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Abstract

Let D1 ∈ Rk×k and D2 ∈ Rl×l be two distance matrices. We provide necessary

conditions on Z ∈ Rk×l in order that D =

[

D1 Z
ZT D2

]

∈ Rn×n be a distance matrix. We

then show that it is always possible to border an n×n distance matrix, with certain scalar

multiples of its Perron eigenvector, to construct an (n + 1)× (n + 1) distance matrix. We

also give necessary and sufficient conditions for two principal distance matrix blocks D1

and D2 be used to form a distance matrix as above, where Z is a scalar multiple of a rank

one matrix, formed from their Perron eigenvectors. Finally, we solve the inverse eigenvalue

problem for distance matrices in certain special cases, including n = 3, 4, 5, 6, any n for

which there exists a Hadamard matrix, and some other cases.

1. Introduction

A matrix D = (dij) ∈ Rn×n is said to be a (squared) distance matrix if there are

vectors x1,x2, . . . ,xn ∈ Rr (1 ≤ r ≤ n) such that dij = ||xi−xj ||2, for all i, j = 1, 2, . . . , n,

where || · || denotes the Euclidean norm. Note that this definition allows the n × n zero

distance matrix. Because of its centrality in formulating our results, we begin Section

2 with a theorem of Crouzeix and Ferland [4]. Our proof reorganizes and simplifies their

argument and, in addition, corrects a gap in their argument that C2 implies C1 (see below).

We then show in Section 3 that this theorem implies some necessary conditions on the block

matrix Z, in order that two principal distance matrix blocks D1 and D2 can be used to

construct the distance matrix D =

[

D1 Z
ZT D2

]

∈ Rn×n. A different approach has been

been considered by Bakonyi and Johnson [1], where they show that if a partial distance

matrix has a chordal graph (a matrix with two principal distance matrix blocks has a

chordal graph), then there is a one entry at a time procedure to complete the matrix to

a distance matrix. Generally, graph theoretic techniques were employed in these studies,

following similar methods used in the completion of positive semidefinite matrices. In

Section 4, we use Fiedler’s construction of nonnegative symmetric matrices [6] to show

that an n × n distance matrix can always be bordered with certain scalar multiples of

its Perron eigenvector, to form an (n + 1) × (n + 1) distance matrix. Further, starting
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with two principal distance matrix blocks D1 and D2, we give necessary and sufficient

conditions on Z, where Z is a rank one matrix formed from the Perron eigenvectors, in

order that D =

[

D1 Z
ZT D2

]

∈ Rn×n be a distance matrix. Finally, in Section 5, we show

that if a symmetric matrix has eigenvector e = (1, 1, . . . , 1)T , just one positive eigenvalue

and zeroes on the diagonal, then it is a distance matrix. It will follow that by performing

an orthogonal similarity of a trace zero, diagonal matrix with (essentially) a Hadamard

matrix, where the diagonal matrix has just one positive eigenvalue, we obtain a distance

matrix. We show then that the above methods lead, in some special cases, to a solution of

the inverse eigenvalue problem for distance matrices. That is, given one nonnegative real

number and n − 1 nonpositive real numbers, with the sum of these n numbers equal to

zero, can one contruct a distance matrix with these numbers as its eigenvalues? We will,

as usual, denote by ei the vector with a one in the ith position and zeroes elsewhere.

2. Almost positive semidefinite matrices

A symmetric matrix A is said to be almost positive semidefinite (or conditionally

positive semidefinite) if xT Ax ≥ 0, for all x ∈ Rn such that xT e = 0. Theorem 2.1 gives

some useful equivalent conditions in the theory of almost positive semidefinite matrices.

Theorem 2.1 (Crouzeix, Ferland) Let A ∈ Rn×n be symmetric, and a ∈ Rn, a 6= 0.

Then the following are equivalent:

C1. hTa = 0 implies hT Ah ≥ 0.

C2. A is positive semidefinite or A has just one negative eigenvalue and there exists

b ∈ Rn such that Ab = a, where bT a ≤ 0.

C3. The bordered matrix

[

A a
aT 0

]

has just one negative eigenvalue.

