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Abstract

Let A ∈ R
n×n. We provide a block characterization of copositive matrices, with

the assumption that one of the principal blocks is positive definite. Haynsworth
and Hoffman showed that if r is the largest eigenvalue of a copositive matrix then
r ≥ |λ|, for all other eigenvalues λ of A. We continue their study of the spectral
theory of copositive matrices and show that a copositive matrix must have a positive
vector in the subspace spanned by the eigenvectors corresponding to the nonnegative
eigenvalues. Moreover, if a symmetric matrix has a positive vector in the subspace
spanned by the eigenvectors corresponding to its nonnegative eigenvalues, then it is
possible to increase the the nonnegative eigenvalues to form a copositive matrix A ′,
without changing the eigenvectors. We also show that if a copositive matrix has just
one positive eigenvalue, and n−1 nonpositive eigenvalues then A has a nonnegative
eigenvector corresponding to a nonnegative eigenvalue.
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1 Introduction

Let ei ∈ Rn denote the vector with a 1 in the ith position and all 0’s elsewhere.
For x = (x1, . . . , xn)T ∈ Rn we will use the notation that x ≥ 0 when xi ≥ 0
for all i, 1 ≤ i ≤ n, and x > 0 when xi > 0 for all i, 1 ≤ i ≤ n. We will say
that a matrix is nonnegative (nonpositive) in the event that all of its entries
are nonnegative (nonpositive). A symmetric matrix is positive semidefinite if
xT Ax ≥ 0, for all x ∈ Rn, and positive definite if xT Ax > 0, for all x ∈ Rn,
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x 6= 0. A symmetric matrix A ∈ Rn×n is said to be copositive when xT Ax ≥ 0
for all x ≥ 0, and A is said to be strictly copositive when xT Ax > 0 for all
x ≥ 0 and x 6= 0. A nonnegative matrix is a copositive matrix, as is a positive
semidefinite matrix. Clearly, the sum of two copositive matrices is copositive.
It was shown by Alfred Horn (see [2]) that a copositive matrix need not be
the sum of a positive semidefinite matrix and a nonnegative matrix.

2 Conditions for copositivity of block matrices

Lemma 1, which is an extension of a similar result for positive semidefinite
matrices, appeared in [4],[6], [9]. We include a proof for completeness.

Lemma 1 Let A ∈ Rn×n be copositive. If x0 ≥ 0 and xT

0 Ax0 = 0, then
Ax0 ≥ 0.

PROOF. Let ε > 0. Then for any i, 1 ≤ i ≤ n, since x0 + εei ≥ 0, we have

(x0 + εei)
T A(x0 + εei) = xT

0 Ax0 + 2εeT

i
Ax0 + ε2eT

i
Aei ≥ 0. (1)

This says that 2εeT

i
Ax0 ≥ −ε2aii, so eT

i
Ax0 ≥ −

ε

2
aii. But this is true for any

ε > 0, so Ax0 ≥ 0. 2

A form of Theorem 2, restricted to when b ≥ 0, or b ≤ 0, was given in [1].

Theorem 2 Let A =
(

a bT

b A′

)

∈ Rn×n, where A′ ∈ R(n−1)×(n−1), b ∈ Rn,

and a ∈ R. Then A is copositive if and only if a ≥ 0; A′ is copositive; if a > 0

then x′T (A′ −
bbT

a
)x′ ≥ 0, for all x′ ∈ Rn−1, such that x′ ≥ 0 and bT x′ ≤ 0; if

a = 0 then b ≥ 0.

