A Galois Approach to m th Roots of Matrices
 with Rational Entries

Robert Reams
Programs in Mathematical Sciences
The University of Texas at Dallas
Box 830688, Richardson, Texas 75083-0688

Abstract

Let A be a given $n \times n$ matrix with rational entries and irreducible characteristic polynomial $f(x)$. We investigate the Galois groups of $f(x)$ and $f\left(x^{m}\right)$, to find necessary and sufficient conditions for the existence of a solution B to the matrix equation $A=B^{m}$, where B is also a matrix with rational entries. We do this by finding necessary and sufficient conditions that $f\left(x^{m}\right)$ has a factor of degree n (with rational coefficients).

Introduction

We concern ourselves with finding matrix solutions B to the equation $A=g(B)$, where A is some given matrix and $g(x)$ is a polynomial. Previous work has been done by other authors (see for instance [1] and [4]) where all the matrices have entries from an arbitrary field, or just complex entries. We look at the situation where all the entries of A are rational i.e. $A \in M_{n}(\mathbf{Q})$, and the characteristic polynomial of A, namely $f(x)$, is irreducible. Then by using Galois theory and looking at the structure of the Galois groups of $f(x)$ and $f\left(x^{m}\right)$, we find conditions on these groups that the matrix A has an m th root $B \in M_{n}(\mathbf{Q})$, under certain fairly general restrictions. First we prove a proposition due to T. J. Laffey and B. Cain, previously unpublished, and which provides the motivation for what follows.

Proposition: Let \mathbf{F} be a field and $A \in M_{n}(\mathbf{F})$ have irreducible characteristic polynomial $f(x)$. Let $g(x) \in \mathbf{F}[x]$. Then the equation $g(B)=A$ is solvable for $B \in M_{n}(\mathbf{F})$ if and only if $f(g(x))$ has a factor of degree n in $\mathbf{F}[x]$.
Proof: Suppose such a B exists and let $m(x)$ be its minimal polynomial. Since $\mathbf{F}[B]$ contains $\mathbf{F}[A], m(x)$ has degree n. Also, $f(g(B))=f(A)=0$, so $m(x)$ divides $f(g(x))$.

Conversely, let $h(x)$ be a factor of $f(g(x))$ of degree n, and let C be the companion matrix of $h(x)$. Then $f(g(C))=0$, and since $f(x)$ is irreducible and has degree n, it follows that $g(C)$ is similar to the companion matrix of $f(x)$ and thus $g(C)$ is similar to A, say $T^{-1} g(C) T=A$, where $T \in G L(n, \mathbf{F})$. But then $g\left(T^{-1} C T\right)=A$, and so take $B=T^{-1} C T$.

In consequence of this proposition we may (and will) concentrate on the existence of a factor of $f(g(x))$ of degree n. We now prove two theorems, restricted to the case where $g(x)=x^{m}$, and include some counterexamples to show that there are some directions in which the results cannot be improved. We will use the notation that $|G|$ denotes the order of a group G, and $G(K / k)$ is the Galois group of the extension K over k.

Theorem 1: Let m, n be natural numbers, m odd, and $A \in M_{n}(\mathbf{Q})$ have irreducible characteristic polynomial $f(x)$. Let $\mu_{i}, 1 \leq i \leq n$, be the roots of $f(x)$, and for some choice $\lambda_{1}, \ldots, \lambda_{n}$ of n roots of $f\left(x^{m}\right)$, where $\lambda_{i}^{m}=\mu_{i}, 1 \leq i \leq n$, suppose that $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cap$ $\mathbf{Q}(\zeta)=\mathbf{Q}$, where $\zeta=e^{\frac{2 \pi i}{m}}$. Then the following are equivalent:
(i) the equation $A=B^{m}$ is solvable with $B \in M_{n}(\mathbf{Q})$,
(ii) $f\left(x^{m}\right)$ has a factor of degree n in $\mathbf{Q}[x]$,
(iii) $|G(K / \mathbf{Q})|=\phi(m)|G(L / \mathbf{Q})|$,
where $\phi(\cdot)$ is Euler's ϕ-function, K is the splitting field for $f\left(x^{m}\right)$ over \mathbf{Q} and L is the splitting field for $f(x)$ over \mathbf{Q}.
Proof: That (i) is equivalent to (ii) follows from the proposition, with $g(x)=x^{m}$.
To prove that (ii) implies (iii), let $h(x) \in \mathbf{Q}[x]$ be a factor of degree n of $f\left(x^{m}\right)$ and let us say $h(x)=\left(x-\nu_{1}\right)\left(x-\nu_{2}\right) \cdots\left(x-\nu_{n}\right)$, where $\nu_{i} \in \overline{\mathbf{Q}}, 1 \leq i \leq n$.