Proof: C1 implies C2:

Since A is positive semidefinite on a subspace of dimension n − 1, A has at most one

negative eigenvalue.

If there doesn’t exist b ∈ Rn such that Ab = a, then writing a = x+y, where x ∈ kerA

and y ∈ rangeA, we must have x 6= 0. But then xT a = xT x + xT y = xT x 6= 0. For any

v ∈ Rn, define h = (I − xaT

xT a
)v = v − aT v

xT a
x, then hTa = 0, and hT Ah = vT Av ≥ 0, so

A is positive semidefinite.

Suppose A is not positive semidefinite, Ab = a and bT a 6= 0. For v ∈ Rn, let

h = (I − baT

bTa
)v, thus we can write any v ∈ Rn as v = h + a

T
v

bT a
b, where hT a = 0. Then

vT Av = hT Ah + 2
aTv

bT a
hT Ab + (

aTv

bTa
)2bT Ab ≥ (

aTv

bTa
)2bTa,

and choosing v so that 0 > vT Av we see that 0 > bT a.

C2 implies C1:
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If A is positive semidefinite we’re done. Otherwise, let λ be the negative eigenvalue of

A, with unit eigenvector u. Write A = CT C +λuuT , so that a = Ab = CT Cb+λ(uTb)u.

If uTb = 0 then 0 ≥ bTa = bT CT Cb, which implies Cb = 0 but then a = 0 also,

contradicting the hypotheses of our theorem. So we must have uT b 6= 0.

Again, a = CT Cb + λ(uTb)u gives 0 ≥ bTa = bT CT Cb + λ(uTb)2, which we can

rewrite as −1 ≤ b
T CT Cb

λ(uT b)2
. Noting also that u = 1

λ(uT b)
[a − CT Cb], we have

A = CT C +
1

λ(uTb)2
[a − CT Cb][a− CT Cb]T .

If hTa = 0 then

hT Ah =hT CT Ch +
1

λ(uTb)2
(hT CT Cb)2,

≥ hT CT Ch − (hT CT Cb)2

bT CT Cb
,

= ||Ch||2 − [(Ch)T (Cb)]2

||Cb||2 ≥ 0,

where the last inequality is from Cauchy-Schwarz.

Finally, if bT CT Cb = 0 then Cb = 0 which implies a = λ(uTb)u. Then hTa = 0

implies hT u = 0, so that hT Ah = hT (CT C + λuuT )h = hT CT Ch ≥ 0, as required.

The equivalence of C1 and C3 was proved by Ferland in [5].

Schoenberg [15] (see also Blumenthal [2,p106]) showed that a symmetric matrix D =

(dij) ∈ Rn×n (with dii = 0, 1 ≤ i ≤ n) is a distance matrix if and only if xT Dx ≤ 0, for

all x ∈ Rn such that xT e = 0.

Note that D almost negative semidefinite with zeroes on the diagonal implies that D

is a nonnegative matrix, since (ei − ej)
T e = 0 and so (ei − ej)

T D(ei − ej) = −2dij ≤ 0.

Let s ∈ Rn, where sT e = 1. Gower [7] proved that D is a distance matrix if and

only if (I − esT )D(I − seT ) is negative semidefinite. (This follows since for any y ∈ Rn,

x = (I − seT )y is orthogonal to e. Conversely, if xT e = 0 then xT (I −esT )D(I − seT )x =

xT Dx.) The vectors from the origin to the n vertices are the columns of X ∈ Rn×n

in (I − esT ) 1
2
D(I − seT ) = −XT X. (This last fact follows by writing −2XT X = (I −

esT )D(I − seT ) = D − feT − efT , where f = Ds− 1
2(sT Ds), then −2(ei − ej)

T XT X(ei −
ej) = (ei − ej)

T D(ei − ej) = dii + djj − 2dij = −2dij , so that dij = ||Xei − Xej||2.)

These results imply a useful theorem for later sections (see also [7], [18]).

