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Abstract Let A = (a;5) be an n X n symmetric matrix with all positive entries and just
one positive eigenvalue. Bapat proved then that the Hadamard inverse of A, given by
A=) = (i) is positive semidefinite. We show that if moreover A is invertible then
A°(=1 s positive definite. We use this result to obtain a simple proof that with the same
hypotheses on A, except that all the diagonal entries of A are zero, the Hadamard square
root of A, given by Az = (ai%j), has just one positive eigenvalue and is invertible. Finally,
we show that if A is any positive semidefinite matrix and B is almost positive definite and
invertible then Ao B > -2 A

el’'B-1le* ™

1. Introduction Let A = (a;;), B = (b;;) be n x n matrices with real entries, i.e.
A, B € R"*". The Hadamard product of A and B is defined by A o B = (a;;b;;) [11].
The Hadamard inverse of A (with a;; >0, 1 < i,5 < n) is defined by 4°(-Y = (-1), and

the Hadamard square root by A°2 = (a%) In Section 2, we extend a result due to Bapat
[2], [3], who showed that if A is symmetric, has all positive entries and just one positive
eigenvalue, then its Hadamard inverse A°(—1) is positive semidefinite. We provide necessary
and sufficient conditions on the invertibility of A°(~1). A corollary of this theorem will then
be used to prove that if A is a symmetric matrix which has all off-diagonal entries positive,
all diagonal entries zero, and A has just one positive eigenvalue, then the Hadamard square
root of A has just one positive eigenvalue, and is invertible. This was proved for distance
matrices (distance matrices are a special case of matrices which satisfy the hypotheses)
most recently by Auer [1], and it had previously been proved by Schoenberg [18], Micchelli
[17], and Marcus and Smith [16]. See also Blumenthal [4,p.135], Kelly [14], and Critchley
and Fichet [5,p.26]. We recall here the Perron-Frobenius Theorem [15], which states that
if a matrix A € R™*"™ has all positive entries then it has a positive eigenvalue r > |)[,
for all other eigenvalues A of A. Furthermore, the eigenvector that corresponds to r has

positive components. This theorem remains true under more general conditions, including
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in the case when all off-diagonal entries are positive and the diagonal entries are zero.
Let A and B be symmetric. The Loewner partial order A > B denotes that A — B is
positive semidefinite, and A = B that A — B is positive definite. Let e = (1,1,...,1)T i.e.
e is the n x 1 vector of all ones. A symmetric matrix A is almost positive semidefinite (or
conditionally positive semidefinite) if x” Ax > 0, for all x € R" such that x’e = 0, and
almost positive definite (or conditionally positive definite) if xZ Ax > 0, for all x # 0 such
that xTe = 0. In Section 3, we prove that if A is positive semidefinite and B is almost
positive definite and invertible then Ao B > ﬁA. This extends the validity of Fiedler

and Markham'’s inequality [9], since they required that B is positive definite.

2. Hadamard Inverses and Square Roots

The following five lemmas are essentially well known [3], [7], [13], [17], however for
completeness we provide short proofs. Let diag(aiq,...,a,,) denote the n x n diagonal
matrix with diagonal entries aiq, ..., apn, and Apax(A) and Apin(A) denote the maximum

and minimum eigenvalues of A € R™*", respectively.

Lemma 2.1: Let A, B € R"*" be symmetric. If A > 0 then
diag(ai1, .-y Gpn)Amax(B)I = Ao B = diag(aii, - - -, Gpp) Amin(B) 1.
Proof: Let C' € R"*"™ and C' > 0. We know then that AoC > 0, since AoC' is a principal
submatrix of A ® C, the Kronecker product of A and C, which is positive semidefinite.
Since B — Apin(B)I = 0 and B — Apax(B)I < 0, we can re-write this as
Amax(B)I = B = Anin(B)I, and then Hadamard multiply all the way across by A.

Lemma 2.2: Let A, B € R™"" be symmetric. If A > 0, B > 0 and all the diagonal
entries of A are nonzero then A o B is positive definite.

Proof: Since A\pin(B) > 0, Lemma 2.2 follows from Lemma 2.1.

Lemma 2.3: Let A € R™*™ be symmetric and positive semidefinite. Then the Hadamard
exponential e®4 = (e%) is positive semidefinite. Moreover, e°4 is positive definite if and
only if A has distinct rows.

