Hadamard Inverses, Square Roots and Products of Almost Semidefinite Matrices

Robert Reams
Department of Mathematics, University of Kentucky, Lexington, KY 40506
reams@ms.uky.edu

Keywords. Hadamard product, Hadamard square root, Hadamard inverse, distance matrix, positive semidefinite, almost positive semidefinite
AMS classification. 15A09, 15A45, 15A48, 15A57
Abstract Let $A=\left(a_{i j}\right)$ be an $n \times n$ symmetric matrix with all positive entries and just one positive eigenvalue. Bapat proved then that the Hadamard inverse of A, given by $A^{\circ(-1)}=\left(\frac{1}{a_{i j}}\right)$ is positive semidefinite. We show that if moreover A is invertible then $A^{\circ(-1)}$ is positive definite. We use this result to obtain a simple proof that with the same hypotheses on A, except that all the diagonal entries of A are zero, the Hadamard square root of A, given by $A^{\circ \frac{1}{2}}=\left(a_{i j}^{\frac{1}{2}}\right)$, has just one positive eigenvalue and is invertible. Finally, we show that if A is any positive semidefinite matrix and B is almost positive definite and invertible then $A \circ B \succeq \frac{1}{\mathbf{e}^{T} B^{-1} \mathbf{e}} A$.

1. Introduction Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ be $n \times n$ matrices with real entries, i.e. $A, B \in \mathbf{R}^{n \times n}$. The Hadamard product of A and B is defined by $A \circ B=\left(a_{i j} b_{i j}\right)$ [11]. The Hadamard inverse of A (with $a_{i j}>0,1 \leq i, j \leq n$) is defined by $A^{\circ(-1)}=\left(\frac{1}{a_{i j}}\right)$, and the Hadamard square root by $A^{\circ \frac{1}{2}}=\left(a_{i j}^{\frac{1}{2}}\right)$. In Section 2, we extend a result due to Bapat [2], [3], who showed that if A is symmetric, has all positive entries and just one positive eigenvalue, then its Hadamard inverse $A^{\circ(-1)}$ is positive semidefinite. We provide necessary and sufficient conditions on the invertibility of $A^{\circ(-1)}$. A corollary of this theorem will then be used to prove that if A is a symmetric matrix which has all off-diagonal entries positive, all diagonal entries zero, and A has just one positive eigenvalue, then the Hadamard square root of A has just one positive eigenvalue, and is invertible. This was proved for distance matrices (distance matrices are a special case of matrices which satisfy the hypotheses) most recently by Auer [1], and it had previously been proved by Schoenberg [18], Micchelli [17], and Marcus and Smith [16]. See also Blumenthal [4,p.135], Kelly [14], and Critchley and Fichet [5,p.26]. We recall here the Perron-Frobenius Theorem [15], which states that if a matrix $A \in \mathbf{R}^{n \times n}$ has all positive entries then it has a positive eigenvalue $r>|\lambda|$, for all other eigenvalues λ of A. Furthermore, the eigenvector that corresponds to r has positive components. This theorem remains true under more general conditions, including
in the case when all off-diagonal entries are positive and the diagonal entries are zero.
Let A and B be symmetric. The Loewner partial order $A \succeq B$ denotes that $A-B$ is positive semidefinite, and $A \succ B$ that $A-B$ is positive definite. Let $\mathbf{e}=(1,1, \ldots, 1)^{T}$, i.e. \mathbf{e} is the $n \times 1$ vector of all ones. A symmetric matrix A is almost positive semidefinite (or conditionally positive semidefinite) if $\mathbf{x}^{T} A \mathbf{x} \geq 0$, for all $\mathbf{x} \in \mathbf{R}^{n}$ such that $\mathbf{x}^{T} \mathbf{e}=0$, and almost positive definite (or conditionally positive definite) if $\mathbf{x}^{T} A \mathbf{x}>0$, for all $\mathbf{x} \neq \mathbf{0}$ such that $\mathbf{x}^{T} \mathbf{e}=0$. In Section 3, we prove that if A is positive semidefinite and B is almost positive definite and invertible then $A \circ B \succeq \frac{1}{\mathbf{e}^{T} B^{-1} \mathbf{e}} A$. This extends the validity of Fiedler and Markham's inequality [9], since they required that B is positive definite.

2. Hadamard Inverses and Square Roots

The following five lemmas are essentially well known [3], [7], [13], [17], however for completeness we provide short proofs. Let $\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right)$ denote the $n \times n$ diagonal matrix with diagonal entries $a_{11}, \ldots, a_{n n}$, and $\lambda_{\max }(A)$ and $\lambda_{\min }(A)$ denote the maximum and minimum eigenvalues of $A \in \mathbf{R}^{n \times n}$, respectively.

