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Abstract Let A = (aij) be an n × n symmetric matrix with all positive entries and just

one positive eigenvalue. Bapat proved then that the Hadamard inverse of A, given by

A◦(−1) = ( 1
aij

) is positive semidefinite. We show that if moreover A is invertible then

A◦(−1) is positive definite. We use this result to obtain a simple proof that with the same

hypotheses on A, except that all the diagonal entries of A are zero, the Hadamard square

root of A, given by A◦
1

2 = (a
1

2

ij), has just one positive eigenvalue and is invertible. Finally,

we show that if A is any positive semidefinite matrix and B is almost positive definite and

invertible then A ◦ B � 1
eT B−1e

A.

1. Introduction Let A = (aij), B = (bij) be n × n matrices with real entries, i.e.

A, B ∈ Rn×n. The Hadamard product of A and B is defined by A ◦ B = (aijbij) [11].

The Hadamard inverse of A (with aij > 0, 1 ≤ i, j ≤ n) is defined by A◦(−1) = ( 1
aij

), and

the Hadamard square root by A◦
1

2 = (a
1

2

ij). In Section 2, we extend a result due to Bapat

[2], [3], who showed that if A is symmetric, has all positive entries and just one positive

eigenvalue, then its Hadamard inverse A◦(−1) is positive semidefinite. We provide necessary

and sufficient conditions on the invertibility of A◦(−1). A corollary of this theorem will then

be used to prove that if A is a symmetric matrix which has all off-diagonal entries positive,

all diagonal entries zero, and A has just one positive eigenvalue, then the Hadamard square

root of A has just one positive eigenvalue, and is invertible. This was proved for distance

matrices (distance matrices are a special case of matrices which satisfy the hypotheses)

most recently by Auer [1], and it had previously been proved by Schoenberg [18], Micchelli

[17], and Marcus and Smith [16]. See also Blumenthal [4,p.135], Kelly [14], and Critchley

and Fichet [5,p.26]. We recall here the Perron-Frobenius Theorem [15], which states that

if a matrix A ∈ Rn×n has all positive entries then it has a positive eigenvalue r > |λ|,

for all other eigenvalues λ of A. Furthermore, the eigenvector that corresponds to r has

positive components. This theorem remains true under more general conditions, including
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in the case when all off-diagonal entries are positive and the diagonal entries are zero.

Let A and B be symmetric. The Loewner partial order A � B denotes that A−B is

positive semidefinite, and A � B that A − B is positive definite. Let e = (1, 1, ..., 1)T , i.e.

e is the n× 1 vector of all ones. A symmetric matrix A is almost positive semidefinite (or

conditionally positive semidefinite) if xT Ax ≥ 0, for all x ∈ Rn such that xT e = 0, and

almost positive definite (or conditionally positive definite) if xT Ax > 0, for all x 6= 0 such

that xT e = 0. In Section 3, we prove that if A is positive semidefinite and B is almost

positive definite and invertible then A◦B � 1
eT B−1e

A. This extends the validity of Fiedler

and Markham’s inequality [9], since they required that B is positive definite.

2. Hadamard Inverses and Square Roots

The following five lemmas are essentially well known [3], [7], [13], [17], however for

completeness we provide short proofs. Let diag(a11, . . . , ann) denote the n × n diagonal

matrix with diagonal entries a11, . . . , ann, and λmax(A) and λmin(A) denote the maximum

and minimum eigenvalues of A ∈ Rn×n, respectively.

Lemma 2.1: Let A, B ∈ Rn×n be symmetric. If A � 0 then

diag(a11, . . . , ann)λmax(B)I � A ◦ B � diag(a11, . . . , ann)λmin(B)I.

Proof: Let C ∈ Rn×n and C � 0. We know then that A◦C � 0, since A◦C is a principal

submatrix of A ⊗ C, the Kronecker product of A and C, which is positive semidefinite.

Since B − λmin(B)I � 0 and B − λmax(B)I � 0, we can re-write this as

λmax(B)I � B � λmin(B)I, and then Hadamard multiply all the way across by A.

Lemma 2.2: Let A, B ∈ Rn×n be symmetric. If A � 0, B � 0 and all the diagonal

entries of A are nonzero then A ◦ B is positive definite.