PROOF. For x = (x1, x
′)T ∈ Rn, where x1 ∈ R and x′ ∈ Rn−1, we have

xT Ax = ax2
1 + 2bT x′x1 + x′T A′x′, (2)

= a[x1 +
bT x′

a
]2 + x′T (A′ −

bbT

a
)x′, (if a > 0). (3)

Suppose A is copositive. Then evidently a ≥ 0 and A′ is copositive. If a > 0

and bT x′ ≤ 0 then taking x1 = −
bT x′

a
we have that x′T (A′ −

bbT

a
)x′ ≥ 0. If

a = 0 then from Lemma 1 with x0 = e1, we have b ≥ 0.
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For the converse, if a = 0, b ≥ 0, so from equation 2, A is copositive, since
A′ is copositive. Suppose a > 0. If bT x′ > 0, then use equation 2 to conclude
that xT Ax ≥ 0, since A′ is copositive. Whereas, if bT x′ ≤ 0 use equation 3 to
conclude A is copositive. 2

Corollary 3 Suppose a > 0 in the matrix A in the statement of the theorem.

If A′ −
bbT

a
is copositive then A is copositive.

PROOF. Follows from equation 3. 2

For an example to illustrate that if the matrix A in Theorem 2 is coposi-

tive it does not necessarily follow that A′ −
bbT

a
is copositive, consider A =







1 −1 2
−1 1 −1
2 −1 1





. A is copositive, since A =







1
−1
1





 (1,−1, 1)+







0 0 1
0 0 0
1 0 0





.

We can extend Theorem 2 to provide a Schur complement-like condition, anal-
ogous to the well known block characterization of positive definite matrices.

Theorem 4 Let A =
(

A1 BT

B A2

)

∈ Rn×n, where A1 ∈ Rl×l, B ∈ Rm×l, and

A2 ∈ Rm×m, where l + m = n. Let A1 be positive definite, and suppose that
A−1

1 BT is nonpositive. Then A is copositive if and only if A2 − BA−1
1 BT is

copositive.

PROOF. For x = (x1, x2)
T ∈ Rn, where x1 ∈ Rl and x2 ∈ Rm, we have

xT Ax =xT

1 A1x1 + 2xT

1 BT x2 + xT

2 A2x2, (4)

= (x1 + A−1
1 BT x2)

T A1(x1 + A−1
1 BT x2) + xT

2 (A2 − BA−1
1 BT )x2. (5)

Reasoning as in Theorem 2, and using only equation 5, if A is copositive, taking
x1 = −A−1

1 BT x2, for any x2 ≥ 0, we see that A2 − BA−1
1 BT is copositive.

Conversely, A1 being positive definite, and A2 − BA−1
1 BT being copositive

implies the copositivity of A. 2

3 Spectral theory of copositive matrices

Haynsworth and Hoffman [3] showed that for a copositive matrix A, its largest
eigenvalue r satisfies r ≥ |λi|, where the λi’s are the other eigenvalues of A.
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Their proof is: Let λ < 0 and Ax = λx, where ||x|| = 1. Then write x = y− z,
where y ≥ 0, z ≥ 0, and yTz = 0, so ||y+z|| = 1. Then r ≥ (y+z)T A(y+z) =
2yTAy + 2zT Az − (y − z)T A(y − z) ≥ −λ.

The Perron-Frobenius Theorem [5] states that a nonnegative matrix A has an
eigenvalue r, such that r ≥ |λ| for all other eigenvalues λ of A, and that the
eigenvector corresponding to r has nonnegative components. For a copositive
matrix, in general, the eigenvector corresponding to r need not be nonnegative,
since a positive semidefinite matrix can be constructed as

∑

k

i=1 uiu
T

i
, n ≥ k ≥

1, with orthogonal ui’s where the components of each ui has mixed signs.

We will use Gordan’s and Stiemke’s versions of the Theorem of the Alternative
(see for instance [8]) for what follows.

Theorem 5 (Gordan) Let B ∈ Rm×n. Then either statement I or II occurs,
but not both.

I yT B > 0, for some y ∈ Rm;

II Bx = 0, for some x ∈ Rn, x ≥ 0 (x 6= 0).

Theorem 6 (Stiemke) Let B ∈ Rm×n. Then either statement I or II occurs,
but not both.

