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Let T be an arbitrary n × n matrix with real entries. We consider the set of all matrices

with a given complex number as an eigenvalue, as well as being given the corresponding left

and right eigenvectors. We find the closest matrix A, in Frobenius norm, in this set to the

matrix T . The normal cone to a matrix in this set is also obtained. We then investigate the

problem of determining the closest “doubly stochastic” (i.e. Ae = e and eT A = eT , but

not necessarily nonnegative) matrix A to T , subject to the constraints eT
1 Ake1 = eT

1 T ke1,

for k = 1, 2, ... A complete solution is obtained via alternating projections on convex sets

for the case k = 1, including when the matrix is nonnegative.

* Correspondence to T. L. Hayden, Department of Mathematics, University of Kentucky, Lexing-

ton, KY 40506, U.S.A.

1. Introduction

Let e be the n×1 vector of all ones, i.e. e = (1, 1, ..., 1)T , and let ei denote the vector

with a one in the ith position and zeros elsewhere. Let A be an n × n matrix with real

entries, then we shall say that A is RC1 if Ae = e and eT A = eT (A has row and column

sums equal to one). If an RC1 matrix A also has each of its entries nonnegative then A

is doubly stochastic (DS). A matrix which satisfies the first moment is said to be M1, a

nonnegative matrix is said to be NN .

Professor Zhaojun Bai suggested the following problem (whose application is described

in the succeeding paragraph): Given a tridiagonal matrix T , how do you find the closest

RC1 (not necessarily tridiagonal) matrix A to T , where you are also required to keep as

many of the moments fixed as possible, i.e. eT
1 Ake1 = eT

1 T ke1, k = 1, 2, ..., for as many k

values as possible.

The motivation for this problem arose from numerical simulation of large linear semi-

conductor circuit networks. In the model order reduction techniques for the approximation

of the Laplace-domain transfer function of a linear network, a recent numerically stable
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algorithm is proposed for computing a Padé approximation using the Lanczos process [5].

The Lanczos process produces a tridiagonal matrix, which can be regarded as a low order

approximation to the linear system matrix describing the large linear network. The tridi-

agonal matrix T is the best approximation in the sense of matching the maximal number

of moments. Suppose the original system matrix is RC1, then the n×n tridiagonal matrix

T is in general not RC1. We would like to find the closest RC1 n× n matrix A to T , and

at the same time match the moments. We will not restrict ourselves to the case where T

is tridiagonal.

Cheney and Goldstein [4] showed that alternating projections (to the respective near-

est point) on two closed convex sets will converge to a point in the intersection, but not

necessarily the nearest point to the given starting point. If the intersection is empty, the

iterates converge to two points in the respective convex sets (oscillating between them),

which are closest and give the distance between the sets. Boyle and Dykstra [3] (see also

Gaffke and Mathar [6]) generalized the simple alternating projections with a modified al-

gorithm which converges to the nearest point in the intersection (of a finite number of

convex sets) to the original point. See [1] for a recent survey article.

In Section 2 we give an explicit form for the closest matrix, with a prescribed eigenvalue

and corresponding right and left eigenvectors, to a given matrix. The RC1 matrices form

a special case for this result. We determine, in Section 3, the normal cone to the set of

these same matrices. Section 4 gives an algorithm (similar to the treatment in [7]) to find

the closest RC1 matrix, with the same first moment as the given matrix T , including the

nonnegative (doubly stochastic) case. Section 5 provides computational evidence of the

algorithms effectiveness.

2. The closest RC1 matrix

We first derive a result which includes the RC1 matrices as a special case. Suppose the

vectors x, y and the complex number λ are given. We give an explicit form for the closest

matrix A with right and left eigenvectors x and y, corresponding to the eigenvalue λ, to

a given matrix T . By “closest” we mean using the Frobenius norm ||X|| =
√

trace(XT X)

induced by the inner product < X, Y >= trace(XT Y ). Observe that the set of matrices

K = {Z ∈ Rn×n|Zx = λx, yT Z = λyT } is a convex set, i.e. given Z1 and Z2 in K, then

for any t ∈ [0, 1], it follows from the definition of K that tZ1 + (1 − t)Z2 ∈ K. Further,

recall that for any point T outside a (closed) convex subset C of a Hilbert space there is

a unique nearest point A in C to T [2].