Proof: Since λmin(B) > 0, Lemma 2.2 follows from Lemma 2.1.

Lemma 2.3: Let A ∈ Rn×n be symmetric and positive semidefinite. Then the Hadamard

exponential e◦A = (eaij ) is positive semidefinite. Moreover, e◦A is positive definite if and

only if A has distinct rows.

Proof: Evidently, e◦A = eeT + A + 1
2!A

◦2 + 1
3!A

◦3 + · · · is positive semidefinite, and e◦A

positive definite implies that the rows of A must be distinct. Suppose now that for some

y = (y1, . . . , yn)T ∈ Rn, y 6= 0, yT e◦Ay = 0, then yT A◦ky = 0, and thus A◦ky = 0, for

k = 0, 1, 2, . . .. Write A = (xi · xj) = (||xi||||xj||cos θij), for some x1, . . . ,xn ∈ Rn. Let

||xi|| be maximum among those ||x1||, . . . , ||xn|| such that yi 6= 0. We must have ||xi|| 6= 0,

or else for every nonzero yj we have ||xj || = 0. In the latter case, if there are two or more

nonzero yj ’s for which ||xj || = 0 then A has two rows the same. While if there is just one

yj 6= 0 this would imply e◦A has a zero jth column, which is not possible.
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Then, with ||xi|| 6= 0, after dividing all the way across

||xi||
k(||x1||

kcosk θi1y1 + ||x2||
kcosk θi2y2 + · · · + ||xi||

kyi + · · · + ||xn||
kcosk θinyn) = 0,

by ||xi||
2k and letting k → ∞, we must have ||xi|| = ||xj||cos θij , for some i 6= j. Since

||xi|| ≥ ||xj || we also have cos θij = 1 and thus ||xi − xj ||
2 = ||xi||

2 + ||xi||
2 − 2xi.xj = 0.

So xi = xj , and A has two rows the same.

Lemma 2.4: Let A ∈ Rn×n be symmetric. A is almost positive (semi)definite

if and only if B = (aij − ain − anj + ann) ∈ R(n−1)×(n−1) is positive (semi)definite.

Proof: If xT e = 0 then xn = −
∑n−1

i=1 xi, and substituting we have
n

∑

i,j=1

aijxixj =

n−1
∑

i,j=1

aijxixj + xn

n−1
∑

i=1

ainxi + xn

n−1
∑

j=1

anjxj + annx2
n,

=

n−1
∑

i,j=1

aijxixj −

n−1
∑

j=1

xj

n−1
∑

i=1

ainxi −

n−1
∑

i=1

xi

n−1
∑

j=1

anjxj + ann

n−1
∑

i,j=1

xixj ,

=
n−1
∑

i,j=1

(aij − ain − anj + ann)xixj .

Remark: If i = n or j = n then aij − ain − anj + ann = 0.

Lemma 2.5: Let A = (aij) ∈ Rn×n be almost positive semidefinite then e◦A is positive

semidefinite. Moreover, e◦A is positive definite if and only if aii + ajj > 2aij , for all i 6= j.

Proof: Write αi = ain − (ann/2), for 1 ≤ i ≤ n. From Lemma 2.4, since A = (aij) is

almost positive semidefinite we can write, for 1 ≤ i, j ≤ n,

aij = bij + ain + anj − ann = bij + αi + αj ,

where B = (bij) = (aij−ain−anj+ann) ∈ Rn×n is positive semidefinite. Then e◦B = (ebij )

is positive semidefinite also. It follows that e◦A = (eaij ) = (ebij+αi+αj ) = (eαiebij eαj ) =

De◦BD is positive semidefinite, where D = diag(eα1 , . . . , eαn).

Finally, e◦A is positive definite iff e◦B is positive definite iff the rows of B = (xi · xj)

are distinct iff 0 < ||xi − xj ||
2 = bii + bjj − 2bij = aii + ajj − 2aij , for all i 6= j.

Corollary 2.6: Let A ∈ Rn×n be almost positive definite then e◦A is positive definite.

Proof: (ei − ej)
T A(ei − ej) = aii + ajj − 2aij > 0, for all i 6= j.

