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Abstract

Let A be a given n × n matrix with rational entries and irreducible characteristic

polynomial f(x). We investigate the Galois groups of f(x) and f(xm), to find necessary

and sufficient conditions for the existence of a solution B to the matrix equation A = Bm,

where B is also a matrix with rational entries. We do this by finding necessary and

sufficient conditions that f(xm) has a factor of degree n (with rational coefficients).

Introduction

We concern ourselves with finding matrix solutions B to the equation A = g(B),

where A is some given matrix and g(x) is a polynomial. Previous work has been done

by other authors (see for instance [1] and [4]) where all the matrices have entries from an

arbitrary field, or just complex entries. We look at the situation where all the entries of

A are rational i.e. A ∈ Mn(Q), and the characteristic polynomial of A, namely f(x), is

irreducible. Then by using Galois theory and looking at the structure of the Galois groups

of f(x) and f(xm), we find conditions on these groups that the matrix A has an mth root

B ∈ Mn(Q), under certain fairly general restrictions. First we prove a proposition due to

T. J. Laffey and B. Cain, previously unpublished, and which provides the motivation for

what follows.

Proposition: Let F be a field and A ∈ Mn(F) have irreducible characteristic poly-

nomial f(x). Let g(x) ∈ F[x]. Then the equation g(B) = A is solvable for B ∈ Mn(F) if

and only if f(g(x)) has a factor of degree n in F[x].

Proof: Suppose such a B exists and let m(x) be its minimal polynomial. Since F[B]

contains F[A], m(x) has degree n. Also, f(g(B)) = f(A) = 0, so m(x) divides f(g(x)).

Conversely, let h(x) be a factor of f(g(x)) of degree n, and let C be the companion

matrix of h(x). Then f(g(C)) = 0, and since f(x) is irreducible and has degree n, it follows

that g(C) is similar to the companion matrix of f(x) and thus g(C) is similar to A, say

T−1g(C)T = A, where T ∈ GL(n,F). But then g(T−1CT ) = A, and so take B = T−1CT .
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In consequence of this proposition we may (and will) concentrate on the existence of

a factor of f(g(x)) of degree n. We now prove two theorems, restricted to the case where

g(x) = xm, and include some counterexamples to show that there are some directions in

which the results cannot be improved. We will use the notation that |G| denotes the order

of a group G, and G(K/k) is the Galois group of the extension K over k.

Theorem 1: Let m, n be natural numbers, m odd, and A ∈ Mn(Q) have irreducible

characteristic polynomial f(x). Let µi, 1 ≤ i ≤ n, be the roots of f(x), and for some choice

λ1, ..., λn of n roots of f(xm), where λm
i = µi, 1 ≤ i ≤ n, suppose that Q(λ1, ..., λn) ∩

Q(ζ) = Q, where ζ = e
2πi
m . Then the following are equivalent:

(i) the equation A = Bm is solvable with B ∈ Mn(Q),

(ii) f(xm) has a factor of degree n in Q[x],

(iii) |G(K/Q)| = φ(m)|G(L/Q)|,
where φ(·) is Euler’s φ-function, K is the splitting field for f(xm) over Q and L is the

splitting field for f(x) over Q.

Proof: That (i) is equivalent to (ii) follows from the proposition, with g(x) = xm.

To prove that (ii) implies (iii), let h(x) ∈ Q[x] be a factor of degree n of f(xm) and

let us say h(x) = (x − ν1)(x − ν2) · · · (x − νn), where νi ∈ Q, 1 ≤ i ≤ n.

Then f(νm
1 ) = 0, so that νm

1 = µi, for some i ∈ {1, 2, ..., n}. But since [Q(ν1) :

Q] = [Q(ν1) : Q(µi)][Q(µi) : Q] and [Q(µi) : Q] = n, this implies [Q(ν1) : Q] = n, so

h(x) ∈ Q[x] must be irreducible and so the roots νi, 1 ≤ i ≤ n must be distinct. We also

have that νm
i , 1 ≤ i ≤ n must be distinct, since suppose not, then νm

i = νm
j , for some

i 6= j, which implies νi = ζrνj , for some r ∈ {0, 1, 2, ..., m− 1}. Now νm
i = µki

, νm
j = µkj

for some µki
, µkj

∈ {µ1, ..., µn}, and [Q(νi) : Q] = [Q(νi) : Q(µki
)][Q(µki

) : Q] implies

Q(νi) = Q(µki
) so νi ∈ Q(µki

) and similarly νj ∈ Q(µkj
). But ζrνj , νj ∈ Q(µki

, µkj
) ⊂

Q(µ1, ..., µn) ⊂ Q(λ1, ..., λn) where λ1, ..., λn are as in the hypotheses of the theorem.