Lemma 2.1: Let $A, B \in \mathbf{R}^{n \times n}$ be symmetric. If $A \succeq 0$ then

$$
\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right) \lambda_{\max }(B) I \succeq A \circ B \succeq \operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right) \lambda_{\min }(B) I
$$

Proof: Let $C \in \mathbf{R}^{n \times n}$ and $C \succeq 0$. We know then that $A \circ C \succeq 0$, since $A \circ C$ is a principal submatrix of $A \otimes C$, the Kronecker product of A and C, which is positive semidefinite. Since $B-\lambda_{\min }(B) I \succeq 0$ and $B-\lambda_{\max }(B) I \preceq 0$, we can re-write this as

$$
\lambda_{\max }(B) I \succeq B \succeq \lambda_{\min }(B) I, \text { and then Hadamard multiply all the way across by } A .
$$

Lemma 2.2: Let $A, B \in \mathbf{R}^{n \times n}$ be symmetric. If $A \succeq 0, B \succ 0$ and all the diagonal entries of A are nonzero then $A \circ B$ is positive definite.

Proof: Since $\lambda_{\min }(B)>0$, Lemma 2.2 follows from Lemma 2.1.
Lemma 2.3: Let $A \in \mathbf{R}^{n \times n}$ be symmetric and positive semidefinite. Then the Hadamard exponential $e^{\circ A}=\left(e^{a_{i j}}\right)$ is positive semidefinite. Moreover, $e^{\circ A}$ is positive definite if and only if A has distinct rows.
Proof: Evidently, $e^{\circ A}=\mathbf{e e}^{T}+A+\frac{1}{2!} A^{\circ 2}+\frac{1}{3!} A^{\circ 3}+\cdots$ is positive semidefinite, and $e^{\circ A}$ positive definite implies that the rows of A must be distinct. Suppose now that for some $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T} \in \mathbf{R}^{n}, \mathbf{y} \neq 0, \mathbf{y}^{T} e^{\circ A} \mathbf{y}=0$, then $\mathbf{y}^{T} A^{\circ k} \mathbf{y}=0$, and thus $A^{\circ k} \mathbf{y}=0$, for $k=0,1,2, \ldots$ Write $A=\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)=\left(\left\|\mathbf{x}_{i}\right\|\left\|\mathbf{x}_{j}\right\| \cos \theta_{i j}\right)$, for some $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbf{R}^{n}$. Let $\left\|\mathbf{x}_{i}\right\|$ be maximum among those $\left\|\mathbf{x}_{1}\right\|, \ldots,\left\|\mathbf{x}_{n}\right\|$ such that $y_{i} \neq 0$. We must have $\left\|\mathbf{x}_{i}\right\| \neq 0$, or else for every nonzero y_{j} we have $\left\|\mathbf{x}_{j}\right\|=0$. In the latter case, if there are two or more nonzero y_{j} 's for which $\left\|\mathbf{x}_{j}\right\|=0$ then A has two rows the same. While if there is just one $y_{j} \neq 0$ this would imply $e^{\circ A}$ has a zero $j^{\text {th }}$ column, which is not possible.

Then, with $\left\|\mathbf{x}_{i}\right\| \neq 0$, after dividing all the way across
$\left\|\mathbf{x}_{i}\right\|^{k}\left(\left\|\mathbf{x}_{1}\right\|^{k} \cos ^{k} \theta_{i 1} y_{1}+\left\|\mathbf{x}_{2}\right\|^{k} \cos ^{k} \theta_{i 2} y_{2}+\cdots+\left\|\mathbf{x}_{i}\right\|^{k} y_{i}+\cdots+\left\|\mathbf{x}_{n}\right\|^{k} \cos ^{k} \theta_{i n} y_{n}\right)=0$, by $\left\|\mathbf{x}_{i}\right\|^{2 k}$ and letting $k \rightarrow \infty$, we must have $\left\|\mathbf{x}_{i}\right\|=\left\|\mathbf{x}_{j}\right\| \cos \theta_{i j}$, for some $i \neq j$. Since $\left\|\mathbf{x}_{i}\right\| \geq\left\|\mathbf{x}_{j}\right\|$ we also have $\cos \theta_{i j}=1$ and thus $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=\left\|\mathbf{x}_{i}\right\|^{2}+\left\|\mathbf{x}_{i}\right\|^{2}-2 \mathbf{x}_{i} \cdot \mathbf{x}_{j}=0$. So $\mathbf{x}_{i}=\mathbf{x}_{j}$, and A has two rows the same.