Theorem 2.2 Let D = (dij) ∈ Rn×n, with dii = 0, for all i, 1 ≤ i ≤ n, and suppose

that D is not the zero matrix. Then D is a distance matrix if and only if D has just one

positive eigenvalue and there exists w ∈ Rn such that Dw = e and wTe ≥ 0.
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Proof: This follows from taking A = −D and a = e in Theorem 2.1, Schoenberg’s result,

and the fact that dii = 0, for all i, 1 ≤ i ≤ n, implies D can’t be negative semidefinite.

Remark: Observe that if there are two vectors w1,w2 ∈ Rn such that Dw1 = Dw2 = e,

then w1 − w2 = u ∈ ker(D), and so eTw1 − eTw2 = eT u. But eTu = wT
1 Du = 0, so we

can conclude that wT
1 e = wT

2 e.

3. Construction of distance matrices.

Let D1 ∈ Rk×k be a nonzero distance matrix, and D2 ∈ Rl×l a distance matrix. Of

course, thinking geometrically, there are many choices for Z ∈ Rk×l, k + l = n, such that

D =

[

D1 Z
ZT D2

]

∈ Rn×n persists in being a distance matrix. Our first theorem provides

some necessary conditions that any such Z must satisfy.

Theorem 3.1 If Z is chosen so that D is a distance matrix, then Z = D1W , for some

W ∈ Rk×l. Further, D2 − W T D1W is negative semidefinite.

Proof: Let Zei = zi, 1 ≤ i ≤ l. Since D =

[

D1 Z
ZT D2

]

is a distance matrix then the

(k + 1) × (k + 1) bordered matrix Si =

[

D1 zi

zT
i 0

]

is a distance matrix also, for 1 ≤ i ≤ l.

This implies that Si has just one positive eigenvalue, and so zi = D1wi, using condition

C3 in Theorem 2.1. Thus Z = D1W , where Wei = wi, 1 ≤ i ≤ l.

The last part follows from the identity
[

D1 D1W
WT D1 D2

]

=

[

I 0
WT I

] [

D1 0
0 D2 − W T D1W

] [

I W
0 I

]

,

and Sylvester’s theorem [9], since the matrix on the left and D1 on the right both have

just one positive eigenvalue.

Remark: In claiming D1 is a nonzero distance matrix this means that k ≥ 2. If D1

happened to be a zero distance matrix (for example when k = 1), then the off-diagonal

block Z need not necessarily be in the range of that zero D1 block. In the proof above if Si

has just one positive eigenvalue we can only apply C3 and conclude that zi = D1wi when

D1 is not negative semidefinite (i.e. when D1 is not a zero distance matrix). The converse

of Theorem 3.1 is not necessarily true, since consider the case where l = 1, S =

[

D1 z
zT 0

]

and z = D1w, with wT D1w ≥ 0. We will see in the next section that if z is the Perron

eigenvector for D1, only certain scalar multiples of z will cause S to be a distance matrix.

If D1 and D2 are both nonzero distance matrices then we can state Theorem 3.1 in

the following form, where the same proof works with the rows of Z.

Theorem 3.2 If Z is chosen so that D is a distance matrix, then Z = D1W = V D2,

for some W, V ∈ Rk×l. Further, D2 − W T D1W and D1 − V D2V
T are both negative

semidefinite.
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4. Using the Perron vector to construct a distance matrix.

As a consequence of the Perron-Frobenius Theorem [9], since a distance matrix has

all nonnegative entries then it has a real eigenvalue r ≥ |λ| for all eigenvalues λ of D.

Furthermore, the eigenvector that corresponds to r has nonnegative entries. We will use

the notation that the vector e takes on the correct number of components depending on

the context.

Theorem 4.1 Let D ∈ Rn×n be a nonzero distance matrix with Du = ru, where r is the

Perron eigenvalue and u is a unit Perron eigenvector. Let Dw = e, wTe ≥ 0 and ρ > 0.

Then the bordered matrix D̂ =

[

D ρu
ρuT 0

]

is a distance matrix if and only if ρ lies in the

interval [α−, α+], where α± =
r

uTe ∓
√

reTw
.

Proof: We first show that D̂ has just one positive eigenvalue and e is in the range of D̂.