To find the explicit form for the closest (in Frobenius norm) matrix A to a given

matrix T , we minimize the function f(T ) = ||A− T ||2 subject to the constraints Ax = λx
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and yT A = λyT .

The Kuhn-Tucker conditions yield

2(A − T ) + 2αxT + 2yβT = O,

where 2α and 2β are the vectors of Lagrange multipliers. We must now solve simultaneously

the three equations A = T − αxT − yβT , Ax = λx and yT A = λyT .

Substituting A into the latter two constraint equations above, and assuming without

loss of generality that ||x||2 = ||y||2 = 1, we are left with the problem of solving for

[

α
β

]

in the matrix equation

[

I yxT

xyT I

] [

α
β

]

=

[

Tx − λx
TT y − λy

]

.

It is easy to check (say, by calculating the characteristic polynomial using Schur comple-

ments) that the matrix

[

I yxT

xyT I

]

has 2(n − 2) eigenvalues equal to 1, one eigenvalue

equal to 2 and one eigenvalue equal to 0. We must find a particular solution

[

α
β

]

which

produces the closest matrix A.

Multiplying both sides on the left by

[

I −yxT

−xyT I

]

, we obtain a matrix equation

which is easier to solve, namely

[

I − yyT O
O I − xxT

] [

α
β

]

=

[

(I − yyT )(Tx − λx)
(I − xxT )(T T y − λyT )

]

.

This clearly has the general solution (note: the nullspace is now two dimensional)

[

α
β

]

=

[

Tx − λx + µ1y
TT y − λy + µ2x

]

,

for arbitrary µ1 and µ2.

After substituting this general solution into our original matrix equation, we find that

we must also have µ1 + µ2 + yT Tx − λyTx = 0. Writing ν1 = µ1 + (1/2)(yTTx − λyT x)

and ν2 = µ2 + (1/2)(yT Tx− λyTx), so ν1 + ν2 = 0 or with ν = ν1 = −ν2 we find that the

general solution for our original matrix equation is

[

α
β

]

=

[

Tx − λx − (1/2)(yTTx − λyT x)y
TT y − λy − (1/2)(yTTx − λyT x)x

]

+ ν

[

y
−x

]

.

After substituting α = Tx − λx − (1/2)(yTTx − λyT x)y and β = T T y − λy −
(1/2)(yTTx − λyT x)x into A = T − αxT − yβT and rearranging we obtain

A = λI + (I − yyT )(T − λI)(I − xxT ).
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The following theorem shows that the matrix A is the nearest matrix, with left and

right eigenvectors x and y and corresponding eigenvalue λ, to the given matrix T .

Theorem 2.1. Let T be an n×n matrix with real entries. Let x and y be n×1 unit vectors

with real entries and λ a complex number. Let K = {Z ∈ Rn×n|Zx = λx, yT Z = λy}.
Then the matrix A given by

A = λI + (I − yyT )(T − λI)(I − xxT )

is in K, and satisfies the requirement that ||T − A|| ≤ ||T − Z|| for all matrices Z in K.

Proof It is easy to check that Ax = λx and yT A = λyT . The near point of a convex set

is characterized by requiring that ([6],[9])

< T − near point, Z − near point > ≤ 0, for all Z ∈ K. (1)

If Z is an arbitrary matrix in K we have
< T − A, Z − A > =< T − λI − (I − yyT )(T − λI)(I − xxT ), Z − A >,

=< T − λI, Z − A > − < (I − yyT )(T − λI)(I − xxT ), Z − A >,

=< T − λI, Z − A > − < T − λI, (I − yyT )(Z − A)(I − xxT ) >,

=< T − λI, Z − A > − < T − λI, Z − A >,

using the inner product properties < UV, W >=< U, WV T >=< V, UTW > and the fact

that (I − yyT )(Z − A)(I − xxT ) = Z − A. We conclude that < T − A, Z − A >= 0, and

that A is the desired nearest point.

Remark

The characterization in the inequality (1) above, showing that the matrix A is the

nearest matrix in the given convex set (in Frobenius norm) to a given arbitrary matrix T ,

is well-known. Its usefulness may also be seen by deducing the nearest matrix A = (aij) to

T = (tij) for the convex sets consisting of nonnegative matrices (take aij = max{tij , 0}),
symmetric nonnegative matrices (take aij = max{(tij + tji)/2, 0}), symmetric positive

semidefinite matrices [8], etc.