Thus Q(λ1, ..., λn) ∩ Q(ζ) = Q and therefore ζr = 1, then νi = νj , contradiction.

Thus f(xm) = (xm − νm
1 ) · · · (xm − νm

n ) =(x − ν1)(x − ζν1) · · · (x − ζm−1ν1)

(x − ν2)(x − ζν2) · · · (x − ζm−1ν2)

...

(x − νn)(x − ζνn) · · · (x − ζm−1νn).
By definition Q(ν1, ..., νn) is the splitting field for h(x), and is therefore a Galois

extension. Similarly, Q(ν1, ..., νn, ζ) is the splitting field for f(xm) and also a Galois

extension. (Note that Q(ν1, ..., νn, ζ) = K = Q(λ1, ..., λn, ζ) by unique factorization of

f(xm) in Q[x]). Thus we have the tower of fields:
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Q(ν1, ..., νn, ζ)
|

Q(ν1, ..., νn)
|
Q

and

|G(K/Q)| = [Q(ν1, ..., νn, ζ) : Q] = [Q(ν1, ..., νn, ζ) : Q(ν1, ..., νn)][Q(ν1, ..., νn) : Q] (∗).

Since (again) [Q(νi) : Q] = [Q(νi) : Q(µi)][Q(µi) : Q], where µi = νm
i , 1 ≤ i ≤ n,

we deduce as before that Q(νi) = Q(µi), for each i, 1 ≤ i ≤ n. Thus Q(ν1, ..., νn) =

Q(µ1, ..., µn) = L, and so

[Q(ν1, ..., νn) : Q] = [Q(µ1, ..., µn) : Q] = |G(L/Q)|.

We assumed Q(λ1, ..., λn) ∩ Q(ζ) = Q, where λ1, ..., λn are as in the statement of the

theorem, and we know Q(λ1, ..., λn) ⊃ Q(µ1, ..., µn) = Q(ν1, ..., νn) so Q(ν1, ..., νn) ∩
Q(ζ) = Q, giving G(Q(ν1, ..., νn, ζ)/Q(ν1, ..., νn)) ∼= G(Q(ζ)/Q) [3, p.305]. Then from

(∗) we get

|G(K/Q)| = φ(m)|G(L/Q)| , which is (iii).

Conversely, to prove that (iii) implies (ii), we have f(x) = (x − µ1) · · · (x − µn),

so f(xm) = (xm − µ1) · · · (xm − µn) = Πn
j=1(x − λj)(x − ζλj) · · · (x − ζm−1λj), where

λm
j = µj , 1 ≤ j ≤ n, and Q(λ1, ..., λn) ∩ Q(ζ) = Q.

Now consider the tower of fields:

Q(λ1, ..., λn, ζ)
|

Q(λ1, ..., λn)
|

Q(µ1, ..., µn)
|
Q

We know [Q(λ1, ..., λn, ζ) : Q(λ1, ..., λn)] = φ(m), [Q(µ1, ..., µn) : Q] = |G(L/Q)|,

and [Q(λ1, ..., λn, ζ) : Q] = |G(K/Q)|, and since we’re given |G(K/Q)| = φ(m)|G(L/Q)|,

we must have that Q(λ1, ..., λn) = Q(µ1, ..., µn).

Therefore Q(λ1, ..., λn) is a Galois extension of Q, and τ(Q(λ1, ..., λn)) = Q(λ1, ..., λn),

for all τ ∈ G(Q(λ1, ..., λn, ζ)/Q). We know f τ (xm) = f(xm), since all the coefficients of

f(x) are in Q, then by unique factorization in Q[x] we know τ just permutes the roots of
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f(xm). But τ must also just permute λ1, ..., λn since if τ(λi) = ζsλj ∈ Q(λ1, ..., λn) then

ζs ∈ Q(λ1, ..., λn), but Q(λ1, ..., λn) ∩ Q(ζ) = Q, so we must have that ζs = 1 (as m is

odd). Let h(x) = (x−λ1) · · · (x−λn), then hτ (x) = h(x), for all τ ∈ G(Q(λ1, ..., λn, ζ)/Q),

so h(x) ∈ Q[x] and we have the desired factor.