Lemma 2.4: Let $A \in \mathbf{R}^{n \times n}$ be symmetric. A is almost positive (semi)definite
if and only if $B=\left(a_{i j}-a_{i n}-a_{n j}+a_{n n}\right) \in \mathbf{R}^{(n-1) \times(n-1)}$ is positive (semi)definite.
Proof: If $\mathbf{x}^{T} \mathbf{e}=0$ then $x_{n}=-\sum_{i=1}^{n-1} x_{i}$, and substituting we have

$$
\begin{aligned}
\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} & =\sum_{i, j=1}^{n-1} a_{i j} x_{i} x_{j}+x_{n} \sum_{i=1}^{n-1} a_{i n} x_{i}+x_{n} \sum_{j=1}^{n-1} a_{n j} x_{j}+a_{n n} x_{n}^{2} \\
& =\sum_{i, j=1}^{n-1} a_{i j} x_{i} x_{j}-\sum_{j=1}^{n-1} x_{j} \sum_{i=1}^{n-1} a_{i n} x_{i}-\sum_{i=1}^{n-1} x_{i} \sum_{j=1}^{n-1} a_{n j} x_{j}+a_{n n} \sum_{i, j=1}^{n-1} x_{i} x_{j} \\
& =\sum_{i, j=1}^{n-1}\left(a_{i j}-a_{i n}-a_{n j}+a_{n n}\right) x_{i} x_{j} .
\end{aligned}
$$

Remark: If $i=n$ or $j=n$ then $a_{i j}-a_{i n}-a_{n j}+a_{n n}=0$.
Lemma 2.5: Let $A=\left(a_{i j}\right) \in \mathbf{R}^{n \times n}$ be almost positive semidefinite then $e^{\circ A}$ is positive semidefinite. Moreover, $e^{\circ A}$ is positive definite if and only if $a_{i i}+a_{j j}>2 a_{i j}$, for all $i \neq j$. Proof: Write $\alpha_{i}=a_{i n}-\left(a_{n n} / 2\right)$, for $1 \leq i \leq n$. From Lemma 2.4, since $A=\left(a_{i j}\right)$ is almost positive semidefinite we can write, for $1 \leq i, j \leq n$,

$$
a_{i j}=b_{i j}+a_{i n}+a_{n j}-a_{n n}=b_{i j}+\alpha_{i}+\alpha_{j},
$$

where $B=\left(b_{i j}\right)=\left(a_{i j}-a_{i n}-a_{n j}+a_{n n}\right) \in \mathbf{R}^{n \times n}$ is positive semidefinite. Then $e^{\circ B}=\left(e^{b_{i j}}\right)$ is positive semidefinite also. It follows that $e^{\circ A}=\left(e^{a_{i j}}\right)=\left(e^{b_{i j}+\alpha_{i}+\alpha_{j}}\right)=\left(e^{\alpha_{i}} e^{b_{i j}} e^{\alpha_{j}}\right)=$ $D e^{\circ B} D$ is positive semidefinite, where $D=\operatorname{diag}\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}\right)$.

Finally, $e^{\circ A}$ is positive definite iff $e^{\circ B}$ is positive definite iff the rows of $B=\left(\mathbf{x}_{i} \cdot \mathbf{x}_{\mathbf{j}}\right)$ are distinct iff $0<\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=b_{i i}+b_{j j}-2 b_{i j}=a_{i i}+a_{j j}-2 a_{i j}$, for all $i \neq j$.

Corollary 2.6: Let $A \in \mathbf{R}^{n \times n}$ be almost positive definite then $e^{\circ A}$ is positive definite. Proof: $\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} A\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)=a_{i i}+a_{j j}-2 a_{i j}>0$, for all $i \neq j$.

Remarks: For (symmetric) positive semidefinite matrices the condition $a_{i i}+a_{j j}>2 a_{i j}$ for all $i \neq j$ is equivalent to saying A has distinct rows. This is not true for almost positive semidefinite matrices however, since for example consider $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 3 \\ 2 & 3 & 5\end{array}\right]$. This matrix satisfies $\mathbf{x}^{T} A \mathbf{x} \geq 0$, for any $\mathbf{x}=\left(x_{1}, x_{2},-x_{1}-x_{2}\right)^{T}$, A has distinct rows, but $a_{i i}+a_{j j}=2 a_{i j}$, when $i=1$ and $j=2$. From Lemma 2.5 we can also see that for A almost
positive semidefinite, $e^{\circ A}$ is positive definite if and only if all principal 2×2 submatrices of $e^{\circ A}$ are positive definite.