From [6] the set of eigenvalues of D̂ consists of the n − 1 nonpositive eigenvalues of D, as

well as the two eigenvalues of the 2 × 2 matrix

[

r ρ
ρ 0

]

, namely
r ±

√

r2 + 4ρ2

2
. Thus D̂

has just one positive eigenvalue. It is easily checked that D̂ŵ = e if

ŵ =

[

w − (u
T
e

r
− 1

ρ
)u

1
ρ
(uTe− r

ρ
)

]

.

It remains to determine for which values of ρ we have eT ŵ ≥ 0, i.e.

eT w − 1

r
(uT e)2 +

2

ρ
(uTe) − r

ρ2
=

1

r
[uTe−

√

r(eTw) − r

ρ
][−uTe−

√

r(eTw) +
r

ρ
] ≥ 0.

After multiplying across by ρ2, we see that this inequality holds precisely when ρ

is between the two roots α± =
r

uTe ∓
√

reTw
of the quadratic. We can be sure of the

existence of ρ > 0 by arguing as follows. Dw = e implies uT Dw = ruTw = uTe. Also,

D = ruuT + λ2u2u
T
2 + · · · (the spectral decomposition of D) implies wTe = wT Dw =

r(wTu)2 + λ2(w
Tu2)

2 + · · · < r(wTu)2, i.e. wTe < r(u
T
e

r
)2 = (uT

e)2

r
, so that (uTe)2 >

rwTe, which completes the proof.

Example: Let D be the distance matrix which corresponds to a unit square in the plane,

then De = 4e. In this case, α− = 1, α+ = ∞, and the new figure that corresponds to

D̂ =

[

D ρu
ρuT 0

]

, for ρ ∈ [α−, α+], has an additional point on a ray through the center of

the square and perpendicular to the plane.

Fiedler’s construction also leads to a more complicated version of Theorem 4.1.

Theorem 4.2 Let D1 ∈ Rk×k, D2 ∈ Rl×l be nonzero distance matrices with D1u = r1u,

D2v = r2v, where r1 and r2 are the Perron eigenvalues of D1 and D2 respectively. Likewise,
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u and v are the corresponding unit Perron eigenvectors. Let D1w1 = e, where wT
1 e ≥ 0,

D2w2 = e, where wT
2 e ≥ 0, and ρ > 0 with ρ2 6= r1r2.

Then the matrix D̂ =

[

D1 ρuvT

ρvuT D2

]

is a distance matrix if and only if ρ2 > r1r2,

[(uTe)2 − r1e
T w1 − r1e

Tw2][(v
Te)2 − r2e

Tw1 − r2e
Tw2)] ≥ 0 and ρ is in the interval

[α−, α+], where

α± =
(uT e)(vTe) ±

√

[(uTe)2 − r1eTw1 − r1eT w2][(vTe)2 − r2eT w1 − r2eT w2)]
(uT e)2

r1
+ (vT e)2

r2
− eTw1 − eTw2

Proof: Fiedler’s results show that the eigenvalues of D̂ are the nonpositive eigenvalues

of D1 together with the nonpositive eigenvalues of D2, as well as the two eigenvalues of
[

r1 ρ
ρ r2

]

. The latter two eigenvalues are
r1+r2±

√
(r1+r2)2+4[ρ2−r1r2]

2
. Thus if ρ2−r1r2 > 0

then D̂ has just one positive eigenvalue. Conversely, if D̂ has just one positive eigenvalue

then 0 ≥ r1 + r2 −
√

(r1 + r2)2 + 4[ρ2 − r1r2], which implies (r1 + r2)
2 + 4[ρ2 − r1r2] ≥

(r1 + r2)
2, i.e. ρ2 − r1r2 ≥ 0, but ρ2 − r1r2 6= 0 so ρ2 − r1r2 > 0. Also, D̂ŵ = e where

ŵ =

[

w1 + ρ
r1r2−ρ2 [ ρ

r1
(uT e) − vTe]u

w2 + ρ
r1r2−ρ2 [ ρ

r2
(vT e) − uTe]v

]

.