Remarks: For (symmetric) positive semidefinite matrices the condition aii + ajj > 2aij

for all i 6= j is equivalent to saying A has distinct rows. This is not true for almost

positive semidefinite matrices however, since for example consider A =





1 2 2
2 3 3
2 3 5



. This

matrix satisfies xT Ax ≥ 0, for any x = (x1, x2,−x1 − x2)
T , A has distinct rows, but

aii +ajj = 2aij , when i = 1 and j = 2. From Lemma 2.5 we can also see that for A almost
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positive semidefinite, e◦A is positive definite if and only if all principal 2 × 2 submatrices

of e◦A are positive definite.

Theorem 2.7: Let A ∈ Rn×n be symmetric, have positive entries and just one positive

eigenvalue, then the Hadamard inverse A◦(−1) = ( 1
aij

) is positive semidefinite.

Moreover, A◦(−1) is positive definite if and only if
aii

v2
i

+
ajj

v2
j

< 2
aij

vivj

, for all i 6= j,

where v = (v1, . . . , vn)T ∈ Rn is the Perron eigenvector for A.

Proof: Let the eigenvalues of A be λ1 ≤ · · · ≤ λn−1 ≤ r with Av = rv and Aui = λiui, for

1 ≤ i ≤ n− 1. The Perron eigenvalue is r, and v = (v1, v2, ..., vn)T the Perron eigenvector

has positive entries, from the Perron-Frobenius Theorem. If we now write A in the form

A = rvvT + λn−1un−1u
T
n−1 + · · · + λ1u1u

T
1 ,

and let V = diag( 1
v1

, 1
v2

, ..., 1
vn

), we can also write

V AV = reeT + λn−1(V un−1)(V un−1)
T + · · ·+ λ1(V u1)(V u1)

T .

If xT e = 0 then xT V AV x ≤ 0, i.e. V AV = B = (bij) is almost negative semidefinite.

Next, recall that for t > 0
1

t
=

∫

∞

0

e−tsds, so xT (
1

bij

)x =

∫

∞

0

xT (e−bijs)x ds,

and since (−bijs), for s > 0 is almost positive semidefinite, from Lemma 2.5 (e−bijs) is

positive semidefinite, so ( 1
bij

) = (V AV )◦(−1) = V −1A◦(−1)V −1 is positive semidefinite. We

conclude that A◦(−1) is positive semidefinite.

Finally, A◦(−1) is positive definite iff V −1A◦(−1)V −1 = ( 1
bij

) is positive definite iff

(e−bijs) is positive definite iff bii + bjj < 2bij , for all i 6= j iff
aii

v2
i

+
ajj

v2
j

< 2
aij

vivj

, for all

i 6= j.

Corollary 2.8: Let A ∈ Rn×n be symmetric, have positive entries and just one positive

eigenvalue. If A is invertible then A◦(−1) is positive definite.

Proof: A invertible implies B = V AV is almost negative definite, so (e−bijs) is positive

definite (Corollary 2.6), which implies A◦(−1) is positive definite.

We now use Corollary 2.8 to give a simple proof of a well-known result for distance

matrices (distance matrices are almost negative semidefinite matrices with positive off-

diagonal entries, and zeroes on the diagonal [10],[19]). Recall that a real symmetric n× n

matrix has at least k nonnegative (positive) eigenvalues, including multiplicities, if and only

if A is positive semidefinite (positive definite) on a subspace of dimension k [12,p.192].

Theorem 2.9: Let A ∈ Rn×n be symmetric, with positive off-diagonal entries, all diagonal

entries equal to zero, and just one positive eigenvalue. Then the Hadamard square root

A◦
1

2 = (a
1

2

ij) has just one positive eigenvalue and is invertible.
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Proof: We use induction on n. Clearly the result is true for n = 2. We shall assume

the result is true for n − 1. As in the proof of Theorem 2.7, there is a diagonal matrix

V , with positive diagonal entries, such that V AV = B = (bij) ∈ Rn×n is almost negative

semidefinite. From Lemma 2.4 we know that C = (bin + bnj − bij) ∈ R(n−1)×(n−1) is

positive semidefinite. We will show that D = (b
1

2

in + b
1

2

nj − b
1

2

ij) ∈ R(n−1)×(n−1) is positive

definite.