Theorem 2.7: Let $A \in \mathbf{R}^{n \times n}$ be symmetric, have positive entries and just one positive eigenvalue, then the Hadamard inverse $A^{\circ(-1)}=\left(\frac{1}{a_{i j}}\right)$ is positive semidefinite.

Moreover, $A^{\circ(-1)}$ is positive definite if and only if $\frac{a_{i i}}{v_{i}^{2}}+\frac{a_{j j}}{v_{j}^{2}}<2 \frac{a_{i j}}{v_{i} v_{j}}$, for all $i \neq j$, where $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)^{T} \in \mathbf{R}^{n}$ is the Perron eigenvector for A.
Proof: Let the eigenvalues of A be $\lambda_{1} \leq \cdots \leq \lambda_{n-1} \leq r$ with $A \mathbf{v}=r \mathbf{v}$ and $A \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}$, for $1 \leq i \leq n-1$. The Perron eigenvalue is r, and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{T}$ the Perron eigenvector has positive entries, from the Perron-Frobenius Theorem. If we now write A in the form

$$
A=r \mathbf{v} \mathbf{v}^{T}+\lambda_{n-1} \mathbf{u}_{n-1} \mathbf{u}_{n-1}^{T}+\cdots+\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}
$$

and let $V=\operatorname{diag}\left(\frac{1}{v_{1}}, \frac{1}{v_{2}}, \ldots, \frac{1}{v_{n}}\right)$, we can also write

$$
V A V=r \mathbf{e e}^{T}+\lambda_{n-1}\left(V \mathbf{u}_{n-1}\right)\left(V \mathbf{u}_{n-1}\right)^{T}+\cdots+\lambda_{1}\left(V \mathbf{u}_{1}\right)\left(V \mathbf{u}_{1}\right)^{T}
$$

If $\mathbf{x}^{T} \mathbf{e}=0$ then $\mathbf{x}^{T} V A V \mathbf{x} \leq 0$, i.e. $V A V=B=\left(b_{i j}\right)$ is almost negative semidefinite.
Next, recall that for $t>0$

$$
\frac{1}{t}=\int_{0}^{\infty} e^{-t s} d s, \quad \text { so } \quad \mathbf{x}^{T}\left(\frac{1}{b_{i j}}\right) \mathbf{x}=\int_{0}^{\infty} \mathbf{x}^{T}\left(e^{-b_{i j} s}\right) \mathbf{x} d s
$$

and since $\left(-b_{i j} s\right)$, for $s>0$ is almost positive semidefinite, from Lemma $2.5\left(e^{-b_{i j} s}\right)$ is positive semidefinite, so $\left(\frac{1}{b_{i j}}\right)=(V A V)^{\circ(-1)}=V^{-1} A^{\circ(-1)} V^{-1}$ is positive semidefinite. We conclude that $A^{\circ(-1)}$ is positive semidefinite.

Finally, $A^{\circ(-1)}$ is positive definite iff $V^{-1} A^{\circ(-1)} V^{-1}=\left(\frac{1}{b_{i j}}\right)$ is positive definite iff $\left(e^{-b_{i j} s}\right)$ is positive definite iff $b_{i i}+b_{j j}<2 b_{i j}$, for all $i \neq j$ iff $\frac{a_{i i}}{v_{i}^{2}}+\frac{a_{j j}}{v_{j}^{2}}<2 \frac{a_{i j}}{v_{i} v_{j}}$, for all $i \neq j$.

Corollary 2.8: Let $A \in \mathbf{R}^{n \times n}$ be symmetric, have positive entries and just one positive eigenvalue. If A is invertible then $A^{\circ(-1)}$ is positive definite.
Proof: A invertible implies $B=V A V$ is almost negative definite, so $\left(e^{-b_{i j} s}\right)$ is positive definite (Corollary 2.6), which implies $A^{\circ(-1)}$ is positive definite.

We now use Corollary 2.8 to give a simple proof of a well-known result for distance matrices (distance matrices are almost negative semidefinite matrices with positive offdiagonal entries, and zeroes on the diagonal [10],[19]). Recall that a real symmetric $n \times n$ matrix has at least k nonnegative (positive) eigenvalues, including multiplicities, if and only if A is positive semidefinite (positive definite) on a subspace of dimension k [12,p.192].

Theorem 2.9: Let $A \in \mathbf{R}^{n \times n}$ be symmetric, with positive off-diagonal entries, all diagonal entries equal to zero, and just one positive eigenvalue. Then the Hadamard square root $A^{\circ \frac{1}{2}}=\left(a_{i j}^{\frac{1}{2}}\right)$ has just one positive eigenvalue and is invertible.

