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Abstract. We present two versions of the same inequality, relating the maximal diagonal

entry of a nonnegative matrix to its eigenvalues. We demonstrate a matrix factorization

of a companion matrix, which leads to a solution of the nonnegative inverse eigenvalue

problem (denoted the nniep) for 4 × 4 matrices of trace zero, and we give some sufficient

conditions for a solution to the nniep for 5 × 5 matrices of trace zero. We also give a

necessary condition on the eigenvalues of a 5 × 5 trace zero nonnegative matrix in lower

Hessenberg form. Finally, we give a brief discussion of the nniep in restricted cases.
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An Inequality for Nonnegative Matrices

An n×n matrix with real entries is said to be nonnegative if all of its entries are non-

negative. A nonnegative matrix is said to irreducible if under similarity with a permutation

matrix, it cannot be written in the form
(

A11 0
A21 A22

)

,

where A11 and A22 are square matrices of order less than n.

The Perron-Frobenius theorem states that if A is a nonnegative matrix, then it has a

real eigenvalue r (known as the Perron root) which is greater than or equal to the modulus

(or absolute value) of each of the other eigenvalues, and also A has an eigenvector v

associated with r such that each of its entries are nonnegative. Further, if A is irreducible

then r is positive and the entries of v are positive [L-T].

If A is irreducible, then knowing that the vector v = (v1, v2, . . . , vn)T just men-

tioned has positive entries, we can write v = Dw, where D = diag(v1, . . . , vn) and

w = (1, 1, . . . , 1)T , and then Av = rv can become D−1ADw = rw, i.e. under similar-

ity an r-eigenvector is w = (1, 1, . . . , 1)T .

It was Brauer [B] in 1952 who first showed that if the spectrum of an arbitrary n× n

matrix A is (the arbitrary set) σ = {r, λ2, . . . , λn}, if v = (v1, v2, . . . , vn)T is an eigenvector

associated with r, and we take the n×n matrix B, the ith column of which is αiv for each

i, 1 ≤ i ≤ n, then A + B has eigenvalues r +
∑n

i=1 αivi, λ2, . . . , λn.

To see this, let P be an n × n invertible matrix which upper triangularizes A, and

choose the first column of P as v, so that

P−1AP =








r ∗ ∗ . . .

0 λ2 ∗ . . .

0 0
. . .

...
... 0 λn








,

then

P−1(A + B)P = P−1AP +








α1 α2 . . . αn

0 0 . . . 0

0
... . . . 0

... . . . 0








P,

=








r +
∑n

i=1 αivi ∗ . . . ∗
0 λ2 ∗ ∗

0 0
. . . ∗

...
...








,

and we’re done.
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We come now to our first result.

Theorem 1: Let A = (aij) be an n × n nonnegative matrix with spectrum σ =

{r, λ, λ3, . . . , λn}, where r is the Perron root, λ is real and n ≥ 3, then

max
1≤i≤n

aii ≥
1

n − 2

n∑

j=3

λj .

Proof: Suppose (for now) that A is irreducible. We will assume without loss of generality

that A has eigenvector w = (1, 1, . . . , 1)T corresponding to the Perron root r. Under

permutation similarity we can also assume that ann is maximal among the diagonal entries

of A. Now consider the matrix C = A + B, where the jth column of B is βjw for

each j, 1 ≤ j ≤ n. We know from Brauer’s theorem that C has eigenvalues r′ = r +
∑n

j=1 βj , λ, λ3, . . . , λn. Take now βj = ann − ajj, 1 ≤ j ≤ n, so that C is nonnegative,

has all its diagonal entries equal, and has eigenvector w (still) corresponding to the Perron

root r′.

From Geršgorin’s theorem applied to C = (cij) we have that

|λ − cii| ≤
n∑

j=1

j 6=i

cij = r′ − cii, for some i, 1 ≤ i ≤ n.

But C has all its diagonal entries equal to ann, so rewriting this inequality as

−r′ + ann ≤ λ − ann ≤ r′ − ann,

then just using the left-hand inequality, and knowing r′, we obtain

2ann ≤ r′ + λ = r +
n∑

j=1

(ann − ajj) + λ,

= r + nann −

n∑

j=1

ajj + λ,

= r + nann − [r + λ +
n∑

j=3

λj ] + λ,

= nann −

n∑

j=3

λj ,

so that
∑n

j=3 λj ≤ (n − 2)ann, which proves the theorem when A is irreducible.