Proof: Evidently, e°4 = ee” + A + %AOQ + %AOS + .- is positive semidefinite, and e°4
positive definite implies that the rows of A must be distinct. Suppose now that for some
y =y, yn)T €R", y #0, y'edy = 0, then y7 A°*y = 0, and thus A°*y = 0, for

k=0,1,2,... Write A = (x; - x;) = (||x;]]||x;]||cos 8;;), for some x,...,%x, € R". Let
||x;|| be maximum among those ||x1]|, ..., ||X,|| such that y; # 0. We must have ||x;|| # 0,
or else for every nonzero y; we have ||x;|| = 0. In the latter case, if there are two or more
nonzero y;’s for which ||x;|| = 0 then A has two rows the same. While if there is just one

y; # 0 this would imply e®4 has a zero j* column, which is not possible.
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Then, with ||x;|| # 0, after dividing all the way across
il (11 [*cos® Ginyr + ||xa||*cos® Biaya + - - - + [[x]|[*yi + - + [[xn]]Fcos® inyn) = 0,
by ||x;||** and letting k — oo, we must have ||x;|| = [|x;||cos 6;;, for some i # j. Since
l|x;]| > ||x;|| we also have cos 6;; =1 and thus ||x; — x;[|* = ||x:]|* + ||x:]]* — 2x;.x; = 0.

So x; = x;, and A has two rows the same.

Lemma 2.4: Let A € R™*"™ be symmetric. A is almost positive (semi)definite

if and only if B = (aij — @Gin — Gnj + apn) € ROTVXO=D g positive (semi)definite.

n—1 . .
Proof: If x”e =0 then z,, = — )", z;, and substituting we have
n n—1 n—1 n—1
2
g Qi T;T; = E Qi T;T5 + Ty E AinTi + Ty, g AnjTj + AnpTy,
i,j=1 i,j=1 i=1 Jj=1
n—1 n—1 n—1 n—1 n—1 n—1
= E aijmimj — E .’L’j E Aind; — E xI; E andL’j + Ann E .’L’Z'IL’j,
i,j=1 j=1  i=1 i=1 j=1 i,j=1
n—1
= E (aij — Qinp — anj + ann)ximj.
,j=1

Remark: If i = n or j = n then a;; — aip, — anj + apn = 0.

Lemma 2.5: Let A = (a;;) € R"*" be almost positive semidefinite then e°4

is positive
semidefinite. Moreover, e° is positive definite if and only if a;; +aj; > 2a;;, for all i # j.
Proof: Write ay; = aip, — (ann/2), for 1 < i < n. From Lemma 2.4, since A = (a;;) is
almost positive semidefinite we can write, for 1 <, 5 < n,
aij = bij + Qin + Apj — app = bij + o +

where B = (b;;) = (aij—ain—an;j+an,) € R™ ™ is positive semidefinite. Then e°? = (eb)
is positive semidefinite also. It follows that e°4 = (e%i) = (ebiit@itas) = (e®iehiie¥s) =
De°B D is positive semidefinite, where D = diag(e®!,...,e%").

Finally, e°4 is positive definite iff e°? is positive definite iff the rows of B = (x; - x;)
are distinct iff 0 < ||x; — x;||> = by + bj; — 2bij = ay; + a;; — 2a;;, for all i # j.

Corollary 2.6: Let A € R™*" be almost positive definite then e°4 is positive definite.
Proof: (ei — ej)TA(ei — Ej) = a;; + Q55 — 2aij > O, for all ¢ 75 _]

Remarks: For (symmetric) positive semidefinite matrices the condition a;; + aj; > 2a;;

for all i # j is equivalent to saying A has distinct rows. This is not true for almost

1 2 2
positive semidefinite matrices however, since for example consider A= |2 3 3 |. This
2 3 5

matrix satisfies x7 Ax > 0, for any x = (21,72, —21 — 22)T, A has distinct rows, but

ai; +a;; = 2a;5, when 7 = 1 and j = 2. From Lemma 2.5 we can also see that for A almost
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positive semidefinite, e°4 is positive definite if and only if all principal 2 x 2 submatrices

of e°4 are positive definite.

Theorem 2.7: Let A € R™*" be symmetric, have positive entries and just one positive

1

eigenvalue, then the Hadamard inverse A°(~1) = (5-) is positive semidefinite.
ij

a0 i
Moreover, A°(=1 ig positive definite if and only if iy LQJ Y for all i # 7,
’UZ 3 Ui’l)j
where v = (v1,...,v,)T € R™ is the Perron eigenvector for A.

Proof: Let the eigenvalues of Abe \; <--- < \,_1 <rwith Av = rv and Au; = \;u;, for
1 <i < n—1. The Perron eigenvalue is r, and v = (v, v, ..., v,)T the Perron eigenvector
has positive entries, from the Perron-Frobenius Theorem. If we now write A in the form
A =rvvl + )\n_lun_lug_l 4 AlululT,
and let V = diag(v , v2 o i), we can also write
VAV =reel + X\, 1(Vup_1)(Vu,_ )T + -+ M (V) (Vuy) T
If xTe =0 then xTVAVx <0, i.e. VAV = B = (b;;) is almost negative semidefinite.

