
CoFence: A Collaborative DDoS Defence Using
Network Function Virtualization

Bahman Rashidi Carol Fung
Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA

{rashidib, cfung}@vcu.edu

Abstract—With the exponential growth of the Internet use,
the impact of cyber attacks are growing rapidly. Distributed
Denial of Service (DDoS) attacks are the most common but
damaging type of cyber attacks. Among them SYN Flood attack
is the most common type. Existing DDoS defense strategies are
encountering obstacles due to their high cost and low flexibility.
The emerging of Network Function Virtualization (NFV) tech-
nology introduces new opportunities for low-cost and flexible
DDoS defense solutions. In this work, we propose CoFence −
a DDoS defense mechanism which facilitates a collaboration
framework among NFV-based peer domain networks. CoFence
allows domain networks help each others handle large volumes of
DDoS attacks through resource sharing. Specifically, we focus on
the resource allocation problem in the collaboration framework.
Through CoFence a domain network decides the amount of
resource to share with other peers based on a reciprocal-based
utility function. Our simulation results demonstrate the designed
resource allocation system is effective, incentive compatible, fair,
and reciprocal.

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks can cause
severe damage to ISPs and online services, especially for small
and medium-sized organizations who lack sufficient resources
to withstand a high volume of DDoS traffic. In recent years,
the proliferation of black market and the growth of “DDoS
as a service” [4], [14] has greatly enhanced the capability of
attacks since all attackers need to do is to visit the website,
schedule, and pay for an attack. Some recent incidents show
that DDoS attacks are becoming stronger and more frequent.
For example, the Spamhaus attack in 2013 [3] has generated
300 Gbps attack traffic. This number has been increased to
600 Gbps in January 2016 [12].

Regarding the DDoS attack techniques, there are two major
types of attack traffic: IP spoofing attacks and real source IP-
based attacks. The real source IP-based DDoS attacks com-
monly utilizes compromised nodes in the Internet, commonly
called bots or zombies, to launch the attack. On the other
hand, IP spoofing DDoS is the type of attacks where the
source addresses are not the real IP address of the attacker.
An example of this type of attack is SYN Floods [15]. An
Atlas security report shows that the SYN Floods take the
vast majority of the attack volume in recent major DDoS
attacks [2]. Existing solutions on SYN Floods, including
dedicated DDoS mitigation devices (e.g., IPS or firewall)
and third-party DDoS filtering cloud services [5], [1], either
bring high cost through purchasing dedicated hardware or
trigger privacy concerns by directing traffic to untrusted third

parties. In this paper, we introduce a novel approach for DDoS
mitigation using collaborative networks and Network Function
Virtualization (NFV) technology.

NFV is an emerging technology where network functions
are implemented and provided in software, which runs on the
commodity hardware [7]. The network functions are imple-
mented as software and deployed as virtual machines. The
virtual machines run on general purpose commodity hardware
systems so that NFV not only provides the benefit of elasticity,
but also reduces the cost by running on commodity platforms
like x86- or ARM-based servers instead of specialized hard-
ware, resulting in a much easier deployment and lower cost.
At the same time, NFV also introduces new opportunities for
DDoS detection and mitigation.

Traditional device-based DDoS mitigation is limited by
the computation capacity of the dedicated network functions,
such as firewall or IPS. Upgrading or adding new hardware
introduces high cost and long cycle time. The usage of NFV
technology makes device upgrading and creation fast and low
cost, which brings a great opportunity for DDoS defense.
In our previous work [11], we introduced a dynamic local
networking system based on NFV technology which utilizes
virtualized network functions running on commodity servers to
perform DDoS data filtering. However, this solution may not
be sufficient when the attack strength exceeds the available
hardware capacity. Seeking external helping resource may be
a viable solution.