Proof: We use induction on n. Clearly the result is true for $n=2$. We shall assume the result is true for $n-1$. As in the proof of Theorem 2.7, there is a diagonal matrix V, with positive diagonal entries, such that $V A V=B=\left(b_{i j}\right) \in \mathbf{R}^{n \times n}$ is almost negative semidefinite. From Lemma 2.4 we know that $C=\left(b_{i n}+b_{n j}-b_{i j}\right) \in \mathbf{R}^{(n-1) \times(n-1)}$ is positive semidefinite. We will show that $D=\left(b_{i n}^{\frac{1}{2}}+b_{n j}^{\frac{1}{2}}-b_{i j}^{\frac{1}{2}}\right) \in \mathbf{R}^{(n-1) \times(n-1)}$ is positive definite.

Write

$$
b_{i n}+b_{n j}-b_{i j}=\left(b_{i n}^{\frac{1}{2}}+b_{n j}^{\frac{1}{2}}-b_{i j}^{\frac{1}{2}}\right)\left(b_{i n}^{\frac{1}{2}}+b_{n j}^{\frac{1}{2}}+b_{i j}^{\frac{1}{2}}\right)-2 b_{i n}^{\frac{1}{2}} b_{n j}^{\frac{1}{2}}
$$

then

$$
\begin{equation*}
C+2 \mathbf{c c}^{T}=\left(b_{i n}^{\frac{1}{2}}+b_{n j}^{\frac{1}{2}}-b_{i j}^{\frac{1}{2}}\right) \circ\left(b_{i n}^{\frac{1}{2}}+b_{n j}^{\frac{1}{2}}+b_{i j}^{\frac{1}{2}}\right) \tag{*}
\end{equation*}
$$

where $\mathbf{c}=\left(b_{i n}^{\frac{1}{2}}\right) \in \mathbf{R}^{n-1}$. We will use the fact that $C+2 \mathbf{c c}^{T}$ is positive semidefinite, and has all diagonal entries nonzero. Write $\left(b_{i n}^{\frac{1}{2}}+b_{n j}^{\frac{1}{2}}+b_{i j}^{\frac{1}{2}}\right)=\mathbf{c e}^{T}+\mathbf{e c}^{T}+\tilde{B}$, where $\tilde{B}=\left(b_{i j}^{\frac{1}{2}}\right) \in \mathbf{R}^{(n-1) \times(n-1)} . \quad \tilde{B}^{\circ 2}$ is almost negative semidefinite, since it is a principal submatrix of B, and by induction \tilde{B} is almost negative definite, so also $\mathbf{c e}^{T}+\mathbf{e c}^{T}+\tilde{B}$ is almost negative definite and hence invertible (one eigenvalue is positive, from the PerronFrobenius Theorem). But then $\left(\mathbf{c e}^{T}+\mathbf{e c}^{T}+\tilde{B}\right)^{\circ(-1)}$ is positive definite, and Hadamard multiplying on both sides of $(*)$ by this Hadamard inverse we conclude, using Lemma 2.2, that $D=\left(b_{i n}^{\frac{1}{2}}+b_{n j}^{\frac{1}{2}}-b_{i j}^{\frac{1}{2}}\right)$ is positive definite. So $(V A V)^{\circ \frac{1}{2}}=V^{\circ \frac{1}{2}} A^{\circ \frac{1}{2}} V^{\circ \frac{1}{2}}=B^{\circ \frac{1}{2}}$ is almost negative definite. Then since $V^{\circ \frac{1}{2}} A^{\circ \frac{1}{2}} V^{\circ \frac{1}{2}}$ is negative definite on a subspace of dimension $n-1, A^{\circ \frac{1}{2}}$ is negative definite on a subspace of dimension $n-1$, so $A^{\circ \frac{1}{2}}$ has at least $n-1$ negative eigenvalues, and one positive eigenvalue by the Perron-Frobenius Theorem.

Remark: Along the way we have shown that if $B=\left(b_{i j}\right) \in \mathbf{R}^{n \times n}$ is almost negative semidefinite, has positive off-diagonal entries, and zeroes on the diagonal, then $B^{\circ \frac{1}{2}}=\left(b_{i j}^{\frac{1}{2}}\right)$ is almost negative definite and is invertible (this is the result for distance matrices).

3. Hadamard Products

The following theorem gives a Loewner partial order lower bound for the Hadamard product of two symmetric matrices under some fairly restrictive conditions. More theory on almost semidefinite matrices may be found in [6], [8], [20].

Theorem 3.1: Let $A, B \in \mathbf{R}^{n \times n}$ be symmetric. If $A \succeq 0$ and B is positive definite or is almost positive definite and invertible then $A \circ B \succeq \frac{1}{\mathbf{e}^{T} B^{-1} \mathbf{e}} A$.