Corollary 2.2. Let T be an n×n matrix with real entries. Then the closest (in Frobenius

norm) RC1 matrix to T is given by

A =
eeT

n
+ T − 1

n
eeT T − 1

n
TeeT +

eT Te

n2
eeT

Proof The set of RC1 matrices is RC1 = {Z ∈ Rn×n|Ze = e, eT Z = eT }, thus the

corollary follows from the theorem by taking λ = 1, x =
e√
n

and y =
e√
n

.

3. Normal cones
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Notice that the set of M1 matrices, namely M1 = {Z ∈ Rn×n|eT
1 Ze1 = eT

1 Te1}, is a

closed convex set, as is the set of RC1 matrices, and the set of DS matrices. Let C be a

convex set in Rn and a ∈ C. The normal cone NC(a) [10] is defined as

NC(a) = {y ∈ Rn| < y, z− a >≤ 0 for all z ∈ C}.

It is clear that for A ∈ M1, since M1 is an affine subspace (in fact a hyperplane), the

normal cone to M1 at A is NM1
(A) = {αe1e

T
1 |α ∈ R}.

Theorem 3.1. Let x and y be n × 1 unit vectors with real entries, and λ a complex

number. Let K = {Z ∈ Rn×n|Zx = λx, yT Z = λyT }. Then if A ∈ K the normal cone

to K at A is given by

NK(A) = {B ∈ Rn×n|B = yaT + bxT , where a,b ∈ Rn}

Proof Rewriting the normal cone as

NK(A) = {T− A ∈ Rn×n| < T − A, Z − A >≤ 0, for all Z ∈ K},
we will determine all matrices T − A where A is the near point in K corresponding to T .

We know from Theorem 2.1 that the expression A = λI +(I −yyT )(T −λI)(I −xxT )

gives the near point in K corresponding to T . Notice also that A = λI + (I − yyT )(A −
λI)(I − xxT ). Subtracting these two formulas gives that

(I − yyT )(T − A)(I − xxT ) = 0. (2)

Let Q1 be the Householder matrix given by Q1 = I − 2
vvT

vT v
, where v = y + en. Then

Q1 has the properties that Q1Q1 = I, Q1 is an orthogonal matrix and Q1y = −en. We

also then have that Q1yyT Q1 = eneT
n , and Q1(I − yyT )Q1 = I − eneT

n . Similarly, let

Q2 = I − 2
wwT

wTw
, where w = x + en, then Q2(I − xxT )Q2 = I − eneT

n . Next, multiplying

on the left of equation (2) by Q1 and on the right of equation (2) by Q2, we see that

Q1(T −A)Q2 =

[

O c1

c2 d

]

, for some c1, c2 in Rn−1 and d ∈ R. Thus we conclude that the

normal cone consists of matrices of the form

B = Q1

[

O c2

c1 d

]

Q2 = Q1(−enaT − beT
n )Q2 = yaT + bxT ,

for some vectors a, b in Rn. This completes the proof.

Corollary 3.2. Let A ∈ Rn×n. If A ∈ RC1 the normal cone to RC1 at A is given by

NRC1(A) = {B ∈ Rn×n|B = eaT + beT where a,b ∈ Rn}.

Proof Follows from the theorem by taking λ = 1 and x = y =
e√
n

.
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4. RC1 and M1

In this section we will describe the procedure by which, given a matrix T , we determine the

closest (in Frobenius norm) matrix A which is both RC1 and satisfies the first moment,

i.e. A ∈ RC1 ∩ M1. In order to find this closest matrix, we will employ the algorithm of

Boyle and Dykstra. First, however, we will digress to show that RC1 ∩ M1 6= ∅, which is

an obvious necessary condition for convergence. In fact we do more than this, we show

that there exist matrices which are RC1 and satisfy the first and second moments.

To establish some notation let us write the given n × n matrix T (the matrix which

we want to approximate), in the form T =

[

t11 aT

b S

]

, where t11 ∈ R, a, b ∈ Rn−1, and

S ∈ R(n−1)×(n−1), where n ≥ 2. In this case the first and second moments are eT
1 Te1 = t11

and eT
1 T 2e1 = t211 + aTb.