Next, recall that for ¢ > 0

1 > 1 >

- :/ e ds, SO XT(—)x:/ xT(e7i%)x ds,
0 b 0

t )
and since (—b;;s), for s > 0 is almost positive ;Jemidefinite, from Lemma 2.5 (e~%i®) is
positive semidefinite, so (5 ]) (VAV)°(=1) = V=1 A2(=D~1 is positive semidefinite. We
conclude that A°(=1 is positive semidefinite.

Finally, A°(=1) is positive definite iff V-1A°(-Dy~1 = (bi) is positive definite iff
(e7ii%) is positive definite iff b;; + bj; < 2b;;, for all i # j iff v_ + (zjj < 94

. . 1 7 U’L'Uj
1#£ .

Corollary 2.8: Let A € R"*" be symmetric, have positive entries and just one positive

, for all

eigenvalue. If A is invertible then A°(—Y is positive definite.
Proof: A invertible implies B = VAV is almost negative definite, so (e~%%%) is positive
definite (Corollary 2.6), which implies A°(—1) is positive definite.

We now use Corollary 2.8 to give a simple proof of a well-known result for distance
matrices (distance matrices are almost negative semidefinite matrices with positive off-
diagonal entries, and zeroes on the diagonal [10],[19]). Recall that a real symmetric n x n
matrix has at least k nonnegative (positive) eigenvalues, including multiplicities, if and only

if A is positive semidefinite (positive definite) on a subspace of dimension k [12,p.192].

Theorem 2.9: Let A € R"*" be symmetric, with positive off-diagonal entries, all diagonal
entries equal to zero, and just one positive eigenvalue. Then the Hadamard square root

1
Az = (af;) has just one positive eigenvalue and is invertible.
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Proof: We use induction on n. Clearly the result is true for n = 2. We shall assume
the result is true for n — 1. As in the proof of Theorem 2.7, there is a diagonal matrix
V', with positive diagonal entries, such that VAV = B = (b;;) € R™*" is almost negative
semidefinite. From Lemma 2.4 we know that C' = (b, + bn; — bsij) € R—Dx(n=1) jg
positive semidefinite. We will show that D = (b?n + béj — bi) c R(»=Ux(=1) ig positive
definite.
Write
1 1 101 1 1 11
bin +bnj —bij = (b2, + b2, — b)) (b, + b2, +b5) — 202 b2,
then
1 1 1 1 1 1
C +2cct = (b2, + bri — 7)o (b7, +b2; +b7), (%)

where ¢ = (bl%n) € R" 1. We will use the fact that C' + 2cc’ is positive semidefinite,
and has all diagonal entries nonzero. Write (bi%n + béj + b%) = ce” + ec” + B, where
B = (bi) e R(=1x(n=1) = B°2 jg almost negative semidefinite, since it is a principal
submatrix of B, and by induction B is almost negative definite, so also ce” + ec” + B is
almost negative definite and hence invertible (one eigenvalue is positive, from the Perron-
Frobenius Theorem). But then (ce” + ec” + B)°(~1) is positive definite, and Hadamard
multiplying on both sides of (*) by this Hadamard inverse we conclude, using Lemma 2.2,
that D = (bi%n—kbftj —bi%j) is positive definite. So (VAV)°z = V°2 A°2V°2 = B°3 is almost
negative definite. Then since Vo3 A°3VO3 is negative definite on a subspace of dimension
n—1, A°% is negative definite on a subspace of dimension n — 1, so A°2 has at least n — 1

negative eigenvalues, and one positive eigenvalue by the Perron-Frobenius Theorem.

Remark: Along the way we have shown that if B = (b;;) € R™*" is almost negative
1
semidefinite, has positive off-diagonal entries, and zeroes on the diagonal, then B °3 = (bfj)

is almost negative definite and is invertible (this is the result for distance matrices).

3. Hadamard Products
The following theorem gives a Loewner partial order lower bound for the Hadamard
product of two symmetric matrices under some fairly restrictive conditions. More theory

on almost semidefinite matrices may be found in [6], [8], [20].

Theorem 3.1: Let A, B € R™*™ be symmetric. If A > 0 and B is positive definite or is
1
almost positive definite and invertible then Ao B > ———A

e’B-le
Furthermore, if B is positive definite (so e’ B~le > 0), or if B is almost positive
definite and invertible, in which case e B~'e < 0, then

eeT T
B = sup{t € R|B — tee” > 0}.