Furthermore, if B is positive definite (so $\mathbf{e}^{T} B^{-1} \mathbf{e}>0$), or if B is almost positive definite and invertible, in which case $\mathbf{e}^{T} B^{-1} \mathbf{e}<0$, then

$$
B-\frac{\mathbf{e e}^{\mathbf{T}}}{\mathbf{e}^{T} B^{-1} \mathbf{e}} \succeq 0 \quad \text { and } \quad \frac{1}{\mathbf{e}^{T} B^{-1} \mathbf{e}}=\sup \left\{t \in \mathbf{R} \mid B-t \mathbf{e e}^{T} \succeq 0\right\}
$$

Proof: We show that $\mathbf{e}^{T} B^{-1} \mathbf{e} \neq 0$. If B is positive definite then certainly $\mathbf{e}^{T} B^{-1} \mathbf{e}>0$. Suppose B is invertible and almost positive definite. Let $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of B, and $\hat{\lambda}_{1} \leq \cdots \leq \hat{\lambda}_{n+1}$ the eigenvalues of $\left[\begin{array}{cc}B & e \\ e^{T} & 0\end{array}\right]$, then from "interlacing"

$$
\hat{\lambda}_{1} \leq \lambda_{1} \leq \hat{\lambda}_{2} \leq \lambda_{2} \leq \cdots \leq \hat{\lambda}_{n} \leq \lambda_{n} \leq \hat{\lambda}_{n+1}
$$

Since B is almost positive definite we must have that $\lambda_{2}>0$. We must also have that $\lambda_{1}<0$, or otherwise B would be positive definite. Let $\mathbf{y}=(\mathbf{x} z)^{T} \in \mathbf{R}^{n+1}$, where $\mathbf{x}^{T} \mathbf{e}=0$ and $z \in \mathbf{R}$. Then $\mathbf{y}^{T}\left[\begin{array}{cc}B & e \\ e^{T} & 0\end{array}\right] \mathbf{y}=\mathbf{x}^{T} B \mathbf{x}>0$, i.e. $\left[\begin{array}{cc}B & e \\ e^{T} & 0\end{array}\right]$ is positive definite on a subspace of dimension n, so $\left[\begin{array}{cc}B & e \\ e^{T} & 0\end{array}\right]$ has at least n positive eigenvalues, which implies $\hat{\lambda}_{2}>0$. Using Schur complements and properties of determinants we have
$\operatorname{det}\left[\begin{array}{cc}B & e \\ e^{T} & 0\end{array}\right]=-\operatorname{det}(B) \mathbf{e}^{T} B^{-1} \mathbf{e}=-(-1)\left|\lambda_{1}\right| \lambda_{2} \cdots \lambda_{n} \mathbf{e}^{T} B^{-1} \mathbf{e}=(-1)\left|\hat{\lambda}_{1}\right| \hat{\lambda}_{2} \cdots \hat{\lambda}_{n+1}$, so we must also have that $\mathbf{e}^{T} B^{-1} \mathbf{e}<0$.

Let \mathbf{u} be any vector in \mathbf{R}^{n}, and $\mathbf{v}=\left(I-\frac{B^{-1} \mathbf{e} \mathbf{e}^{T}}{\mathbf{e}^{T} B^{-1} \mathbf{e}}\right) \mathbf{u}$, then notice that $\mathbf{e}^{T} \mathbf{v}=0$. Further, note that

$$
\left(I-\frac{B^{-1} \mathbf{e e}^{T}}{\mathbf{e}^{T} B^{-1} \mathbf{e}}\right)^{T} B\left(I-\frac{B^{-1} \mathbf{e e}^{T}}{\mathbf{e}^{T} B^{-1} \mathbf{e}}\right)=B-\frac{\mathbf{e e}^{\mathbf{T}}}{\mathbf{e}^{T} B^{-1} \mathbf{e}} .
$$

So if B is positive definite or almost positive definite (and invertible) then $B-\frac{\mathbf{e e}^{T}}{\mathbf{e}^{T} B^{-1} \mathbf{e}} \succeq$ 0 (not strict inequality here since $\left(I-\frac{B^{-1} \mathbf{e} e^{T}}{\mathbf{e}^{T} B^{-1} \mathbf{e}}\right) B^{-1} \mathbf{e}=\mathbf{0}$). In either case, Hadamard multiplying on both sides of this inequality by $A \succeq 0$ gives the inequality of our theorem.