If n = 2, there exist matrices which are RC1 and satisfy the first moment, but

will in general not satisfy the second moment condition. To see this consider the matrix
[

t11 1 − t11
1 − t11 t11

]

, which has its second moment completely determined.

If n ≥ 3 and t11 6= 1, take


















t11
aT b

1−t11
0 · · · 0 (1−t11)

2
−aT b

1−t11
1 − t11

0
...

. . .

0
. . .

0



















,

and if n ≥ 3 and t11 = 1, take


















1 (1/2)aT b −(1/2)aT b 0 · · · 0

1
.. .

−1
0
...

. . .

0



















,

where in the first row and column the unspecified entries (represented by dots) are all

zeros, and all other unspecified entries are arbitrary, since they do not affect the first and

second moments, except that the row and column sums must be equal to 1. Hence there

always exist matrices which are RC1 and satisfy the first and second moment constraints.

We apply Boyle and Dykstra’s alternating projections to find the nearest RC1 or doubly

stochastic matrix with given first moment to a matrix T .

Let M ∈ Rn×n. Let PRC1(M) = closest RC1 matrix to M using Corollary 2.2; P1(M)

= matrix M except that the (1, 1)-entry is set equal to t11; and PNN = closest nonnegative
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matrix to M using the remark just before Corollary 2.2. Given T ∈ Rn×n and a stopping

criterion ε the following algorithm computes the nearest X ∈ RC1∩M1 in Frobenius norm

to T .

Algorithm 4.1 Set A := T .

For i = 1, 2, 3, ... do

Set B := PRC1(A)

Set A := PM1
(B)

If ||A − B|| < ε then stop.

Next i.

Since the set of RC1 matrices is a (closed) affine subspace, and the set of M1 matrices

is affine, and thus both sets are convex, so alternately projecting on these sets will produce

the closest matrix in the intersection of these two sets, to the original matrix T , i.e. Boyle

and Dykstra’s algorithm is known to converge to the near point.

The following algorithm computes the nearest X ∈ RC1 ∩ M1 ∩ NN = DS ∩ M1 in

Frobenius norm to T . The last three steps, before the check for convergence are needed

because the set of nonnegative matrices is convex, but not affine.

Algorithm 4.2 Set A := T , Z := O.

For i = 1, 2, 3, ... do

Set B := PRC1(A)

Set C := PM1
(B)

Set D := C − Z

Set E := PNN (D)

Set A := E

Set Z := A − D

If ||B − C|| < ε and ||C − E|| < ε and ||B − E|| < ε then stop.

Next i.

5. Numerical experiments

In order to demonstrate the efficacy of our method, we provide three tables of data. In each

of these tables we randomly generated twelve matrices T : four 100 × 100, four 250 × 250

and four 500 × 500. With these twelve matrices, we did the two cases RC1 ∩ M1 and

RC1 ∩ DS. Each row in the tables gives the average of the data for the four matrices of

the given size. All computations were done on a Sun Ultra 1 using the gcc compiler.

“N” is the size of the matrices; “Time” is the cpu time in seconds required for con-

vergence; “Its” gives the number of cycles through the projections required to satisfy the

stopping criterion; “Sets” indicates which sets were projected onto, taken from RC1, M1
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and NN ; “Dist” is the distance between T and the closest matrix A. Our stopping criterion

for convergence was

||Me− e||2 + ||MTe − e||2 + |eT
1 Me1 − eT

1 Te1| < 10−10.

Table I

N Time Its Sets Dist

100 0.15 7 RC1, M1 41.25
250 0.93 6 RC1, M1 64.74
500 3.64 5 RC1, M1 90.76

Table I contains the results of generating matrices T = (tij) with random entries

uniformly distributed such that −10 ≤ tij ≤ 10, for 1 ≤ i, j ≤ n. The convergence of the

algorithm is as expected, since these are projections onto convex and affine sets.

Table II

N Time Its Sets Dist

100 46.95 1819 RC1, NN, M1 287.53
250 359.77 1796 RC1, NN, M1 720.82
500 1731.93 2007 RC1, NN, M1 1441.86

For Table II we chose another twelve matrices T such that −10 ≤ tij ≤ 10, but we set

t11 = 1
2 . This ensures that the intersection of the RC1, NN , and M1 sets is nonempty.
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