T oTpie -0

1
el'B-le
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Proof: We show that e’ B~'e # 0. If B is positive definite then certainly e’ B~'e > 0.

Suppose B is invertible and almost positive definite. Let A\; < --- < )\, be the eigenvalues

of B, and ;\1 <. < 5\n+1 the eigenvalues of [gp 8

A<M <A <A< <A <A < Mg

} , then from “interlacing”

Since B is almost positive definite we must have that Ay > 0. We must also have that

A1 < 0, or otherwise B would be positive definite. Let y = (x 2)7 € R"!, where xTe = 0
B i B ) e .

and z € R. Then y* [eT 8} y = x'Bx > 0, i.e. [eT 8} is positive definite on a

e

el 0

A2 > 0. Using Schur complements and properties of determinants we have

det [% 8} — ~det(B) €7 B~le = ~(~1)[\i| Az -+ Ay eTB e = (~1)Au] Ao+ s,

so we must also have that e’ B~1le < 0.

Let u be any vector in R, and v = (I — B lce” )u, then notice that e’ v = 0. Further,

subspace of dimension n, so { has at least n positive eigenvalues, which implies

el'B-le

note that L L "

B~ "ee B~ ee ee

I-=——)'Bl-=+—--)=B— ——.
e’'B-le e’'B-le e’B-le
T

So if B is positive definite or almost positive definite (and invertible) then B — 75— =
0 (not strict inequality here since (I — ET;?‘?Z)B_% = 0). In either case, Hadamard

multiplying on both sides of this inequality by A > 0 gives the inequality of our theorem.
Finally, we prove the “sup” part of the statement of the theorem. If B is positive
definite or B is almost positive definite (and invertible) and B—tee’ > 0, takingx = B~ le

we have that x” (B — tee”)x = e’ B~'e — t(e’ B'e)? > 0, and this implies zrg—z > t.

Remarks: Useful examples to illustrate the theorem are A = I, @ O,,_g, for 1 < k < n,
and B = I — eee”, where € € R, so eTTl—le = % — €. When k£ = n and € = 2 notice that

A o B is negative definite. An example of an almost positive definite matrix which is not

invertible is A = l—ll _11] .

Corollary 3.2: If A > 0 and B has all positive entries and is almost negative definite,

1

Proof: From the Perron-Frobenius Theorem B has one positive eigenvalue, thus B is
invertible. The corollary then follows from the theorem with —B substituted for B (so
e’ B~'e > 0). Notice that under the present hypotheses we can Hadamard multiply both

sides of the inequality of the corollary by the positive definite matrix B°(—1), to also obtain
the inequality A o B°~1 = (eTB7le)A.



The special role that e has in Theorem 3.1 stems from the fact that ee” is the identity
matrix for the Hadamard product. A restatement of the theorem without reference to e is
Corollary 3.3. If x is an arbitrary vector in R", we will denote by Dy the diagonal matrix

Dy = diag(z1,...,x,).

Corollary 3.3: Let A, B € R™"*™ be symmetric, and let be R", b#0. If A > 0 and B
is positive definite or B is positive definite on the subspace U = {x € R"|x’b = 0} and

1
invertible then Ao B > meADb.

Furthermore, if B is positive definite (so bT B~1b > 0), or if B is positive definite on
U and invertible, in which case b’ B~'b < 0, then

bbT 1 T
Proof: Hadamard multiply A across the inequality B — % > 0, and the corollary

follows once we use the observation [10,p.104] that for any vector w € R™ and any matrix
C € R™*" it is true that
ww’ 0 C = DyCDy,.

A Loewner partial order upper and lower bound based upon the spectral decomposi-

tion of B is given in the following proposition.

Proposition 3.4: Let A = 0. Let B be symmetric with eigenvalues A\; < --- < A,.
Suppose that \; < 0, fori € {1,...,k}; \; =0, fori e {k+1,...,m —1}; and \; > 0,
for i € {m,...,n} (where any of these index sets can be empty). Let u; denote the
corresponding unit eigenvectors of B so that Bu; = \;u;, for 1 < i < n. Then

ADu, ADy, + -+ ApDy, ADy, = Ao B > A\yDy, ADy, + -+ A1 Dy, ADy,.
Proof: Write B = )\nunug 4+ 4 Aluluf, and notice that

B—)\kukug—---—)\lulu{ =0 and B—)\nunug—---—)\mumu% = 0.
Then Hadamard multiplying A all the way across the inequalities

)\nunuz 4+ )\mumuﬁ = B> )\kukug + -+ )\1u1u1T,

and using the observation in the proof of the previous corollary, we’re done.
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