In case A is reducible, consider the matrix C = A + B, where this time each entry of

B is ε > 0 (ε small), then C is irreducible and has eigenvalues r + nε, λ, λ3, . . . , λn. Now

applying the result just proved we have that max1≤i≤n(aii + ε) ≥ 1
n−2

∑n

j=3 λj . But this

is true for any ε arbitrarily small, so it is true for ε = 0 and the theorem is proved.
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Another version of the inequality in Theorem 1 is the following.

Theorem 2: Let A = (aij) be an n × n nonnegative matrix with spectrum σ =

{r, a + ib, a − ib, λ4, . . . , λn}, where r is the Perron root and n ≥ 4, then

b2 ≤ [(n − 2) max
1≤i≤n

aii − a −

n∑

j=4

λj ][n max
1≤i≤n

aii − 3a −

n∑

j=4

λj ].

Proof: We reason as before, applying Brauer’s theorem and then Geršgorin’s theorem, to

arrive at the inequality

(a − ann)2 + b2 ≤ (r′ − ann)2,

≤ (r +

n∑

j=1

(ann − ajj) − ann)2,

≤ (r + (n − 1)ann −
n∑

j=1

λj)
2,

≤ (r + (n − 1)ann − (r + 2a +

n∑

j=4

λj))
2,

so that b2 ≤ ((n − 1)ann − 2a −

n∑

j=4

λj) − (a − ann)2,

≤ ((n − 2)ann − a −
n∑

j=4

λj)(nann − 3a −
n∑

j=4

λj).

The Nonnegative Inverse Eigenvalue Problem

Let σ = {λ1, ..., λn} ⊂ C. The nonnegative inverse eigenvalue problem is to find

necessary and sufficient conditions that σ is the set of eigenvalues of an n× n nonnegative

matrix A (say) (this well-known problem is currently unsolved except in restricted cases,

see [B-P], [M], [B-H]). By σ we shall mean the complex conjugate of each of the entries of

the set σ. The necessary conditions σ = σ and sk = λk
1 + · · · + λk

n = trace(Ak) ≥ 0 for

k = 1, 2, ... are easy to see.

Johnson [J], Loewy and London [L-L], have shown that for a nonnegative matrix A

with spectrum σ = {λ1, ..., λn} and sk = λk
1 + · · · + λk

n = trace(Ak) then nm−1skm ≥ sm
k ,

for k, m = 1, 2, ... . We shall refer to these necessary conditions henceforth as J-L-L.

We now solve the nniep for 4 × 4 matrices of trace zero.

Theorem 3: Let σ = {λ1, λ2, λ3, λ4} ⊂ C. If s1 = 0, s2 ≥ 0, s3 ≥ 0 and 4s4 ≥ s2
2,

then there exists a nonnegative 4 × 4 matrix with spectrum σ.
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Proof: We remark that the last inequality among the hypotheses of the theorem is the

J-L-L necessary condition with n = 4, k = 2 and m = 2.

Let p1 = λ1 + λ2 + λ3 + λ4, p2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4, p3 =

λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4, p4 = λ1λ2λ3λ4, i.e. p1, p2, p3, p4 are Newton’s

elementary symmetric polynomials.

Newton’s identities for symmetric functions [van der W] state that

s1 − p1 = 0,

s2 − p1s1 + 2p2 = 0,

s3 − p1s2 + p2s1 − 3p3 = 0,

s4 − p1s3 + p2s2 − p3s1 + 4p4 = 0.

We can write these equations in matrix form with a companion matrix as






0 1 0 0
0 0 1 0
0 0 0 1

−p4 p3 −p2 p1











−4 0 0 0
−s1 −3 0 0
−s2 −s1 −2 0
−s3 −s2 −s1 −1




 =






−s1 −3 0 0
−s2 −s1 −2 0
−s3 −s2 −s1 −1
−s4 −s3 −s2 −s1




 .