Then $f\left(\nu_{1}^{m}\right)=0$, so that $\nu_{1}^{m}=\mu_{i}$, for some $i \in\{1,2, \ldots, n\}$. But since $\left[\mathbf{Q}\left(\nu_{1}\right)\right.$: $\mathbf{Q}]=\left[\mathbf{Q}\left(\nu_{1}\right): \mathbf{Q}\left(\mu_{i}\right)\right]\left[\mathbf{Q}\left(\mu_{i}\right): \mathbf{Q}\right]$ and $\left[\mathbf{Q}\left(\mu_{i}\right): \mathbf{Q}\right]=n$, this implies $\left[\mathbf{Q}\left(\nu_{1}\right): \mathbf{Q}\right]=n$, so $h(x) \in \mathbf{Q}[x]$ must be irreducible and so the roots $\nu_{i}, 1 \leq i \leq n$ must be distinct. We also have that $\nu_{i}^{m}, 1 \leq i \leq n$ must be distinct, since suppose not, then $\nu_{i}^{m}=\nu_{j}^{m}$, for some $i \neq j$, which implies $\nu_{i}=\zeta^{r} \nu_{j}$, for some $r \in\{0,1,2, \ldots, m-1\}$. Now $\nu_{i}^{m}=\mu_{k_{i}}, \nu_{j}^{m}=\mu_{k_{j}}$ for some $\mu_{k_{i}}, \mu_{k_{j}} \in\left\{\mu_{1}, \ldots, \mu_{n}\right\}$, and $\left[\mathbf{Q}\left(\nu_{i}\right): \mathbf{Q}\right]=\left[\mathbf{Q}\left(\nu_{i}\right): \mathbf{Q}\left(\mu_{k_{i}}\right)\right]\left[\mathbf{Q}\left(\mu_{k_{i}}\right): \mathbf{Q}\right]$ implies $\mathbf{Q}\left(\nu_{i}\right)=\mathbf{Q}\left(\mu_{k_{i}}\right)$ so $\nu_{i} \in \mathbf{Q}\left(\mu_{k_{i}}\right)$ and similarly $\nu_{j} \in \mathbf{Q}\left(\mu_{k_{j}}\right)$. But $\zeta^{r} \nu_{j}, \nu_{j} \in \mathbf{Q}\left(\mu_{k_{i}}, \mu_{k_{j}}\right) \subset$ $\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right) \subset \mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where $\lambda_{1}, \ldots, \lambda_{n}$ are as in the hypotheses of the theorem. Thus $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cap \mathbf{Q}(\zeta)=\mathbf{Q}$ and therefore $\zeta^{r}=1$, then $\nu_{i}=\nu_{j}$, contradiction.

Thus $\quad f\left(x^{m}\right)=\left(x^{m}-\nu_{1}^{m}\right) \cdots\left(x^{m}-\nu_{n}^{m}\right)=\left(x-\nu_{1}\right)\left(x-\zeta \nu_{1}\right) \cdots\left(x-\zeta^{m-1} \nu_{1}\right)$

$$
\left(x-\nu_{2}\right)\left(x-\zeta \nu_{2}\right) \cdots\left(x-\zeta^{m-1} \nu_{2}\right)
$$

\vdots

$$
\left(x-\nu_{n}\right)\left(x-\zeta \nu_{n}\right) \cdots\left(x-\zeta^{m-1} \nu_{n}\right)
$$

