗B)Am−1x = 0, so B∗BAAm−1x + A∗B∗BAm−1x = 0. Using
BAmx = 0, we must have that A∗B∗BAm−1x = 0. But then 0 = x∗(A∗)m−1B∗BAm−1x =
(BAm−1x)∗(BAm−1x), so that BAm−1x = 0. From ker[BA] = ker[BAm−1], by induction,
we conclude that x ∈ ker[BA]. Finally, rank[BAm] ≤ rank[BA] implies dim(ker[BAm]) ≥
dim(ker[BA]).

Theorem 12 generalizes the (a)⇒(b) part of Theorem 9, as well as generalizing Theo-
rem 7 in [6].

Theorem 12 Let A, B ∈ Mn(C ), and let k be an integer with k ≥ 2. If B∗BA,
B∗BA2, . . . , B∗BAk each have positive semidefinite Hermitian part, then

rank[BAX] = rank[X∗B∗BAX] = · · · = rank[X∗B∗BAk−1X],
for all X ∈ Mn(C ).

Proof By induction on k. Assume the result is true for k − 1, in other words that
rank[BAX] = rank[X∗B∗BAX] = · · · = rank[X∗B∗BAk−2X], for all X ∈ Mn(C ). Let
u ∈ ker[X∗B∗BAk−1X], so X∗B∗BAk−1Xu = 0. Then we have u∗X∗B∗BAk−1Xu = 0,
but since B∗BAk−1 + (Ak−1)∗B∗B = C∗C, we also have u∗X∗C∗CXu = 0, which im-
plies CXu = 0, so 0 = C∗CXu = (B∗BAk−1 + (Ak−1)∗B∗B)Xu. Now B∗BAk−1Xu =
−(A∗)k−1B∗BXu gives us that A∗B∗BAk−1Xu = −(A∗)kB∗BXu, but then we have
that u∗X∗A∗B∗BAk−2AXu = −u∗X∗(A∗)kB∗BXu. That is (AXu)∗B∗BAk−2(AXu) =
−u∗X∗B∗BAkXu. Since B∗BAk−2 and B∗BAk have positive semidefinite Hermitian
part we must have (AXu)∗B∗BAk−2(AXu) = 0, so by induction BA(AXu) = 0. This
means that Xu ∈ ker(BA2), and from Lemma 10 this implies that Xu ∈ ker(BA), so
BAXu = 0. We have just shown that ker[X∗B∗BAk−1X] ⊆ ker[BAX]. Suppose now
that BAXu = 0, then BAk−1Xu = 0 from Lemma 11, so X∗B∗BAk−1Xu = 0, and
ker[BAX] ⊆ ker[X∗B∗BAk−1X].

The bibiliography in [6] has further references to results about matrices with positive
semidefinite Hermitian part.
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