I yT B ≥ 0, for some y ∈ Rm;

II Bx = 0, for some x ∈ Rn, x > 0.

Kaplan [7] proved, among other things, that a copositive matrix cannot have
a positive eigenvector corresponding to a negative eigenvalue. We now extend
this result as follows.

Lemma 7 Let A be a copositive matrix, with at least one negative eigen-
value. Then A cannot have a nonnegative vector in the subspace spanned by
the eigenvectors corresponding to the negative eigenvalues.

PROOF. Let λ1, ..., λn be the eigenvalues of A. Suppose also that they are
ordered as λ1 ≥ · · · ≥ λk ≥ 0 and 0 > λk+1 ≥ · · · ≥ λn, with corresponding or-
thonormal eigenvectors v1, ..., vk, vk+1, ..., vn, respectively. If there was a vector
w ≥ 0 in the subspace spanned by vk+1, ..., vn, then writing w =

∑

n

i=k+1 µivi,
we would have wTAw = (

∑

n

i=k+1 µivi)
T A(

∑

n

i=k+1 µivi) =
∑

n

i=k+1 λiµ
2
i

< 0,
which is not possible, since A is copositive. 2

We now use Theorem 6 and Lemma 7 to prove a weaker result than that A

has a nonnegative or positive eigenvector. We also prove a partial converse.
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Theorem 8 Let A ∈ Rn×n be symmetric. If A is copositive then there is a
positive vector in the subspace spanned by the eigenvectors corresponding to the
nonnegative eigenvalues. Moreover, if A has a positive vector in the subspace
spanned by the eigenvectors corresponding to the nonnegative eigenvalues, then
the nonnegative eigenvalues may be made sufficiently large, without changing
any eigenvectors so that the resulting matrix A′ is copositive.

PROOF. If all the eigenvalues of A are nonnegative the result is clear. So,
suppose A has at least one negative eigenvalue. Let λ1, ..., λn be the eigenvalues
of A, and label the eigenvalues and eigenvectors with the same notation as the
lemma. Clearly, λ1 > 0. Let B be the (n − k) × n matrix whose rows are
vk+1, ..., vn. Then from Lemma 7 there is no y ∈ Rn−k, such that yT B ≥ 0.
From Stiemke’s Theorem of the Alternative, we must have Bx = 0, for some
x ∈ Rn, x > 0. But then x must be in the subspace spanned by the eigenvectors
v1, ..., vk.

To prove the “Moreover” part, let Z = {z = b1v1 + · · ·+ bnvn|z ≥ 0, ||z|| = 1}.
Clearly, Z is both closed and bounded. Note also that

∑

n

i=1 b2
i

= 1, since
v1, ..., vn are orthonormal. Let b = minz∈Z

∑

k

i=1 b2
i
, c = maxz∈Z

∑

n

i=k+1 b2
i
, and

let λm be the smallest positive eigenvalue among λ1, ..., λk. Then zT Az =
b2
1λ1 + · · · + b2

k
λk + b2

k+1λk+1 + · · · + b2
n
λn ≥ (b2

1 + · · · + b2
m

)λm + (b2
k+1 +

· · · + b2
n
)λn ≥ bλm + cλn. Now if b = 0 then this would imply that there

is a vector z ∈ Z which is a linear combination of vk+1, ..., vn. but then if
B is the (n − k) × n matrix whose rows are vk+1, ..., vn, as in Theorem 8,
we would have Bx ≥ 0. But this is not possible, since we already have that
there is a positive vector in the subspace spanned by v1, ..., vk, and so this
positive vector is orthogonal to vk+1, ..., vn, that is to say, there is a y ∈ Rn

such that yTB > 0, which is the other alternative of Gordan’s Theorem of the
Alternative. So, with b > 0 we can increase λm, to λ′

m
, so that bλ′

m
+ cλn ≥ 0.