By definition $\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}\right)$ is the splitting field for $h(x)$, and is therefore a Galois extension. Similarly, $\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}, \zeta\right)$ is the splitting field for $f\left(x^{m}\right)$ and also a Galois extension. (Note that $\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}, \zeta\right)=K=\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right)$ by unique factorization of $f\left(x^{m}\right)$ in $\left.\overline{\mathbf{Q}}[x]\right)$. Thus we have the tower of fields:

and

$$
|G(K / \mathbf{Q})|=\left[\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}, \zeta\right): \mathbf{Q}\right]=\left[\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}, \zeta\right): \mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}\right)\right]\left[\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}\right): \mathbf{Q}\right](*)
$$

Since (again) $\left[\mathbf{Q}\left(\nu_{i}\right): \mathbf{Q}\right]=\left[\mathbf{Q}\left(\nu_{i}\right): \mathbf{Q}\left(\mu_{i}\right)\right]\left[\mathbf{Q}\left(\mu_{i}\right): \mathbf{Q}\right]$, where $\mu_{i}=\nu_{i}^{m}, 1 \leq i \leq n$, we deduce as before that $\mathbf{Q}\left(\nu_{i}\right)=\mathbf{Q}\left(\mu_{i}\right)$, for each $i, 1 \leq i \leq n$. Thus $\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}\right)=$ $\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)=L$, and so

$$
\left[\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}\right): \mathbf{Q}\right]=\left[\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right): \mathbf{Q}\right]=|G(L / \mathbf{Q})| .
$$

We assumed $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cap \mathbf{Q}(\zeta)=\mathbf{Q}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are as in the statement of the theorem, and we know $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \supset \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)=\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}\right)$ so $\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}\right) \cap$ $\mathbf{Q}(\zeta)=\mathbf{Q}$, giving $G\left(\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}, \zeta\right) / \mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}\right)\right) \cong G(\mathbf{Q}(\zeta) / \mathbf{Q})$ [3, p.305]. Then from (*) we get

$$
|G(K / \mathbf{Q})|=\phi(m)|G(L / \mathbf{Q})|, \text { which is (iii). }
$$

Conversely, to prove that (iii) implies (ii), we have $f(x)=\left(x-\mu_{1}\right) \cdots\left(x-\mu_{n}\right)$, so $f\left(x^{m}\right)=\left(x^{m}-\mu_{1}\right) \cdots\left(x^{m}-\mu_{n}\right)=\Pi_{j=1}^{n}\left(x-\lambda_{j}\right)\left(x-\zeta \lambda_{j}\right) \cdots\left(x-\zeta^{m-1} \lambda_{j}\right)$, where $\lambda_{j}^{m}=\mu_{j}, 1 \leq j \leq n$, and $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cap \mathbf{Q}(\zeta)=\mathbf{Q}$.

Now consider the tower of fields:

We know $\left[\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right): \mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right]=\phi(m),\left[\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right): \mathbf{Q}\right]=|G(L / \mathbf{Q})|$, and $\left[\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right): \mathbf{Q}\right]=|G(K / \mathbf{Q})|$, and since we're given $|G(K / \mathbf{Q})|=\phi(m)|G(L / \mathbf{Q})|$, we must have that $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)$.

Therefore $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a Galois extension of \mathbf{Q}, and $\tau\left(\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)=\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, for all $\tau \in G\left(\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right) / \mathbf{Q}\right)$. We know $f^{\tau}\left(x^{m}\right)=f\left(x^{m}\right)$, since all the coefficients of $f(x)$ are in \mathbf{Q}, then by unique factorization in $\overline{\mathbf{Q}}[x]$ we know τ just permutes the roots of
$f\left(x^{m}\right)$. But τ must also just permute $\lambda_{1}, \ldots, \lambda_{n}$ since if $\tau\left(\lambda_{i}\right)=\zeta^{s} \lambda_{j} \in \mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ then $\zeta^{s} \in \mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, but $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cap \mathbf{Q}(\zeta)=\mathbf{Q}$, so we must have that $\zeta^{s}=1$ (as m is odd). Let $h(x)=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right)$, then $h^{\tau}(x)=h(x)$, for all $\tau \in G\left(\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right) / \mathbf{Q}\right)$, so $h(x) \in \mathbf{Q}[x]$ and we have the desired factor.