Finally, we prove the "sup" part of the statement of the theorem. If B is positive definite or B is almost positive definite (and invertible) and $B-t \mathbf{e}^{T} \succeq 0$, taking $\mathbf{x}=B^{-1} \mathbf{e}$ we have that $\mathbf{x}^{T}\left(B-t \mathbf{e}^{T}\right) \mathbf{x}=\mathbf{e}^{T} B^{-1} \mathbf{e}-t\left(\mathbf{e}^{T} B^{-1} \mathbf{e}\right)^{2} \geq 0$, and this implies $\frac{1}{\mathbf{e}^{T} B^{-1} \mathbf{e}} \geq t$.

Remarks: Useful examples to illustrate the theorem are $A=I_{k} \oplus O_{n-k}$, for $1 \leq k \leq n$, and $B=I-\epsilon \mathbf{e e}^{T}$, where $\epsilon \in \mathbf{R}$, so $\frac{1}{\mathbf{e}^{T} B^{-1} \mathbf{e}}=\frac{1}{n}-\epsilon$. When $k=n$ and $\epsilon=2$ notice that $A \circ B$ is negative definite. An example of an almost positive definite matrix which is not invertible is $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$.

Corollary 3.2: If $A \succeq 0$ and B has all positive entries and is almost negative definite, then $A \circ B \preceq \frac{1}{\mathbf{e}^{T} B^{-1} \mathbf{e}} A$.
Proof: From the Perron-Frobenius Theorem B has one positive eigenvalue, thus B is invertible. The corollary then follows from the theorem with $-B$ substituted for B (so $\mathbf{e}^{T} B^{-1} \mathbf{e}>0$). Notice that under the present hypotheses we can Hadamard multiply both sides of the inequality of the corollary by the positive definite matrix $B^{\circ(-1)}$, to also obtain the inequality $A \circ B^{\circ(-1)} \succeq\left(\mathbf{e}^{T} B^{-1} \mathbf{e}\right) A$.

The special role that \mathbf{e} has in Theorem 3.1 stems from the fact that $\mathbf{e e}^{T}$ is the identity matrix for the Hadamard product. A restatement of the theorem without reference to \mathbf{e} is Corollary 3.3. If \mathbf{x} is an arbitrary vector in \mathbf{R}^{n}, we will denote by $D_{\mathbf{x}}$ the diagonal matrix $D_{\mathbf{x}}=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$.

Corollary 3.3: Let $A, B \in \mathbf{R}^{n \times n}$ be symmetric, and let $\mathbf{b} \in \mathbf{R}^{n}, \mathbf{b} \neq \mathbf{0}$. If $A \succeq 0$ and B is positive definite or B is positive definite on the subspace $U=\left\{\mathbf{x} \in \mathbf{R}^{n} \mid \mathbf{x}^{T} \mathbf{b}=0\right\}$ and invertible then $A \circ B \succeq \frac{1}{\mathbf{b}^{T} B^{-1} \mathbf{b}} D_{\mathbf{b}} A D_{\mathbf{b}}$.

Furthermore, if B is positive definite (so $\mathbf{b}^{T} B^{-1} \mathbf{b}>0$), or if B is positive definite on U and invertible, in which case $\mathbf{b}^{T} B^{-1} \mathbf{b}<0$, then

$$
B-\frac{\mathbf{b b}^{\mathbf{T}}}{\mathbf{b}^{T} B^{-1} \mathbf{b}} \succeq 0 \quad \text { and } \quad \frac{1}{\mathbf{b}^{T} B^{-1} \mathbf{b}}=\sup \left\{t \in \mathbf{R} \mid B-t \mathbf{b} \mathbf{b}^{T} \succeq 0\right\}
$$

Proof: Hadamard multiply A across the inequality $B-\frac{\mathbf{b b}^{\mathbf{T}}}{\mathbf{b}^{T} B^{-1} \mathbf{b}} \succeq 0$, and the corollary follows once we use the observation [10,p.104] that for any vector $\mathbf{w} \in R^{n}$ and any matrix $C \in \mathbf{R}^{n \times n}$ it is true that

$$
\mathbf{w w}^{T} \circ C=D_{\mathbf{w}} C D_{\mathbf{w}}
$$

A Loewner partial order upper and lower bound based upon the spectral decomposition of B is given in the following proposition.