Write

bin + bnj − bij = (b
1

2

in + b
1

2

nj − b
1

2

ij)(b
1

2

in + b
1

2

nj + b
1

2

ij) − 2b
1

2

inb
1

2

nj ,

then

C + 2ccT = (b
1

2

in + b
1

2

nj − b
1

2

ij) ◦ (b
1

2

in + b
1

2

nj + b
1

2

ij), (∗)

where c = (b
1

2

in) ∈ Rn−1. We will use the fact that C + 2ccT is positive semidefinite,

and has all diagonal entries nonzero. Write (b
1

2

in + b
1

2

nj + b
1

2

ij) = ceT + ecT + B̃, where

B̃ = (b
1

2

ij) ∈ R(n−1)×(n−1). B̃◦2 is almost negative semidefinite, since it is a principal

submatrix of B, and by induction B̃ is almost negative definite, so also ceT + ecT + B̃ is

almost negative definite and hence invertible (one eigenvalue is positive, from the Perron-

Frobenius Theorem). But then (ceT + ecT + B̃)◦(−1) is positive definite, and Hadamard

multiplying on both sides of (∗) by this Hadamard inverse we conclude, using Lemma 2.2,

that D = (b
1

2

in +b
1

2

nj −b
1

2

ij) is positive definite. So (V AV )◦
1

2 = V ◦
1

2 A◦
1

2 V ◦
1

2 = B◦
1

2 is almost

negative definite. Then since V ◦
1

2 A◦
1

2 V ◦
1

2 is negative definite on a subspace of dimension

n− 1, A◦
1

2 is negative definite on a subspace of dimension n− 1, so A◦
1

2 has at least n− 1

negative eigenvalues, and one positive eigenvalue by the Perron-Frobenius Theorem.

Remark: Along the way we have shown that if B = (bij) ∈ Rn×n is almost negative

semidefinite, has positive off-diagonal entries, and zeroes on the diagonal, then B◦
1

2 = (b
1

2

ij)

is almost negative definite and is invertible (this is the result for distance matrices).

3. Hadamard Products

The following theorem gives a Loewner partial order lower bound for the Hadamard

product of two symmetric matrices under some fairly restrictive conditions. More theory

on almost semidefinite matrices may be found in [6], [8], [20].

Theorem 3.1: Let A, B ∈ Rn×n be symmetric. If A � 0 and B is positive definite or is

almost positive definite and invertible then A ◦ B �
1

eT B−1e
A.

Furthermore, if B is positive definite (so eT B−1e > 0), or if B is almost positive

definite and invertible, in which case eT B−1e < 0, then

B −
eeT

eT B−1e
� 0 and

1

eT B−1e
= sup{t ∈ R|B − teeT � 0}.
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Proof: We show that eT B−1e 6= 0. If B is positive definite then certainly eT B−1e > 0.

Suppose B is invertible and almost positive definite. Let λ1 ≤ · · · ≤ λn be the eigenvalues

of B, and λ̂1 ≤ · · · ≤ λ̂n+1 the eigenvalues of

[

B e
eT 0

]

, then from “interlacing”

λ̂1 ≤ λ1 ≤ λ̂2 ≤ λ2 ≤ · · · ≤ λ̂n ≤ λn ≤ λ̂n+1.

Since B is almost positive definite we must have that λ2 > 0. We must also have that

λ1 < 0, or otherwise B would be positive definite. Let y = (x z)T ∈ Rn+1, where xT e = 0

and z ∈ R. Then yT

[

B e
eT 0

]

y = xT Bx > 0, i.e.

[

B e
eT 0

]

is positive definite on a

subspace of dimension n, so

[

B e
eT 0

]

has at least n positive eigenvalues, which implies

λ̂2 > 0. Using Schur complements and properties of determinants we have

det

[

B e
eT 0

]

= −det(B) eT B−1e = −(−1)|λ1| λ2 · · ·λn eT B−1e = (−1)|λ̂1| λ̂2 · · · λ̂n+1,

so we must also have that eT B−1e < 0.