Discussion of Theorem 1: Notice that the fact that (i) is equivalent to (ii) did not require that $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cap \mathbf{Q}(\zeta)=\mathbf{Q}$ for some choice of $\lambda_{1}, \ldots, \lambda_{n}$, as stated in the theorem. Also, Theorem 1 does not hold when $m=2$, since consider $f(x)=x^{3}+3$ then it is easy to check that $|G(K / \mathbf{Q})|=|G(L / \mathbf{Q})|$ (here $\phi(2)=1$) and $f\left(x^{2}\right)$ has no factor of degree 3 in $\mathbf{Q}[x]$, (see [2] for a consideration of the Galois group of a polynomial of form $\left.f\left(x^{2}\right)\right)$.

It is not difficult to see that to prove (ii) implies (iii), it would have been sufficient to assume in the hypotheses of the theorem that $\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right) \cap \mathbf{Q}(\zeta)=\mathbf{Q}$.

To prove (iii) implies (ii) in the special case of $m=p$ an odd prime, it again is sufficient to assume $\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right) \cap \mathbf{Q}(\zeta)=\mathbf{Q}$ in the statement of the theorem, though it is necessary to change the argument as follows: we know

$$
\begin{aligned}
& {\left[\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right): \mathbf{Q}\right]=\left[\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right): \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}, \zeta\right)\right] } \\
& \times\left[\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}, \zeta\right): \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)\right]\left[\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right): \mathbf{Q}\right]
\end{aligned}
$$

where $\lambda_{i}^{p}=\mu_{i}, 1 \leq i \leq n$, and λ_{i} are any $p^{\text {th }}$ roots of μ_{i}.
But $|G(K / \mathbf{Q})|=\left[\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right): \mathbf{Q}\right], \phi(p)=\left[\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}, \zeta\right): \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)\right]$, and $|G(L / \mathbf{Q})|=\left[\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right): \mathbf{Q}\right]$, so that $|G(K / \mathbf{Q})|=\phi(p)|G(L / \mathbf{Q})|$ implies that $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right)=\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}, \zeta\right)$. Thus

$$
G=G\left(\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right) / \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)=G\left(\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}, \zeta\right) / \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)\right) \cong G\left(\frac{\mathbf{Q}(\zeta)}{\mathbf{Q}}\right)
$$

so G is isomorphic to R_{p}, the multiplicative group of residue classes modulo p. Moreover G is cyclic, and let us say is generated by σ, an element of order $\phi(p)=p-1$. Note that σ is determined by its action $\sigma(\zeta)=\zeta^{i}$, say, and the fact that it fixes all the $\mu_{j}, 1 \leq j \leq n$.

Let λ_{j} be a root of the equation $\lambda_{j}^{p}=\mu_{j},(j=1,2, \ldots, n)$.

Claim: σ fixes $\lambda_{j} \zeta^{l}$, for some $l=l(j)$ for each $j=1,2, \ldots, n$.
Proof: First, we know $\sigma\left(\lambda_{j}\right)=\lambda_{j} \zeta^{t}$, for some $t=t(j), j=1,2, \ldots, n$, since $\lambda_{j}^{p}=\mu_{j}$. Let l be the solution of the congruence $(i-1) l \equiv-t \bmod p$. Then

$$
\sigma\left(\lambda_{j} \zeta^{l}\right)=\sigma\left(\lambda_{j}\right) \sigma\left(\zeta^{l}\right)=\lambda_{j} \zeta^{t} \zeta^{i l}=\lambda_{j} \zeta^{t+i l}=\lambda_{j} \zeta^{l}
$$

and we have the desired l, proving the claim.
Since σ generates G we must have that $\lambda_{j} \zeta^{l} \in \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right), j=1,2, \ldots, n$. Let us denote $\lambda_{j} \zeta^{l}$ by $\lambda_{j}^{\prime}(j=1,2, \ldots, n)$. Notice that if $\tau \in G\left(\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right) / \mathbf{Q}\right)$, then

$$
\left[\tau\left(\lambda_{j}^{\prime}\right)\right]^{p}=\tau\left(\left(\lambda_{j}^{\prime}\right)^{p}\right)=\tau\left(\mu_{j}\right)=\mu_{k}, \text { for some } k \in\{1, \ldots, n\} .
$$

So $\tau\left(\lambda_{j}^{\prime}\right)=\lambda_{k}^{\prime} \zeta^{s}$, for some s. Therefore $\lambda_{k}^{\prime} \zeta^{s} \in \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)$, but $\lambda_{k}^{\prime} \in \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)$, so $\zeta^{s} \in \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)$. Hence, $\tau\left(\lambda_{j}^{\prime}\right)=\lambda_{k}^{\prime}$, and we conclude τ just permutes $\lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}$. Then if $h(x)=\left(x-\lambda_{1}^{\prime}\right) \cdots\left(x-\lambda_{n}^{\prime}\right)$ we must have $h(x) \in \mathbf{Q}[x]$ as before, and $f\left(x^{p}\right)$ has a factor of degree n.

