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Abstract

An n × n real symmetric matrix A is called (strictly) copositive if xT Ax ≥ 0 (> 0)
whenever x ∈ R

n satisfies x ≥ 0 (x ≥ 0 and x 6= 0). The (strictly) copositive
matrix completion problem asks which partial (strictly) copositive matrices have a
completion to a (strictly) copositive matrix. We prove that every partial (strictly)
copositive matrix has a (strictly) copositive matrix completion and give a lower
bound on the values used in the completion. We answer affirmatively an open ques-
tion whether an n × n copositive matrix A = (aij) with all diagonal entries aii = 1
stays copositive if each off-diagonal entry of A is replaced by min{aij , 1}.
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An n × n real symmetric matrix A is called copositive if xT Ax ≥ 0 whenever
x ∈ Rn satisfies x ≥ 0 (entry-wise), and is called strictly copositive if xT Ax >

0 whenever x ≥ 0 and x 6= 0. The copositive matrices arise in a number of
ways (e.g. they constitute the cone theoretic dual of the completely positive
matrices [2]), and have received notable study [1], [3], [4], [5], [7]. Checking a
given matrix may be carried out definitively [8], [9], [10], [11] but is generally
computationally time-consuming. Since the vector argument for the quadratic
form of a principal submatrix may be embedded into an argument for the
quadratic form for the full matrix by insertion of 0’s, copositivity and strict
copositivity, are inherited by principal submatrices. Thus, the diagonal entries
of a (strictly) copositive matrix are nonnegative (positive).
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A partial matrix is one in which some entries are specified, while the remaining
entries are unspecified and free to be chosen. A completion of a partial matrix
is a choice of values for the unspecified entries, resulting in a conventional ma-
trix, and a matrix completion problem asks which matrices have completions
with a desired property. The (strictly) copositive matrix completion problem
asks which partial symmetric matrices have a (strictly) copositive completion.
Our purpose here is to answer these two questions. We assume, without loss of
generality, that the diagonal entries are specified. An obvious necessary condi-
tion that a symmetric partial matrix B have a (strictly) copositive completion
is that every fully specified principal submatrix of B be (strictly) copositive.
Such a partial matrix is called partial (strictly) copositive. We show that in
each case, the necessary condition is sufficient. Thus, the copositive problems
are rather like the combinatorially symmetric P -matrix completion problem
[6] and quite different from the positive (semi-)definite completion problem,
for which complicated additional conditions are needed when the graph of the
specified entries is not chordal.

We first analyse the copositive completion problems in the case of one sym-
metrically placed pair of unspecified entries. Since the property of (strict)
copositivity is permutation similarity invariant, we may assume that the un-
specified entry is in the upper right and lower left corners, without loss of
generality.

Theorem 1 Let A =







a bT ?
b A′ c

? cT d





 be a partial copositive matrix. Then A =







a bT s

b A′ c

s cT d





 is a copositive matrix for s ≥
√

ad. If A is partial strictly copos-

itive then A with s ≥
√

ad is strictly copositive. Furthermore,
√

ad is best
possible in general.

PROOF. Let x = (x1, x
′T , xn)T ≥ 0, where x′ ∈ Rn−2 and x1, xn ∈ R.

Then xT Ax = ax2

1
+ x′T A′x′ + dx2

n + 2sx1xn + 2x1x
′T b + 2xnx′T c. A is partial

copositive, so if xn = 0, xT Ax = ax2

1
+ x′T A′x′ + 2x1x

′T b ≥ 0, for any x′ ≥ 0
and x1 ≥ 0. Let f(x1) = ax2

1
+ 2x1x

′T b + x′T A′x′, then f(x1) ≥ 0, for any
x1 ≥ 0.

If x′T b < 0 then by choosing x1 as large as desired, we must have a > 0. Then f

has a minimum at x1 = −x′T b

a
, and we have f(−x′T b

a
) = x′T A′x′−(x′T b)2

a
≥ 0.

Similarly, if x′T c < 0 we have x′T A′x′ − (x′T c)2

d
≥ 0.

If x′T b ≥ 0, then for s ≥ 0 we have
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xT Ax = ax2

1
+ x′T A′x′ + dx2

n + 2sx1xn + 2x1x
′T b + 2xnx′T c,

≥ x′T A′x′ + dx2

n + 2xnx′T c,

= (0, x′T , xn)A(0, x′T , xn)T ≥ 0.

Similarly, if x′T c ≥ 0 and s ≥ 0 then xT Ax ≥ 0.

Assume x′T b < 0 and x′T c < 0, and without loss of generality
x′T b√

a
≥ x′T c√

d
.