Letting p1 = s1 = 0 and multiplying both sides on the right by diag(− 1
4 ,− 1

3 ,− 1
2 ,−1) we

get





0 1 0 0
0 0 1 0
0 0 0 1

−p4 p3 −p2 0











1 0 0 0
0 1 0 0
s2

4
0 1 0

s3

4
s2

3 0 1




 =






0 1 0 0
s2

4 0 1 0
s3

4
s2

3
0 1

s4

4
s3

3
s2

2 0




 . (∗)

It is easily verified that






1 0 0 0
0 1 0 0
s2

4 0 1 0
s3

4
s2

3
0 1






−1

=






1 0 0 0
0 1 0 0

−s2

4 0 1 0
−s3

4
−s2

3
0 1




 ,

then multiplying on the left of (∗) with this matrix we get






1 0 0 0
0 1 0 0

−s2

4 0 1 0
−s3

4
−s2

3
0 1











0 1 0 0
0 0 1 0
0 0 0 1

−p4 p3 −p2 0











1 0 0 0
0 1 0 0
s2

4 0 1 0
s3

4
s2

3
0 1




=







0 1 0 0
s2

4
0 1 0

s3

4
s2

12 0 1
3s4−s2

2

12
s3

12
s2

6
0







.

Finally, performing a similarity on this matrix we have






1 0 0 0
0 1 0 0
0 0 1 0
0 s2

12 0 1












0 1 0 0
s2

4 0 1 0
s3

4
s2

12 0 1
3s4−s2

2

12
s3

12
s2

6 0












1 0 0 0
0 1 0 0
0 0 1 0
0 −s2

12 0 1




 =







0 1 0 0
s2

4 0 1 0
s3

4 0 0 1
4s4−s2

2

16
s3

12
s2

4 0







,
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which is nonnegative and similar to the companion matrix with eigenvalues λ1, λ2, λ3, λ4,

as required.

Remark: Notice that the analogue of equation (∗) for n×n matrices gives a factorization

of an n × n companion matrix, even when the trace is not necessarily zero.

The next theorem gives sufficient conditions for the existence of a nonnegative 5 × 5

matrix of trace zero with eigenvalues λ1, λ2, λ3, λ4, λ5.

Theorem 4: Let σ = {λ1, λ2, λ3, λ4, λ5}. If s1 = 0, s2 ≥ 0, s3 ≥ 0, 4s4 ≥ s2
2 and

2s5 ≥ s2s3, then there exists a nonnegative 5 × 5 matrix with spectrum σ.

Proof: We perform the same procedure with 5 × 5 matrices as in Theorem 3. Beginning

with the corresponding equation (∗) we have








0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
p5 −p4 p3 −p2 0















1 0 0 0 0
0 1 0 0 0
s2

5
0 1 0 0

s3

5
s2

4 0 1 0
s4

5
s3

4
s2

3
0 1








=








0 1 0 0 0
s2

5 0 1 0 0
s3

5
s2

4
0 1 0

s4

5
s3

4
s2

3 0 1
s5

5
s4

4
s3

3
s2

2
0








,

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

C A B

so CA = B. Then it can be checked that

A−1CA = A−1B =










0 1 0 0 0
s2

5 0 1 0 0
s3

5
s2

20 0 1 0
4s4−s2

2

20
s3

20
s2

12 0 1
12s5−7s2s3

60
3s4−s2

2

60
s3

12
s2

6
0










.

As in the proof of Theorem 3 we perform a conveniently chosen similarity








1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

4s4−s2

2

20
0 s2

12
0 1

















0 1 0 0 0
s2

5 0 1 0 0
s3

5
s2

20 0 1 0
4s4−s2

2

20
s3

20
s2

12 0 1
12s5−7s2s3

60
3s4−s2

2

60
s3

12
s2

6
0

















1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−4s4+s2

2

20
0 −s2

12
0 1








=









0 1 0 0 0
s2

5 0 1 0 0
s3

5
s2

20
0 1 0

0 s3

20 0 0 1
2s5−s2s3

10
4s4−s2

2

16
s3

12
s2

4
0









, (∗∗)

proving the theorem.
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Continuing with our investigation of solutions to the nniep for 5 × 5 matrices, note

that the matrix at (∗∗) improves on a trace zero companion matrix (in the sense that if

the entries of a companion matrix, for a given σ, are nonnegative then the matrix at (∗∗)

is nonnegative also, but not conversely) which has the form








0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

6s5−5s2s3

30
2s4−s2

2

8
s3

3
s2

2 0








.

To illustrate that we have improved on a companion matrix consider σ = {6, 1, 1,−4,−4}.