For the following result, where $m=p$ is an odd prime, we retain all the notation and hypotheses from Theorem 1, i.e. $f(x)$ has roots $\mu_{i}, \lambda_{i}^{p}=\mu_{i}, 1 \leq i \leq n$, and ζ is a $p^{\text {th }}$ root of unity, $\zeta \neq 1$.

Theorem 2: Let $f(x)$ be an irreducible polynomial of degree n in $\mathbf{Q}[x]$, let p be an odd prime, and suppose $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cap \mathbf{Q}(\zeta)=\mathbf{Q}$ for some choice $\lambda_{1}, \ldots, \lambda_{n}$ of n roots of $f\left(x^{p}\right)$, where $\lambda_{i}^{p}=\mu_{i}, 1 \leq i \leq n$. Then $f\left(x^{p}\right)$ has a factor of degree n in $\mathbf{Q}[x]$ if and only if $G=G\left(\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right) / \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)$ is abelian.

Proof: We already saw in the first part of the proof of Theorem 1 that if $f\left(x^{p}\right)$ has a factor of degree n, with roots ν_{1}, \ldots, ν_{n} then $\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}\right)=\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)$. We also saw there that $\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}, \zeta\right)=\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right)$. Then we have $G=G\left(\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right) / \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)=$ $G\left(\mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}, \zeta\right) / \mathbf{Q}\left(\nu_{1}, \ldots, \nu_{n}\right)\right) \cong R_{p}$, and therefore G is abelian.

Conversely, assume that G is abelian, and take $\lambda_{1}, \ldots, \lambda_{n}$ as stated in the hypotheses of the theorem.

We know that $\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right) \subset \mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. If $\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right) \neq \mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ then we also know there exists $\sigma \in G$, and λ_{i} for some $i, 1 \leq i \leq n$, such that $\sigma\left(\lambda_{i}\right)=\zeta^{s} \lambda_{i}$, where p does not divide s (since λ_{i}^{p} is left fixed by σ).

Let $\tau \in G\left(\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right) / \mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)$ be such that $\tau(\zeta)=\zeta^{t}$, where p does not divide $t-1$, then

$$
\begin{aligned}
\sigma \tau\left(\lambda_{i}\right) & =\sigma\left(\lambda_{i}\right)=\zeta^{s} \lambda_{i} \\
\text { and } \tau \sigma\left(\lambda_{i}\right) & =\tau\left(\zeta^{s} \lambda_{i}\right)=\tau(\zeta)^{s} \lambda_{i}=\zeta^{s t} \lambda_{i} .
\end{aligned}
$$

If now $\zeta^{s} \lambda_{i}=\zeta^{s t} \lambda_{i}$ then $\zeta^{s(t-1)}=1$, but then p divides $s(t-1)$. This contradiction would imply $\sigma \tau \neq \tau \sigma$, for some $\sigma, \tau \in G$, and then G would be non-abelian. So we must have that $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)$.

Now we can proceed as in Theorem 1, however we give another argument:

In the tower of fields above we know $\mathbf{Q}\left(\mu_{i}\right) \subset \mathbf{Q}\left(\lambda_{i}\right)$. If $\mathbf{Q}\left(\mu_{i}\right) \neq \mathbf{Q}\left(\lambda_{i}\right)$, then there exists $\rho \in G\left(\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right) / \mathbf{Q}\left(\mu_{i}\right)\right)$ such that $\rho\left(\lambda_{i}\right)=\zeta^{r} \lambda_{i}$, where p does not divide r. But $\lambda_{i} \in$ $\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)$ implies $\rho\left(\lambda_{i}\right) \in \rho\left(\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)=\mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)$, then $\zeta^{r} \lambda_{i} \in \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)=$ $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ so $\zeta^{r} \in \mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. But we assumed $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cap \mathbf{Q}(\zeta)=\mathbf{Q}$. So we must have that $\mathbf{Q}\left(\lambda_{i}\right)=\mathbf{Q}\left(\mu_{i}\right)$. Also, $\left[\mathbf{Q}\left(\lambda_{i}\right): \mathbf{Q}\right]=\left[\mathbf{Q}\left(\lambda_{i}\right): \mathbf{Q}\left(\mu_{i}\right)\right]\left[\mathbf{Q}\left(\mu_{i}\right): \mathbf{Q}\right]$, so $\left[\mathbf{Q}\left(\lambda_{i}\right): \mathbf{Q}\right]=n$, the degree of $\operatorname{Irr}\left(\lambda_{i}, \mathbf{Q}, x\right)$ is n and $\operatorname{Irr}\left(\lambda_{i}, \mathbf{Q}, x\right)$ divides $f\left(x^{p}\right)$ so we have proved the theorem.

We would like to know if the last theorem can be improved upon by allowing $p=2$ or $\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cap \mathbf{Q}(\zeta) \neq \mathbf{Q}$. Thus we ask whether $G\left(\mathbf{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \zeta\right) / \mathbf{Q}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)$ being abelian forces $f\left(x^{p}\right)$ to have a factor of degree n in $\mathbf{Q}[x]$.

The answer is seen to be no, by considering the following two counterexamples:

For $p=2$ take $f(x)=x^{2}-2$ with $\zeta=-1$ then we find that $G\left(\mathbf{Q}\left(\lambda_{1}, \lambda_{2}, \zeta\right) / \mathbf{Q}\left(\mu_{1}, \mu_{2}\right)\right)$ $=G(\mathbf{Q}(\sqrt[4]{2}, i) / \mathbf{Q}(\sqrt{2}))$ is abelian, but $x^{4}-2$ has no factor of degree 2 in $\mathbf{Q}[x]$.

Take $f(x)=x^{2}+3$ where $m=p=3$ and $\zeta=\frac{-1+\sqrt{-3}}{2}$ then $G\left(\mathbf{Q}\left(\lambda_{1}, \lambda_{2}, \zeta\right) / \mathbf{Q}\left(\mu_{1}, \mu_{2}\right)\right)$ $=G(\mathbf{Q}(\sqrt[6]{-3}, \zeta) / \mathbf{Q}(\sqrt{-3}))$ is abelian, but $x^{6}+3$ has no factor of degree 2 in $\mathbf{Q}[x]$, and note that $\mathbf{Q}\left(\lambda_{1}, \lambda_{2}\right) \cap \mathbf{Q}(\zeta) \neq \mathbf{Q}$.

Theorem 2 also does not extend to the non-prime case. We see this when we take $m=4$ and $f(x)=x^{2}-14 x+1$. Then $x^{8}-14 x^{4}+1$ has no factor of degree 2 although $G\left(\mathbf{Q}\left(\lambda_{1}, \lambda_{2}, \zeta\right) / \mathbf{Q}\left(\mu_{1}, \mu_{2}\right)\right)=G(\mathbf{Q}(\sqrt[4]{7+4 \sqrt{3}}, \sqrt[4]{7-4 \sqrt{3}}, i) / \mathbf{Q}(\sqrt{3}))$ is abelian.

Acknowledgements

These results are taken from the author's Ph.D. thesis at University College Dublin, Ireland, where his advisor Thomas J. Laffey contributed the proposition at the beginning.

References

[1] E. C. Evard and F. Uhlig, On the Matrix Equation $f(X)=A$, Linear Algebra Appl., $162 \backslash 164: 447-517$ (1992).
[2] R. Gow, Construction of Some Wreath Products as Galois Groups of Normal Real Extensions of the Rationals, Journal of Number Theory, 24:360-372 (1986).
[3] S. Lang, Algebra, Addison-Wesley, Menlo Park, California, 1984.
[4] D. E. Otero, Extraction of m th Roots in Matrix Rings over Fields, Linear Algebra Appl., 128:1-26 (1990).