Discussion of Theorem 1: Notice that the fact that (i) is equivalent to (ii) did

not require that Q(λ1, ..., λn) ∩ Q(ζ) = Q for some choice of λ1, ..., λn, as stated in the

theorem. Also, Theorem 1 does not hold when m = 2, since consider f(x) = x3 + 3 then

it is easy to check that |G(K/Q)| = |G(L/Q)| (here φ(2) = 1) and f(x2) has no factor of

degree 3 in Q[x], (see [2] for a consideration of the Galois group of a polynomial of form

f(x2)).

It is not difficult to see that to prove (ii) implies (iii), it would have been sufficient to

assume in the hypotheses of the theorem that Q(µ1, ..., µn) ∩ Q(ζ) = Q.

To prove (iii) implies (ii) in the special case of m = p an odd prime, it again is sufficient

to assume Q(µ1, ..., µn)∩Q(ζ) = Q in the statement of the theorem, though it is necessary

to change the argument as follows: we know

[Q(λ1, ..., λn, ζ) : Q] = [Q(λ1, ..., λn, ζ) : Q(µ1,..., µn, ζ)]

×[Q(µ1, ..., µn, ζ) : Q(µ1, ..., µn)][Q(µ1, ..., µn) : Q],

where λp
i = µi, 1 ≤ i ≤ n, and λi are any pth roots of µi.

But |G(K/Q)| = [Q(λ1, ..., λn, ζ) : Q], φ(p) = [Q(µ1, ..., µn, ζ) : Q(µ1, ..., µn)],

and |G(L/Q)| = [Q(µ1, ..., µn) : Q], so that |G(K/Q)| = φ(p)|G(L/Q)| implies that

Q(λ1, ..., λn, ζ) = Q(µ1, ..., µn, ζ). Thus

G = G(Q(λ1, ..., λn, ζ)/Q(µ1, ..., µn)) = G(Q(µ1, ..., µn, ζ)/Q(µ1, ..., µn)) ∼= G(
Q(ζ)

Q
) ,

so G is isomorphic to Rp, the multiplicative group of residue classes modulo p. Moreover

G is cyclic, and let us say is generated by σ, an element of order φ(p) = p− 1. Note that σ

is determined by its action σ(ζ) = ζi, say, and the fact that it fixes all the µj , 1 ≤ j ≤ n.

Let λj be a root of the equation λp
j = µj , (j = 1, 2, ..., n).
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Claim: σ fixes λjζ
l, for some l = l(j) for each j = 1, 2, ..., n.

Proof: First, we know σ(λj) = λjζ
t, for some t = t(j), j = 1, 2, ..., n, since λp

j = µj . Let

l be the solution of the congruence (i − 1)l ≡ −t mod p. Then

σ(λjζ
l) = σ(λj)σ(ζl) = λjζ

tζil = λjζ
t+il = λjζ

l,

and we have the desired l, proving the claim.

Since σ generates G we must have that λjζ
l ∈ Q(µ1, ..., µn), j = 1, 2, ..., n. Let us

denote λjζ
l by λ′

j (j = 1, 2, ..., n). Notice that if τ ∈ G(Q(λ1, ..., λn, ζ)/Q), then

[τ(λ′
j)]

p = τ((λ′
j)

p) = τ(µj) = µk, for some k ∈ {1, ..., n}.

So τ(λ′
j) = λ′

kζs, for some s. Therefore λ′
kζs ∈ Q(µ1, ..., µn), but λ′

k ∈ Q(µ1, ..., µn), so

ζs ∈ Q(µ1, ..., µn). Hence, τ(λ′
j) = λ′

k, and we conclude τ just permutes λ′
1, ..., λ

′
n. Then

if h(x) = (x− λ′
1) · · · (x− λ′

n) we must have h(x) ∈ Q[x] as before, and f(xp) has a factor

of degree n.

For the following result, where m = p is an odd prime, we retain all the notation and

hypotheses from Theorem 1, i.e. f(x) has roots µi, λp
i = µi, 1 ≤ i ≤ n, and ζ is a pth root

of unity, ζ 6= 1.

Theorem 2: Let f(x) be an irreducible polynomial of degree n in Q[x], let p be an

odd prime, and suppose Q(λ1, ..., λn) ∩ Q(ζ) = Q for some choice λ1, ..., λn of n roots of

f(xp), where λp
i = µi, 1 ≤ i ≤ n. Then f(xp) has a factor of degree n in Q[x] if and only

if G = G(Q(λ1, ..., λn, ζ)/Q(µ1, ..., µn)) is abelian.