In this work, we propose CoFence, a collaborative DDoS
mitigation network system which facilitates a domain-helps-
domain collaboration network. In this network, a domain can
direct excessive traffic to other trusted external domains for
DDoS filtering. The filtered clean traffic will be forwarded
back to the targeted domain. Specifically, we focus on the
resource allocation problem when multiple requesters ask for
help. We design a fair and incentive-compatible resource
allocation method which provides an effective collaborative
DDoS defense with inherent reciprocal eco-system. Our ex-
perimental results demonstrate that our proposed solution can
effectively reduce the DDoS attack flow to the targeted server,
and the resource allocation is fare and provides incentive
for domains to maximally help other domains in need. The
contributions of this paper include: 1) Our work proposes a
novel collaborative DDoS defense network based on network
function virtualization technology. 2) We propose a dynamic
resource allocation mechanism for domains so that the system

c©IFIP, (2016). This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive version was published in IFIP CNSM 2016

is fair, efficient, and incentive-compatible. 3) We evaluate
our proposed solutions using simulation and verify that the
proposed solution is effective to DDoS defense and meets our
design goals.

II. RELATED WORK

Network softwarization technology including SDN and
NFV has been growing rapidly due to high interest from both
academia and industry. In SDN the networking functions are
separated into control plane and data plane. The main idea
of NFV is to replace dedicated network appliances, such as
hardware-based routers and firewalls, with software that runs
on commercial off-the-shelf servers. Both SDN and NFV can
lower the cost of network deployment and high flexibility for
management compared to traditional computer networks.

There are many work proposed to utilize NFV for DDoS
defense. Fayaz et al. propose Bohatei [8], a DDoS defense so-
lution using software defined networking (SDN) and network
functions virtualization (NFV) paradigms. Bohatei is designed
to cope with the expensiveness and proprietary hardware
appliances of the existing solutions. Bohatei uses its resource
manager component to assign available network resources to
the defense VMs once suspicious traffic is detected. Since
Bohatei is using a limited amount of network resources (to
launches VMs), it cannot be effective in case of attacks
that incoming traffic’s strength is heavier than what it can
handle. In contrast, in CoFence, in addition to utilizing NFV
technology, attack victims can receive external help from their
collaborators in terms of network resources.

Lim et al. propose a SDN-based approach to overcome
legitimate looking DDoS attacks [13]. In their work they
investigate a DDoS blocking application that runs over the
SDN controller while using the standard OpenFlow interface.
The DDoS blocking application runs on a SDN controller. The
scheme requires a large amount of communication between the
DDoS blocking application running on the SDN controller
and the server to be protected. The blocking application
needs to cooperate with SDN controller which increases the
dependency and a high latency consecutively.

Guenane et al. have designed a architecture of cloud-based
firewalling service using NFV technology and other network
Virtualization capabilities to overcome DDoS attacks [10]. The
designed cloud architecture acts as an intermediary to filter the
attack traffic for the customer and transmits only legitimate
traffic.

Our previous work [9] proposes a traffic prioritization
algorithm to reduce the impact from DDoS attacks based
on real IPs. VFence [11] on the other side, is specially
effective to reduce the impact from DDoS attacks on IP-
spoofing by creating additional virtual IPSs in NFV-enabled
networks. IPSs verify the source IP of the incoming traffic
and verified traffic will be further forwarded to the server.
However, it is not effective when the attack volume is high
enough to overwhelm the available location resource. CoFence
can solve this problem by utilizing external resources in the

collaboration network. Hence, it further improves the DDoS
resistance level of NFV-enabled domain networks.

III. COLLABORATIVE DDOS DEFENSE

In this section we present the network design of CoFence.
The purpose of CoFence is to provide a platform for domain
networks (e.g., an enterprise network or an ISP) to help each
others to enhance resistance against large-scale DDoS attacks.
With the help of network function virtualization (NFV) tech-
nology, each NFV-enabled domain network can contribute
their spare network resource to help other domains in the
network when needed.