Then using this ŵ we have

eT ŵ = eTw1 + eTw2 +
ρ

r1r2 − ρ2
[
ρ

r1
(uTe)2 +

ρ

r2
(vT e)2 − 2(uTe)(vTe)] ≥ 0,

which we can rewrite, on multiplying across by r1r2 − ρ2, as

(eTw1 + eTw2)r1r2 − 2ρ(uTe)(vTe) + ρ2[
(uTe)2

r1
+

(vT e)2

r2
− eT w1 − eTw2] ≤ 0.

After some simplification the roots of this quadratic turn out to be

α± =
(uTe)(vTe) ±

√

[(uTe)2 − r1eTw1 − r1eTw2))][(vTe)2 − r2eT w1 − r2eT w2)]
(uT e)2

r1
+ (vT e)2

r2
− eT w1 − eTw2

.

We saw in the proof of Theorem 4.1 that eTw1 < (uT
e)2

r1
and eTw2 < (vT

e)2

r2
. The proof is

complete once we note that that the discriminant of the quadratic is greater than or equal

to zero precisely when eT ŵ ≥ 0 for some ρ.

Remark: The case ρ =
√

r1r2 is dealt with separately. In this case if D̂ŵ = e, then it

can be checked that u
T
e√

r1
= v

T
e√

r2
. Also D̂ŵ = e, if we take ŵ =

[

w1 − uT e
r1+r2

u

w2 − vT e
r1+r2

v

]

, where

D1w1 = e and D2w2 = e. Then D̂ is a distance matrix if and only if (for this ŵ) ŵTe ≥ 0.

5. The inverse eigenvalue problem for distance matrices.

Let σ = {λ1, λ2, . . . , λn} ⊂ C. The inverse eigenvalue problem for distance matrices

is that of finding necessary and sufficient conditions that σ be the spectrum of a (squared)

distance matrix D. Evidently, since D is symmetric σ ⊂ R. We have seen that if D ∈ Rn×n
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is a nonzero distance matrix then D has just one positive eigenvalue. Also, since the

diagonal entries of D are all zeroes, we have trace(D) =
∑n

i=1 λi = 0.

The inverse eigenvalue problem for nonnegative matrices remains as one of the long-

standing unsolved problems in matrix theory; see for instance [3],[10],[13]. Suleimanova

[17] and Perfect [12] solved the inverse eigenvalue problem for nonnegative matrices in the

special case where σ ⊂ R, λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn and
∑n

i=1 λi ≥ 0. They showed that

these conditions are sufficient for the construction of a nonnegative matrix with spectrum

σ. Fiedler [6] went further and showed that these same conditions are sufficient even when

the nonnegative matrix is required to be symmetric. From what follows it appears that

these conditions are sufficient even if the nonnegative matrix is required to be a distance

matrix (when
∑n

i=1 λi = 0). We will use the following lemma repeatedly.

Lemma 5.1 Let λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn, where
∑n

i=1 λi = 0. Then

(n − 1)|λn| ≥ λ1 and (n − 1)|λ2| ≤ λ1.

Proof: These inequalities follow since λ1 =
∑n

i=2 |λi| and |λ2| ≤ |λ3| ≤ · · · ≤ |λn|.

Theorem 5.2 Let σ = {λ1, λ2, λ3} ⊂ R, with λ1 ≥ 0 ≥ λ2 ≥ λ3 and λ1 + λ2 + λ3 = 0.

Then σ is the spectrum of a distance matrix D ∈ R3×3.

Proof: Construct an isoceles triangle in the xy-plane with one vertex at the origin, and

the other two vertices at (

√

λ2

4 +
√

(λ2+λ3)λ3

2 ,±
√
−λ2

2 ). These vertices yield the distance

matrix

D =











0 −λ2

√

(λ2+λ3)λ3

2

−λ2 0
√

(λ2+λ3)λ3

2
√

(λ2+λ3)λ3

2

√

(λ2+λ3)λ3

2 0











,

and it is easily verified that D has characteristic polynomial (x−λ2)(x−λ3)(x+λ2+λ3) =

x3 − (λ2λ3 + λ2
2 + λ2

3)x + λ2λ3(λ2 + λ3).

Note that λ2

4 +
√

(λ2+λ3)λ3

2 = λ2

4 +
√

−λ1λ3

2 ≥ λ2

4 +

√

λ2
1

4 = λ2+2λ1

4 = −λ3+λ1

4 ≥ 0,

which completes the proof.