Then A′ = λ1v1v
T

1 +· · ·+λ′

m
vmvT

m
+· · ·+λnvnvT

n
, is copositive, since b is smallest

and c is largest for the given eigenvectors. Thereafter, increasing any of the
other nonnegative eigenvalues will retain copositivity, since this is effectively
only adding a positive semidefinite matrix to A′, to form a new A′. 2

One consequence of the construction in the proof of Theorem 8 is that we can
see that a copositive matrix might or might not have a nonnegative eigenvec-
tor corresponding to one of its eigenvalues (although, of course, we know from
Lemma 7, a nonnegative eigenvector can’t correspond to a negative eigen-
value), since the only requirement for the construction of A′ was that there
be a positive vector in the span of the eigenvectors corresponding to the non-
negative eigenvalues.

Theorem 9 Let A ∈ Rn×n be strictly copositive. Then there is a (nonzero)
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nonnegative vector in the subspace spanned by the eigenvectors corresponding
to the positive eigenvalues.

PROOF. Replacing strict inequalities with nonstrict inequalities, or vice
versa, in appropriate places, and using Gordan’s Theorem of the Alternative
[8], proves the result. 2

However, with some conditions on the eigenvalues, we can guarantee that
a copositive matrix has a nonnegative or positive eigenvector. Consider the

copositive matrices A =
(

1 −1
−1 1

)

, B =







1 1 0
1 1 0
0 0 0





, and C =







0 1 0
1 0 0
0 0 0





.

A shows that we can have a positive eigenvector going with a zero eigenvalue.
B shows that we can have a nonnegative eigenvector going with a positive
eigenvalue. C shows that with at least one negative eigenvalue we can have a
nonnegative eigenvector going with a positive eigenvalue. To prove the theo-
rem, guaranteeing a nonnegative or positive eigenvector, we will need a lemma.

Lemma 10 Let u ∈ Rn be a vector with components of mixed signs (i.e. at
least one positive component and at least one negative component), and let
v ∈ R be any vector linearly independent with u. Then there is a positive
vector w, which is both orthogonal to u and not orthogonal to v.

PROOF. Since u has mixed signs, there are positive vectors orthogonal to
u. Pick any vector x > 0 which is orthogonal to u. If x is not orthogonal to v,
take w = x and we’re done. If x is orthogonal to v, take w = x + εv, where ε

is small enough so that w > 0. Then wT v = εvT v > 0, and we’re done. 2

Theorem 11 Let A ∈ Rn×n be copositive, with one positive eigenvalue r, and
n − 1 nonpositive eigenvalues. Then A has a nonnegative eigenvector corre-
sponding to a nonnegative eigenvalue. Moreover, if A has no negative eigen-
values, then either r has a nonnegative eigenvector, or zero has a positive
eigenvector. Further, if A has any negative eigenvalues, then r has a nonnega-
tive eigenvector, and if A has n− 1 negative eigenvalues, then r has a positive
eigenvector.

PROOF. Using the notation of the previous lemmas and theorems (except
that λ1 = r), let v1 be the eigenvector corresponding with r. If A has no
negative eigenvalues, we must have A = rv1v

T

1 . If v1 is nonnegative then we’re
done, since v1 is the desired eigenvector. If v1 has mixed signs then we can find
w > 0 orthogonal to v1, and this w is an eigenvector corresponding to zero.
Let A now have at least one negative eigenvalue. Suppose v1 has mixed signs.

6



Then from Lemma 10 there is a positive vector w which is orthogonal to v1 and
not orthogonal to vn. Then wTAw =

∑

n

i=2 λi(w
Tvi)

2 < 0, which is not possible
since A is copositive. So, v1 must be nonnegative. Finally, let A have n − 1
negative eigenvalues, then A has a positive eigenvector corresponding with r

from Theorem 8, since the subspace spanned by the eigenvectors corresponding
to the nonnegative eigenvalues is one dimensional. 2
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