Botnet

Domain 1

DDoS A
tta

ck tra
ffi

c

Redirected traffic to Dn

Filtered traffic

R
edirected traffic to D

2

Filtered traffic

Virtual
Firewall

Public Server

Domain 2

Domain n

Virtual
Gateway

Attacker

…

LAN 2

…

…

LAN 1

…

LAN 2

…

LAN m

…
…

Filtered traffic

Attack traffic

Filtered traffic

Attack traffic

tttttto
D

o

Virtual
IPS

D
2

Internet

…

Fig. 1. A case study of collaborative DDoS defense

In a CoFence network, each NFV-enabled domain contains
a virtual gateway and a virtual IPS. The purpose of the virtual
IPS is to detect and filter DDoS attacks. Due to the flexibility
of NFV, a virtual IPS can be created and its capacity can
be configured dynamically based on need. When a domains
joins CoFence, the domain can choose whether to share its
IPS with other trusted domains or not, and configure the
maximum external traffic it is willing to handle for other
domains. In a CoFence network trust is already established.
Trust can be addressed through a service agreement process
in which domains agree with a number of predefined terms
and conditions.

Figure 1 illustrates a case study of CoFence. When the
attacker launches a DDoS attack against the public server in
domain 1 and the attack traffic volume exceed the maximum
capacity of the local IPS, some incoming traffic can be
redirected to its collaborator domains for filtering (this can be
done by updating the forwarding table in the gateway). The
SYN flood will be filtered remotely and only filtered traffic is
forwarded back to domain 1.

To be able to collaborate with other domains, a virtual IPS
should contain the following functions:

1) Communication Component: This is used to communi-
cated with other domains in the network. The communication
in the collaboration network can be divided into three types:
(a) request for help and offer to help. (b) request to add as

neighbors and respond to the neighbor adding request. (c)
request to remove as neighbors and respond to the neighbor
removal request.

CoFence is set up as a “separat” defense network and usual
traffic is transferred within another network. This way we can
ensure that requesting help is possible in case the network link
is saturated.

2) Resource Allocation: After receiving a helping request,
a domain needs to decide how much of its spare resource it
should offer to the requesting neighbor. This decision problem
becomes non-trivial when there are multiple requesters at the
same time. A resource allocation component should be in
place to compute the optimal way for the resource alloca-
tion decision. Several design goals include how to make the
resource usage efficient, fair to new neighbors, and incentive-
compatible to encourage more generous sharing. The focus
of this paper is to design a resource allocation mechanism to
meet the above goals. It is worth talking into consideration
that CoFence is a distributed model and it can be applied to
networks with different scales.

IV. RESOURCE ALLOCATION MECHANISM

In this section, we describe the resource allocation model
for nodes in the CoFence network. We start from the statement
of the resource allocation design goals and then a modeling
of the resource allocation to fulfill the goals.

A. The Design Goals of Resource Allocation

Our design goals can be stated as follows. First of all we
are interested to build a collaboration system which is fair,
incentive-compatible, and reciprocal. The fairness property
means the system can control the discrepancy of received
help among different nodes so starving can be avoided for
new participants. For example, a new participant with no
credit shall receive help when resource allows. The incentive-
compatibility provides incentive mechanism for participants
to contribute more to help others. i.e., the more a node
contributes resource to help others, the more help it receives
in return when needed. The reciprocal property provides a
pair-wise mutual beneficial relation. For example, the more
node x helps node y, the more node y helps x in return.
In terms of performance we aim at a system to be efficient,
with low communication overhead, and effective to defend
against DDoS attacks. In the next subsection, we discuss the
mechanism design of the resource allocation mechanism to
fulfill the above design goals.

B. Resource Allocation Modeling

The CoFence network consists of a set of n domains, and the
domains are connected into a collaboration network denoted
by a graph G = {V, E}, where V denotes the set of domains
(nodes) and E represents the connection between pair of nodes
if they have established a trusted collaboration relationship. In
the network, domains (nodes) share attack traffic with another
domain (nodes) under DDoS attack if they have an edge in
between them. We use Ni to denote the set of neighbors

TABLE I
SUMMARY OF NOTATIONS.

Notation Meaning

N Set of all participating domain nodes in CoFence
Ni Set of all neighbors for domain i
Si Set of neighbor nodes requesting help from domain i
~ri The helping data rate from domain i to neighbors
rij The helping data rate from domain i to node j
Rij The requested helping rate from i to j (set by node j)
Sij(rij) The satisfaction level of j given helping rate rij
r̂i Total reserved helping resource amount of node i
Hij Level of helpfulness from i to j in the past
λ Forgetting factor
∆t Helping credit updating interval

node of i. i.e., they are connected to node i directly by an
edge in G. When a node i receives a helping requests from
its neighbor j, helping resource will be allocated using a fair
resource allocation algorithm described in the next subsection.