Some distance matrices have e as their Perron eigenvector. These were discussed in

[8], and were seen to correspond to vertices which form regular figures.

Lemma 5.3 Let D ∈ Rn×n be symmetric, have zeroes on the diagonal, have just one

nonnegative eigenvalue λ1, and corresponding eigenvector e. Then D is a distance matrix.

Proof: Let D have eigenvalues λ1, λ2, . . . , λn, then we can write D =
λ1

n
eeT +λ2u2u

T
2 +· · ·.

If xT e = 0 then xT Dx ≤ 0, as required.
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A matrix H ∈ Rn×n is said to be a Hadamard matrix if each entry is equal to ±1 and

HT H = nI. These matrices exist only if n = 1, 2 or n ≡ 0 mod 4 [19]. It is not known if

there exists a Hadamard matrix for every n ≥ 4 which is a multiple of 4, although this is

a well-known conjecture. Examples of Hadamard matrices are:

n = 2, H =

[

1 1
1 −1

]

; n = 4, H =







1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1






;

and H1 ⊗ H2 is a Hadamard matrix, where H1 and H2 are Hadamard matrices and ⊗
denotes the Kronecker product. For any n for which there exists a Hadamard matrix our

next theorem solves the inverse eigenvalue problem.

Theorem 5.4 Let n be such that there exists a Hadamard matrix of order n. Let λ1 ≥
0 ≥ λ2 ≥ · · · ≥ λn and

∑n
i=1 λi = 0. Then there is a distance matrix D with eigenvalues

λ1, λ2, . . . , λn.

Proof: Let H ∈ Rn×n be a Hadamard matrix, and U = 1√
n
H so that U is an orthogonal

matrix. Let Λ = diag(λ1, λ2, · · · , λn), then D = UT ΛU has eigenvalues λ1, λ2, . . . , λn.

D has eigenvector e, since for any Hadamard matrix H we can assume that one of the

columns of H is e. From D = UT ΛU =
λ1

n
eeT +λ2u2u

T
2 + · · ·, it can be seen that each of

the diagonal entries of D are
∑n

i=1 λi/n = 0. The theorem then follows from Lemma 5.3.

Since there are Hadamard matrices for all n a multiple of 4 such that 4 ≤ n < 428,

Theorem 5.4 solves the inverse eigenvalue problem in these special cases. See [16] for a more

extensive list of values of n for which there exists a Hadamard matrix. The technique of

Theorem 5.4 was used in [10] to partly solve the inverse eigenvalue problem for nonnegative

matrices when n = 4.

Theorem 5.6 will solve the inverse eigenvalue problem for any n + 1, such that there

exists a Hadamard matrix of order n. We will use a theorem due to Fiedler [6].

Theorem 5.5 Let α1 ≥ α2 ≥ · · · ≥ αk be the eigenvalues of the symmetric nonnegative

matrix A ∈ Rk×k, and β1 ≥ β2 ≥ · · · ≥ βl the eigenvalues of the symmetric nonnegative

matrix B ∈ Rl×l, where α1 ≥ β1. Moreover, Au = α1u, Bv = β1v, so that u and v are

the corresponding unit Perron eigenvectors. Then with ρ =
√

σ(α1 − β1 + σ) the matrix
[

A ρuvT

ρvuT B

]

has eigenvalues α1 + σ, β1 − σ, α2, . . . , αk, β2, . . . , βl, for any σ ≥ 0.

Remark: The assumption α1 ≥ β1 is only for convenience. It is easily checked that it is

sufficient to have α1 − β1 + σ ≥ 0.

In [18] two of the authors called a distance matrix circum–Euclidean if the points which

generate it lie on a hypersphere. Suppose that the distance matrix D has the property
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that there is an s ∈ Rn such that Ds = βe and sT e = 1 (easily arranged if Dw = e and

wTe > 0). Then using this s we have (see the paragraph just before Theorem 2.2)

(I − esT )D(I − seT ) = D − βeeT = −2XT X.