Concerning the (5,1) and (5,2) entries of the matrix at (∗∗), it is worth mentioning

that the inequality 2s5−s2s3 ≥ 0 is not true for all (even trace zero) nonnegative matrices,

as can be seen from the following nonnegative matrix








0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0








,

for which s5 = 0, whilst s2 = 2 and s3 = 3. Although, for a trace zero 5 × 5 nonnegative

matrix in lower Hessenberg form we claim that 4s4 − s2
2 ≥ 0, as we now show. In fact we

show something slightly stronger than this.

Let

A =








0 a12 a13 a14 a15

a21 0 a23 a24 a25

a31 a32 0 a34 a35

a41 a42 a43 0 a45

a51 a52 a53 a54 0








.

Then with the usual notation sk = trace(Ak), s1 = 0,

s2

2
= a12a21 +a13a31 +a14a41+a15a51+a23a32+a24a42 +a25a52+a34a43+a35a53+a45a54,

and

−
2s4 − s2

2

8
=

∣
∣
∣
∣
∣
∣
∣

0 a23 a24 a25

a32 0 a34 a35

a42 a43 0 a45

a52 a53 a54 0

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

0 a13 a14 a15

a31 0 a34 a35

a41 a43 0 a45

a51 a53 a54 0

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

0 a12 a14 a15

a21 0 a24 a25

a41 a42 0 a45

a51 a52 a54 0

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

0 a12 a13 a15

a21 0 a23 a25

a31 a32 0 a35

a51 a52 a53 0

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

0 a12 a13 a14

a21 0 a23 a24

a31 a32 0 a34

a41 a42 a43 0

∣
∣
∣
∣
∣
∣
∣

,
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= a32a23(a45a54 + a15a51 + a41a14) + a21a12(a45a54 + a35a53 + a34a43)

+ a31a13(a45a54 + a52a25 + a42a24) + a42a24a53a35 + a52a25a34a43

+ a14a41a53a35 + a51a15a42a24 + a51a15a34a43 + a41a14a52a25 − x, where x ≥ 0,

(grouping some of the terms and letting − x include all the negative terms)

= a32a23(
s2

2
− a12a21 − a13a31 − a34a43 − a35a53 − a23a32 − a24a42 − a25a52)+

a21a12(
s2

2
− a12a21 − a13a31 − a14a41 − a15a51 − a23a32 − a24a42 − a25a52)+

a31a13(
s2

2
− a12a21 − a13a31 − a14a41 − a15a51 − a23a32 − a34a43 − a35a53)+a42a24a53a35

+ a52a25a34a43 + a14a41a35a53 + a51a15a42a24 + a15a51a34a43 + a41a14a52a25 − x,

= −a2
32a

2
23 − a2

12a
2
21 − a2

31a
2
13 − 2a12a21a23a32 − 2a13a31a12a21 − 2a31a13a23a32

+
s2

2
(a32a23 + a12a21 + a13a31) − y + a42a24a53a35 + a52a25a34a43 + a14a41a53a35+

a51a15a42a24 + a51a15a34a43 + a41a14a52a25 − x,

where y ≥ 0. Collecting appropriate terms we can write the above equation as

(a32a23 + a21a12 + a31a13)
2 −

s2

2
(a32a23 + a21a12 + a31a13) + x + y −

s4

4
+

s2
2

8
=

a42a24a53a35+a52a25a34a43+a14a41a53a35+a51a15a42a24+a51a15a34a43+a41a14a52a25.

When a14 = a24 = a15 = a25 = 0, or a15 = a25 = a35 = 0, we have a quadratic with real

roots and therefore ( s2

2
)2 +4( s4

4
−

s2

2

8
) ≥ 4(x+y), so s4−

s2

2

4
≥ 0, i.e. 4s4−s2

2 ≥ 0, proving

the claim. A is in lower Hessenberg form if a13 = a14 = a15 = a24 = a25 = a35 = 0.

More Restricted Cases of the NNIEP

Notice from the 5×5 companion matrix given earlier that when A has trace zero then

det(A) = 6s5−5s3s2

30 , so if det(A) ≥ 0, then 2s5 − s2s3 ≥ 0, thus solving the nniep in a

restricted case, namely trace zero, determinant nonnegative and the matrix A restricted

to being in lower Hessenberg form (the latter implying that 4s4 − s2
2 ≥ 0, while s2 ≥ 0 and

s3 ≥ 0 are also necessary conditions).