Let set Si (Si ∈ Ni) denote the set of domains which
request for help from domain i. We use a vector ~ri to represent
the traffic handling volume that domain i offers to help the
requesters and use Rij to denote the traffic handling volume
that node j requests from node i when it is under attack,
where i ∈ N and j ∈ Si. Note that Rij is controlled by
node j and informed to node i. We use ~Rj to denote the
requested handling rates node j imposes to all its neighbors.
Our system requires that each node controls its helping rate
under the requested helping rate, i.e., rij ≤ Rij . Also the
total helping rate should not exceed the spare resource that the
offering node is willing to share, i.e.,

∑
j∈Si rij ≤ r̂i, where

r̂i is the maximum resource amount that node i is willing to
share with other. We list all notations in Table. I.

For the design of a reciprocal system, we use matrix H =
[Hij]i,j∈N to denote the helping credit of nodes, where Hij ≥
0 represents the level of helpfulness from node i perceived
by node j. Note that the matrix H can be asymmetric, i.e.,
Hij 6= Hji. Our goal is to devise a resource allocation protocol
such that the helping resource is fairly distributed to others
based on their helpfulness in the past. To achieve this goal,
each node i solves an optimization problem that maximizes
the aggregated satisfaction level of its requesting neighbors as
follows:

argmax
~ri

Uh
i (~ri) :=

∑
j∈Si

HjiSij(rij) (1)

∑
j∈Si

rij ≤ r̂i, (2)

0 ≤ rij ≤ Rij , (3)

where Sij(rij) ∈ [0, 1] is the satisfaction level of the
requesting node j in response to the helping rate rij from
the node i. We let Sij take the following form

Sij(rij) := log2

(
1 +

rij

Rij

)
. (4)

The concavity and monotonicity of the satisfaction level
indicate that a requesting node becomes increasingly pleased
when more help is received but the marginal satisfaction
decreases as the amount of help increases. The parameter Hji

in (1) suggests that the satisfaction level of a node j carries
more weight when it is a more helpful node to i in the past.

The utility Uhi measures the aggregated satisfaction level
experienced by node i’s collaborators weighted by their help-
fulness in the past. It allows a node to provide more help to
those with whom there was more helpful in the past.

It can be seen that when r̂i is sufficiently large then (2)
is an inactive constraint, the solution to (1) becomes trivial
and rij = Rij for all j ∈ Si. The situation becomes more
interesting when (2) is an active constraint. Assuming that Rij
has been appropriately set by node j, we form a Lagrangian
function Li : Rni × R× Rni → R

Li(~ri, µi, δij) :=
∑
j∈Si

Hji log2

(
1 +

rij

Rij

)

−µi

∑
j∈Si

rij − r̂i

− ∑
j∈Si

δij(rij −Rij), (5)

where µi, δij ∈ R+ satisfy the complementarity conditions
µi

(∑
j∈Si rij − r̂i

)
= 0, and δij(rij − Rij) = 0,∀j ∈ Si.

We minimize the Lagrangian with respect to ~ri ∈ R|Si+ | and
obtain the first-order Kuhn-Tucker condition:

Hji

rij +Rij
= µi + δij , ∀j ∈ Si.

When (2) is active but (3) is inactive, we can find an open
form solution supplied with the equality condition∑

j∈Si

rij = r̂i, (6)

and consequently, we obtain the optimal solution

r?ij :=
Hji∑

u∈Si Hui

r̂i +
∑
v∈Si

Riv

−Rij . (7)

When the constraint (3) is active, the optimal solution
is attained at the boundary. Since the log function has the
fairness property, the optimal solution r?ij has non-zero entries
when the resource budget r̂i > 0. In addition, due to the
monotonicity of the objective function, the optimal solution
r?ij is attained when all resource budgets are allocated, i.e.,
constraint (2) is active.