If s ≥
√

ad then

xT Ax≥ ax2

1
+ x′T A′x′ + dx2

n + 2
√

adx1xn + 2x1x
′T b + 2xnx′T c,

= (
√

ax1 +
√

dxn)2 + x′T A′x′ + 2
√

ax1

x′T b√
a

+ 2
√

dxn

x′T c√
d

,

≥ (
√

ax1 +
√

dxn)2 + 2(
√

ax1 +
√

dxn)
x′T c√

d
+ x′T A′x′,

= [
√

ax1 +
√

dxn +
x′T c√

d
]2 − (

x′T c√
d

)2 + x′T Ax′ ≥ 0.

Now consider when A is partial strictly copositive. Then a > 0 and d > 0.

With A partial strictly copositive, and s ≥ 0, then x′T b ≥ 0 implies xT Ax ≥
(0, x′T , xn)A(0, x′T , xn)T = (x′T , xn)

(

A′ c

cT d

)

(x′T , xn)T > 0, if (x′T , xn)T 6= 0,

since
(

A′ c

cT d

)

is strictly copositive.

If (x′T , xn)T = 0 then for x = (x1, 0, 0)T , where x1 6= 0, we have in this case
xT Ax = ax2

1
> 0, also.

If A is partial strictly copositive and s ≥ 0, x′T c ≥ 0 implies xT Ax > 0, for
x 6= 0, by a similar argument to that given in the previous paragraph, but

instead using
(

a bT

b A′

)

.

If x′T b < 0, then (x1, x
′) 6= 0, so f(x1) > 0, for any x1 ≥ 0, and so x′T A′x′ −

(x′T b)2

a
> 0, and if x′T c < 0 then x′T A′x′ − (x′T c)2

d
> 0. Then, as in the

copositive case, for s ≥
√

ad if x′T b < 0 and x′T c < 0, we have xT Ax > 0.

To show that no general improvement in the bound is possible take A =

3









1 −1 s

−1 1 −1
s −1 1





, and consider xT Ax, where x = (1, 1, x3) with x3 small. In

the strictly copositive case, take A + εI, ε > 0, and argue by continuity. 2

Remark: Note that if b, c ≥ 0, then s ≥ −
√

ad suffices, as
(

0 bT

b A′

)

and
(

A′ c

cT 0

)

are copositive and
(

a −
√

ad

−
√

ad d

)

is copositive. We have s ≥
−
√

ad, necessarily. It is an interesting question to determine the minimum s

that yields copositivity, in terms of the specific data.

Now consider a general partial (strictly) copositive n × n matrix B = (bij),
with fully specified diagonal and focus upon a particular symmetrically placed
pair of unspecified entries, say bpq, bqp. We shall apply the rule of Theorem

1 repeatedly, namely, “fill in s in place of bpq and bqp, where s ≥
√

bppbqq”

(∗). Thus, the proof could proceed as follows: We choose an arbitrary pair of
unspecified entries and apply the rule (∗), say with the equals sign, to obtain a
value for those two entries. Then we consider an arbitrary principal submatrix,
two of whose entries are those just specified and whose other entries are already
specified. Theorem 1 asserts that this principal submatrix, possibly after a
permutation similarity to put s in the upper right and lower left corners, is
(strictly) copositive. We conclude that the matrix B, with the newly specified
entries, is partially (strictly) copositive. Repeating the process as needed, one
obtains a (strictly) copositive completion of the given matrix. Notice that the
completion can be done in one step by applying (∗) to all unspecified entries.

Theorem 2 Let B be a partial (strictly) copositive n×n matrix. Then, there
is a completion A of B that is (strictly) copositive.

Corollary 3 If in an n × n (strictly) copositive matrix each entry in a sym-
metric set of entries is replaced by application of the rule (∗), then the matrix
remains (strictly) copositive.

Thus, from Corollary 3, we can deduce the useful rule: If a matrix A with non-
negative diagonal is the completion of a partially (strictly) copositive matrix
whose off-diagonal entries are negative and the other entries of A satisfy (∗),
then A is (strictly) copositive.

Let A be a copositive matrix with all diagonal entries aii = 1. Now apply rule
(∗), with the equals sign, to all off-diagonal entries aij > 1, in effect, replacing
all such entries with 1. Then Corollary 3 answers affirmatively a question
raised by Kaplan in [8] (bottom of page 245, and open question 3 on page
250), whether a copositive matrix A = (aij) with unit diagonal is converted
to a copositive matrix by replacing each off-diagonal entry aij by min{aij, 1}.
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