Since the diagonal entries of D are all zero, if Xei = xi, then ||xi||2 = β/2, for all i,

1 ≤ i ≤ n. Evidently the points lie on a hypersphere of radius R, where R2 = β/2 =
sT Ds

2
.

Theorem 5.6 Let n be such that there exists a Hadamard matrix of order n. Let λ1 ≥
0 ≥ λ2 ≥ · · · ≥ λn+1 and

∑n+1
i=1 λi = 0, then there is an (n + 1) × (n + 1) distance matrix

D̂ with eigenvalues λ1, λ2, . . . , λn+1.

Proof: Let D ∈ Rn×n be a distance matrix constructed using a Hadamard matrix, as in

Theorem 5.4, with eigenvalues λ1 +λn+1, λ2, . . . , λn. Note that λ1 +λn+1 = −λ2−· · ·−λn

and De = (λ1 + λn+1)e, i.e. D has Perron eigenvector e. Using Theorem 5.5 let D̂ =
[

D ρu
ρuT 0

]

, where A = D, B = 0, u = e√
n
, α1 = λ1+λn+1, αi = λi, for 2 ≤ i ≤ n, β1 = 0

and σ = −λn+1. In this case ρ =
√

−λ1λn+1, and D̂ has eigenvalues λ1, λ2, . . . , λn+1. We

will show that there exist vectors x̂1, . . . , x̂n+1 such that d̂ij = ||x̂i − x̂j ||2, for all i, j,

1 ≤ i, j ≤ n + 1, where D̂ = (d̂ij).

For the distance matrix D, and in the notation of the paragraph above, s =
e

n
and

β =
(λ1 + λn+1)

n
. Let x1, . . . ,xn ∈ Rn be vectors to the n vertices that will correspond

to D, i.e. dij = ||xi − xj ||2, for all i, j, 1 ≤ i, j ≤ n. These points lie on a hypersphere of

radius R, where R2 = ||xi||2 =
(λ1 + λn+1)

2n
, for all i, 1 ≤ i ≤ n.

Let the vectors that correspond to the n + 1 vertices of D̂ be x̂1 = (x1, 0), . . . , x̂n =

(xn, 0) ∈ Rn+1 and x̂n+1 = (0, t) ∈ Rn+1, then d̂ij = dij , for all i, j, 1 ≤ i, j ≤ n.

Furthermore, the right-most column of D̂ has entries d̂i(n+1) = ||x̂n+1 − x̂i||2 = t2 + R2,

for each i, 1 ≤ i ≤ n.

Finally, we must show that we can choose t so that t2 + R2 =
ρ√
n

. But this will

be possible only if R2 ≤ ρ√
n

, i.e.
(λ1 + λn+1)

2n
≤

√

−λ1λn+1√
n

, which we can rewrite, on

dividing both sides by
λ1

n
as

1 − p

2
≤ √

np, where p =
−λn+1

λ1
. Since p ≥ 0 we must have

1 − p

2
≤ 1

2
. But also, from Lemma 5.1, p ≥ 1

n
implies that

√
np ≥ 1, and the proof is

complete.

Note that the above proof works for any distance matrix D with eigenvector e, and

with the appropriate eigenvalues, not just when D has been constructed using a Hadamard

matrix. The same is true for the matrix D1 in our next theorem. Our next theorem bears a

9



close resemblance to the previous one, although it will solve the inverse eigenvalue problem

only in the cases n = 6, 10, 14 and 18.

Theorem 5.7 Let n = 4, 8, 12 or 16, so that there exists a Hadamard matrix of order n.

Let λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn+1 ≥ λn+2 and
∑n+2

i=1 λi = 0, then there is an (n + 2)× (n + 2)

distance matrix D̂ with eigenvalues λ1, λ2, . . . , λn+1, λn+2.