We consider now the nniep restricted to nonnegative matrices having their diagonal

entries equal. It is easy to see that this problem reduces to the trace zero case, since if A

has diagonal entries equal, these diagonal entries must be each s1

n
and so A − s1

n
I (where

I is the identity matrix) has trace zero, and having solved the trace zero case we can add

back on the scalar matrix s1

n
I to obtain a matrix with the eigenvalues of A.

Looking at this in more detail, we solve the nniep for 4 × 4 matrices where we only

consider solving the problem when the diagonal entries are equal. The nniep was solved by
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Loewy and London in [L-L] for 3×3 matrices. It is not difficult to show that restricting the

diagonal entries to be equal in the 2×2 and 3×3 nniep does not prevent us from solving the

general nniep (not counting reducible cases, we will concentrate on the irreducible case). If

a 4×4 matrix A has eigenvalues σ = {r, λ, λ3, λ4}, then A− s1

4 I has trace zero, and a matrix

with the eigenvalues of A − s1

4
I is as given in Theorem 3, where s′1 = trace(A − s1

4
I) = 0,

s′2 = trace([A −
s1

4
I]2) = trace(A2 − 2

s1

4
A +

s2
1

42
I) = s2 −

s2
1

4
=

4s2 − s2
1

4
,

which is greater than or equal to zero even in the general nniep. Also, s′3 = trace([A −
s1

4
I]3) =

8s3−6s1s2+s3

1

8
, must be greater than or equal to zero for a matrix with equal

diagonal entries, and likewise we must have 4s′4−s′22 ≥ 0. Thus we have two new necessary

conditions when the diagonal entries are equal. It is perhaps worth noting that

8s3 − 6s1s2 + s3
1 = 3(r + λ − λ3 − λ4)(r − λ + λ3 − λ4)(r − λ − λ3 + λ4),

for which, in the case of four real eigenvalues, we must have each factor greater than

or equal to zero, and this fact could have been deduced from Theorem 1 (with the λ of

Theorem 1 taken as λ, λ3 and λ4 successively) where here max1≤i≤4 aii = (r+λ+λ3+λ4)
4

.

Considering matrices with diagonal entries equal does not prevent us from solving the 4×4

problem if you only consider the nniep with real eigenvalues (again, excluding reducible

cases), see the solution in [L-L] of this case to see this (they did not need Suleimanova’s

result quoted in their proof). Diagonal entries equal does however prevent us from solving

the 4 × 4 general nniep in the remaining case of σ = {r, λ, a + ib, a − ib} (with b 6= 0), for

which Theorem 1 (or 8s3 − 6s1s2 + s3
1 ≥ 0) implies r + λ − 2a ≥ 0. To see that we don’t

always have r + λ − 2a ≥ 0, consider the matrix with spectrum σ = {6,−1, 3 + i, 3 − i}








0 6 0 0
1 11

3
2
3 + 1√

3
2
3 − 1√

3

1 2
3
− 1√

3
11
3

2
3

+ 1√
3

1 2
3 + 1√

3
2
3 − 1√

3
11
3








which is nonnegative but r + λ − 2a < 0.

Acknowledgements

Most of these results are taken from my Ph.D. thesis while at University College

Dublin, Ireland and I will take this opportunity to thank my advisor Thomas J. Laffey for

his great patience and encouragement during those years.

References

9



[B] A. Brauer, Limits for the characteristic roots of a matrix. IV: Applications to stochas-

tic matrices, Duke Math. J. 19:75–91 (1952).

[B-H] M. Boyle and D. Handelman, The spectra of nonnegative matrices via symbolic dy-

namics, Annals of Mathematics 133:249–316 (1991).

[B-P] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences

Academic Press, New York, 1979.

[J] C. R. Johnson, Row Stochastic Matrices Similar to Doubly Stochastic Matrices, Lin.

and Multilin. Alg. 10:113–130 (1981).

[L-L] R. Loewy and D. London, A Note on an Inverse Problem for Nonnegative Matrices,

Lin. and Multilin. Alg. 6:83–90 (1978).

[L-T] P. Lancaster and M. Tismenetsky, The Theory of Matrices, with applications 2nd Ed.

Academic Press, San Diego, 1985.

[M] H. Minc, Nonnegative Matrices John Wiley and Sons, New York, 1988.

[van der W] B. L. van der Waerden, Modern Algebra Vol. I. Frederick Ungar. New York (1988).

10