Proposition 3.4: Let $A \succeq 0$. Let B be symmetric with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Suppose that $\lambda_{i}<0$, for $i \in\{1, \ldots, k\} ; \lambda_{i}=0$, for $i \in\{k+1, \ldots, m-1\}$; and $\lambda_{i}>0$, for $i \in\{m, \ldots, n\}$ (where any of these index sets can be empty). Let \mathbf{u}_{i} denote the corresponding unit eigenvectors of B so that $B \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}$, for $1 \leq i \leq n$. Then

$$
\lambda_{n} D_{\mathbf{u}_{n}} A D_{\mathbf{u}_{n}}+\cdots+\lambda_{m} D_{\mathbf{u}_{m}} A D_{\mathbf{u}_{m}} \succeq A \circ B \succeq \lambda_{k} D_{\mathbf{u}_{k}} A D_{\mathbf{u}_{k}}+\cdots+\lambda_{1} D_{\mathbf{u}_{1}} A D_{\mathbf{u}_{1}}
$$

Proof: Write $B=\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T}+\cdots+\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}$, and notice that

$$
B-\lambda_{k} \mathbf{u}_{k} \mathbf{u}_{k}^{T}-\cdots-\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T} \succeq 0 \quad \text { and } \quad B-\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T}-\cdots-\lambda_{m} \mathbf{u}_{m} \mathbf{u}_{m}^{T} \preceq 0
$$

Then Hadamard multiplying A all the way across the inequalities

$$
\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T}+\cdots+\lambda_{m} \mathbf{u}_{m} \mathbf{u}_{m}^{T} \succeq B \succeq \lambda_{k} \mathbf{u}_{k} \mathbf{u}_{k}^{T}+\cdots+\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}
$$

and using the observation in the proof of the previous corollary, we're done.
Acknowledgements I am grateful to Ren-Cang Li for some interesting conversations. The author received funding as a Postdoctoral Scholar from the Center for Computational Sciences, University of Kentucky.

References

[1] J. W. Auer, An Elementary Proof of the Invertibility of Distance Matrices, Linear and Multilinear Algebra, 40:119-124 (1995).
[2] R. B. Bapat, Multinomial probabilities, permanents and a conjecture of Karlin and Rinott, Proc. Amer. Math. Soc., 102(3): 467-472 (1988).
[3] R. B. Bapat and T. E. S. Raghavan, Nonnegative Matrices and Applications, Encyclopedia of Mathematics and its Applications, No. 64, Cambridge Uni. Press, 1997.
[4] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, Oxford, 1953. Reprinted by Chelsea Publishing Co., New York, 1970.
[5] F. Critchley and B. Fichet, The partial order by inclusion of the principal classes of dissimilarity on a finite set, In B. Van Cutsem (Ed.) Classification and Dissimilarity Analysis, Lect. Notes in Statist., Springer-Verlag, New York, pp. 5-65, 1994.
[6] J. P. Crouzeix and J. Ferland, Criteria for Quasiconvexity and Pseudoconvexity: Relationships and Comparisons, Mathematical Programming 23(2):193-205 (1982).
[7] W. F. Donoghue, Monotone matrix functions and analytic continuation, SpringerVerlag, New York, 1974.
[8] J. A. Ferland, Matrix-Theoretic Criteria for the Quasiconvexity of Twice Continuously Differentiable Functions, Linear Algebra and its Applications, 38:51-63 (1981).
[9] M. Fiedler and T. L. Markham, An Observation on the Hadamard Product of Hermitian Matrices, Linear Algebra and its Applications, 215:179-182 (1995).
[10] J. C. Gower, Euclidean Distance Geometry, Math. Scientist, 7:1-14 (1982).
[11] R. A. Horn, The Hadamard Product, In C. R. Johnson (Ed.) Proc. Appl. Math., Vol. 40, American Mathematical Society, Providence, Rhode Island, pp. 87-169, 1990.
[12] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Uni. Press, 1985.
[13] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Uni. Press, 1991.
[14] J. B. Kelly, Hypermetric spaces and metric transforms, In O. Shisha (Ed.) Inequalities III, Academic Press, New York, pp. 149-158, 1972.
[15] P. Lancaster and M. Tismenetsky, The Theory of Matrices, with applications $2^{\text {nd }}$ Ed. Academic Press, San Diego, 1985.
[16] M. Marcus and T. R. Smith, A Note on the Determinants and Eigenvalues of Distance Matrices, Linear and Multilinear Algebra, 25:219-230 (1989).
[17] C. A. Micchelli, Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions, Constr. Approx., 2:11-22 (1986).
[18] I. J. Schoenberg, On certain metric spaces arising from Euclidean space by a change of metric and their imbedding in Hilbert space, Ann. of Math., 38(4):787-793 (1937).
[19] I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc., 44:522-536 (1938).
[20] P. Tarazaga, T. L. Hayden and J. Wells, Circum-Euclidean Distance Matrices and Faces, Linear Algebra and its Applications, 232:77-96 (1996).