Proof: Let D1 ∈ Rn×n be a distance matrix, constructed using a Hadamard matrix

as before, with eigenvalues λ1 + λn+1 + λn+2, λ2, . . . , λn. Let D̂ =

[

D1 ρ e√
n

eT

√
2

ρ e√
n

eT

√
2

D2

]

,

where D2 =

[

0 −λn+1

−λn+1 0

]

, and apply Theorem 5.5 where A = D1, B = D2, u = 1√
n
e,

v = 1√
2
e, α1 = λ1 + λn+1 + λn+2, αi = λi, for 2 ≤ i ≤ n, β1 = −λn+1, β2 = λn+1 and

σ = −λn+1 −λn+2. In this case ρ =
√

(−λn+1 − λn+2)(λ1 + λn+1), and D̂ has the desired

eigenvalues λ1, λ2, . . . , λn+1, λn+2.

The vectors x1, . . . ,xn to the n vertices that correspond to D1 lie on a hypersphere

of radius R2 = λ1+λn+1+λn+2

2n
. Let the vectors that correspond to the n + 2 vertices of

D̂ be x̂1 = (x1, 0, 0), . . . , x̂n = (xn, 0, 0) ∈ Rn+2 and x̂n+1 = (0, t,

√
−λn+1

2
), x̂n+2 =

(0, t,−
√

−λn+1

2
) ∈ Rn+2, then d̂ij = ||x̂i − x̂j ||2 = ||xi − xj ||2, for all i, j, 1 ≤ i, j ≤ n, and

d̂ij = ||x̂i − x̂j ||2, for n + 1 ≤ i, j ≤ n + 2. Furthermore, the rightmost two columns of D̂

(excluding the entries of the bottom right 2×2 block) have entries d̂i(n+1) = ||x̂n+1−x̂i||2 =

R2 + t2 − λn+1

4
= d̂i(n+2) = ||x̂n+2 − x̂i||2, for each i, 1 ≤ i ≤ n.

Finally, we must show that we can choose t so that R2 + t2 − λn+1

4
=

ρ
√

n
√

2
, i.e. we

must show that
λ1 + λn+1 + λn+2

2n
− λn+1

4
≤

√

(−λn+1 − λn+2)(λ1 + λn+1)

2n
.

Writing p =
−λn+1

λ1
and q =

−λn+2

λ1
, we can rewrite the above inequality as

1 − p − q

2n
+

p

4
≤

√

(p + q)(1 − p)

2n
.

This inequality can be rearranged to become

1

2n
+

1

4
≤ 1 − p

4
+

p + q

2n
+

√

(p + q)(1 − p)

2n
,

or
2 + n

4n
≤ [

√

p + q

2n
+

√
1 − p

2
]2,

then taking square roots of both sides and again rearranging, we have

1 ≤
√

2

2 + n

√
p + q +

√

n

2 + n

√

1 − p = f(p, q).

Thus, we need to show that f(p, q) ≥ 1, where q ≥ p, 1 ≥ p+q, and np ≥ 1−q (the last

10



inequality comes from noting that λ1 + λn+2 ≥ λ2 ≥ · · · ≥ λn ≥ λn+1, since
∑n+2

i=1 λi = 0,

and using Lemma 5.1). These three inequalities describe the interior of a triangular region

in the pq-plane. For fixed p, f(p, q) increases as q increases, so we need only check that

f(p, q) ≥ 1, on the lower border (i.e. closest to the p-axis) of the triangular region. One

edge of this lower border is when p = q, and in this case 1
2
≥ p ≥ 1

n+1
. Differentiation

of f(p, p) tells us that a maximum is achieved when p = 4
n+4 , and 1

2 ≥ 4
n+4 ≥ 1

n+1 since

n ≥ 4. Minima are achieved at the end-points p = 1
2

and p = 1
n+1

. It is easily checked that

f( 1
2 , 1

2 ) ≥ 1, means that 16 ≥ n, and that f( 1
n+1 , 1

n+1 ) ≥ 1 is true in any case. Along the

other lower border q = −np + 1, and in this case f(p,−np + 1) is found to have df
dp

< 0,

and we’re done since f( 1
n+1 , 1

n+1 ) ≥ 1.

The methods described above do not appear to extend to the missing cases, partic-

ularly the case of n = 7. Since we have no evidence that there are any other necessary

conditions on the eigenvalues of a distance matrix we make the following conjecture:

Conjecture Let λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn, where
∑n

i=1 λi = 0. Then there is a distance

matrix with eigenvalues λ1, λ2, . . . , λn.
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