Proof: We already saw in the first part of the proof of Theorem 1 that if f(xp) has a factor

of degree n, with roots ν1, ..., νn then Q(ν1, ..., νn) = Q(µ1, ..., µn). We also saw there that

Q(ν1, ..., νn, ζ) = Q(λ1, ..., λn, ζ). Then we have G = G(Q(λ1, ..., λn, ζ)/Q(µ1, ..., µn)) =

G(Q(ν1, ..., νn, ζ)/Q(ν1, ..., νn)) ∼= Rp, and therefore G is abelian.

Conversely, assume that G is abelian, and take λ1, ..., λn as stated in the hypotheses

of the theorem.

5



We know that Q(µ1, ..., µn) ⊂ Q(λ1, ..., λn). If Q(µ1, ..., µn) 6= Q(λ1, ..., λn) then we

also know there exists σ ∈ G, and λi for some i, 1 ≤ i ≤ n, such that σ(λi) = ζsλi, where

p does not divide s (since λp
i is left fixed by σ).

Let τ ∈ G(Q(λ1, ..., λn, ζ)/Q(λ1, ..., λn)) be such that τ(ζ) = ζt, where p does not

divide t − 1, then

στ(λi) = σ(λi) = ζsλi

and τσ(λi) = τ(ζsλi) = τ(ζ)sλi = ζstλi .

If now ζsλi = ζstλi then ζs(t−1) = 1, but then p divides s(t− 1). This contradiction would

imply στ 6= τσ, for some σ, τ ∈ G, and then G would be non-abelian. So we must have

that Q(λ1, ..., λn) = Q(µ1, ..., µn).

Now we can proceed as in Theorem 1, however we give another argument:

Q(µ1, ..., µn) = Q(λ1, ..., λn)
|

Q(λi)
|

Q(µi)
|
Q

In the tower of fields above we know Q(µi) ⊂ Q(λi). If Q(µi) 6= Q(λi), then there ex-

ists ρ ∈ G(Q(µ1, ..., µn)/Q(µi)) such that ρ(λi) = ζrλi, where p does not divide r. But λi ∈

Q(µ1, ..., µn) implies ρ(λi) ∈ ρ(Q(µ1, ..., µn)) = Q(µ1, ..., µn), then ζrλi ∈ Q(µ1, ..., µn) =

Q(λ1, ..., λn) so ζr ∈ Q(λ1, ..., λn). But we assumed Q(λ1, ..., λn) ∩ Q(ζ) = Q. So we

must have that Q(λi) = Q(µi). Also, [Q(λi) : Q] = [Q(λi) : Q(µi)][Q(µi) : Q], so

[Q(λi) : Q] = n, the degree of Irr(λi,Q, x) is n and Irr(λi,Q, x) divides f(xp) so we have

proved the theorem.

We would like to know if the last theorem can be improved upon by allowing p = 2

or Q(λ1, ..., λn)∩Q(ζ) 6= Q. Thus we ask whether G(Q(λ1, ..., λn, ζ)/Q(µ1, ..., µn)) being

abelian forces f(xp) to have a factor of degree n in Q[x].

The answer is seen to be no, by considering the following two counterexamples:
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For p = 2 take f(x) = x2−2 with ζ = −1 then we find that G(Q(λ1, λ2, ζ)/Q(µ1, µ2))

= G(Q( 4
√

2, i)/Q(
√

2)) is abelian, but x4 − 2 has no factor of degree 2 in Q[x].

Take f(x) = x2+3 where m = p = 3 and ζ = −1+
√
−3

2 then G(Q(λ1, λ2, ζ)/Q(µ1, µ2))

= G(Q( 6
√
−3, ζ)/Q(

√
−3)) is abelian, but x6 + 3 has no factor of degree 2 in Q[x], and

note that Q(λ1, λ2) ∩ Q(ζ) 6= Q.

Theorem 2 also does not extend to the non-prime case. We see this when we take

m = 4 and f(x) = x2 − 14x + 1. Then x8 − 14x4 + 1 has no factor of degree 2 although

G(Q(λ1, λ2, ζ)/Q(µ1, µ2)) = G(Q(
4

√

7 + 4
√

3,
4

√

7 − 4
√

3, i)/Q(
√

3)) is abelian.
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