Let u be any vector in Rn, and v = (I− B−1eeT

eT B−1e
)u, then notice that eT v = 0. Further,

note that

(I −
B−1eeT

eT B−1e
)T B(I −

B−1eeT

eT B−1e
) = B −

eeT

eT B−1e
.

So if B is positive definite or almost positive definite (and invertible) then B − eeT

eT B−1e
�

0 (not strict inequality here since (I − B−1eeT

eT B−1e
)B−1e = 0). In either case, Hadamard

multiplying on both sides of this inequality by A � 0 gives the inequality of our theorem.

Finally, we prove the “sup” part of the statement of the theorem. If B is positive

definite or B is almost positive definite (and invertible) and B−teeT � 0, taking x = B−1e

we have that xT (B − teeT )x = eT B−1e − t(eT B−1e)2 ≥ 0, and this implies 1
eT B−1e

≥ t.

Remarks: Useful examples to illustrate the theorem are A = Ik ⊕ On−k, for 1 ≤ k ≤ n,

and B = I − εeeT , where ε ∈ R, so 1
eT B−1e

= 1
n
− ε. When k = n and ε = 2 notice that

A ◦ B is negative definite. An example of an almost positive definite matrix which is not

invertible is A =

[

1 −1
−1 1

]

.

Corollary 3.2: If A � 0 and B has all positive entries and is almost negative definite,

then A ◦ B �
1

eT B−1e
A.

Proof: From the Perron-Frobenius Theorem B has one positive eigenvalue, thus B is

invertible. The corollary then follows from the theorem with −B substituted for B (so

eT B−1e > 0). Notice that under the present hypotheses we can Hadamard multiply both

sides of the inequality of the corollary by the positive definite matrix B◦(−1), to also obtain

the inequality A ◦ B◦(−1) � (eT B−1e)A.
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The special role that e has in Theorem 3.1 stems from the fact that eeT is the identity

matrix for the Hadamard product. A restatement of the theorem without reference to e is

Corollary 3.3. If x is an arbitrary vector in Rn, we will denote by Dx the diagonal matrix

Dx = diag(x1, . . . , xn).

Corollary 3.3: Let A, B ∈ Rn×n be symmetric, and let b ∈ Rn, b 6= 0. If A � 0 and B

is positive definite or B is positive definite on the subspace U = {x ∈ Rn|xT b = 0} and

invertible then A ◦ B �
1

bT B−1b
DbADb.

Furthermore, if B is positive definite (so bT B−1b > 0), or if B is positive definite on

U and invertible, in which case bT B−1b < 0, then

B −
bbT

bT B−1b
� 0 and

1

bT B−1b
= sup{t ∈ R|B − tbbT � 0}.

Proof: Hadamard multiply A across the inequality B − bbT

bT B−1b
� 0, and the corollary

follows once we use the observation [10,p.104] that for any vector w ∈ Rn and any matrix

C ∈ Rn×n it is true that

wwT ◦ C = DwCDw.

A Loewner partial order upper and lower bound based upon the spectral decomposi-

tion of B is given in the following proposition.

Proposition 3.4: Let A � 0. Let B be symmetric with eigenvalues λ1 ≤ · · · ≤ λn.

Suppose that λi < 0, for i ∈ {1, . . . , k}; λi = 0, for i ∈ {k + 1, . . . , m − 1}; and λi > 0,

for i ∈ {m, . . . , n} (where any of these index sets can be empty). Let ui denote the

corresponding unit eigenvectors of B so that Bui = λiui, for 1 ≤ i ≤ n. Then

λnDun
ADun

+ · · · + λmDum
ADum

� A ◦ B � λkDuk
ADuk

+ · · · + λ1Du1
ADu1

.

Proof: Write B = λnunuT
n + · · · + λ1u1u

T
1 , and notice that

B − λkuku
T
k − · · · − λ1u1u

T
1 � 0 and B − λnunuT

n − · · · − λmumuT
m � 0.

Then Hadamard multiplying A all the way across the inequalities

λnunuT
n + · · · + λmumuT

m � B � λkuku
T
k + · · ·+ λ1u1u

T
1 ,

and using the observation in the proof of the previous corollary, we’re done.
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