Remark 1: We can interpret (7) as follows. The solution
r?ij is composed of two components. The first part is a
proportional division of the resource capacity r̂i among |Ni|
collaborators according to their compatibilities. The second
part is a linear correction on the proportional division by
balancing the requested sending rate Rij . It is also important
to notice that by differentiating r?ij with respect to Rij , we

obtain
∂r?ij
∂Rij

= (
Hji∑

u∈Si
Hui
− 1) < 0, suggesting that at the

optimal solution, the helping rate decreases as the recipient
sets a higher requesting rate. If a node wishes to receive higher
helping rate from its neighbors, it has no incentive to overstate
its level of request. Rather, a node j has the incentive to un-
derstate its request level to increase r?ij . However, the optimal
solution is upper bounded by Rij . Hence, by understating its
request Rij , the optimal helping rate is achieved at Rij .

C. Helping Credit Computation

To build an incentive-compatible, and reciprocal resource
allocation system, it is important for a node to track how much
a neighbor node have helped in the past. We call it helping
credit. In our model, we use the cumulative helping resource
a node have offered in the past to represent the helping credit.
Each node tracks the helping credit from its neighbors so
that the helping resource tracking is fully distributed and the
measured helping credit is private to each node.

Let rij(t) denote the helping data rate that node i offers to
node j at time t, then node j computes the helping credit of
node i at time t0 using the following equation:

Hij(t0) =

∫ t0

−∞
rij(t)λ(t0−t)dt (8)

A node gains credit by providing help to other nodes in the
network. The credit in the past is being “forgotten” with an
exponential speed λ, where λ ∈ (0, 1] is called a forgetting
factor. A smaller λ represents faster forgotten speed. If λ = 1
then all past credit will be remembered and carry the same
weight as new credit. Note that when a new node joins the
network, its credit can start from a small value to all its
neighbors. Given the credit of node i perceived by j at a
historical time t′ = t0 −∆t is known to be Hij(t

′), then we
can compute the credit at time t0 using the following equation:

Hij(t0) =

∫ t′

−∞
rij(t)λ(t0−t)dt+

∫ t0

t′
rij(t)λ(t0−t)dt (9)

=

∫ t′

−∞
rij(t)λ(t′−t)λ(t0−t′)dt+

∫ t0

t′
rij(t)λ(t0−t)dt

= λ∆tHij(t−∆t) +

∫ t0

t0−∆t
rij(t)λ(t0−t)dt

Equation (10) indicates that the helping credit of a node
at any time (e.g., t0) can be computed incrementally based
on the credit at an earlier time (e.g., t′). Therefore the credit
computation requires fixed memory and storage.

Alternatively, let the time that a new node i joins the
network to be 0 with initial credit ci, and the current time is a
relative time T after the initial joining time, then the helping
credit perceived by j can be computed as follows:

Hij(T) = λT ci +

∫ T

0
rij(t)λ(T−t)dt (10)

D. Requesting for Help

As stated in Remark 1, a node under attack does not have
incentive to overstate its level of request. To effectively inform
the desired help to its collaborators, a node under attack can
broadcast the helping requests use the following algorithm.

As described in Algorithm 1, when a domain u detects
DDoS attacks, it sends requests for help to its trusted neigh-
bors sequentially, starting from the neighbor with the highest
helping credit. When sufficient helping resource is achieved,
it exits the rest of the requesting process. After negotiation,
domain u directs the traffic flows to the helpers. At last, each
domain updates the credit of its neighbors to reflect the up-
to-date status after interval ∆t.

Algorithm 1 Seek Help by Node u

1: //This algorithm describes the algorithm for a node to broadcast its requested help
to its neighbors. It is triggered when DDoS attacks are detected.

2: Inputs :

3: Nu: the set of neighbor domains that are trusted by domain u
4: ~Hu: helping credits for all neighbors of domain u in descending order
5: Au: required helping resource needed for domain u during DDoS attack
6: ∆t: the time interval to recompute the credit of all neighbors
7: //Send request for help to each trusted neighbor ordered by their level of helpfulness

in the past.
8: for each node v in ~Hu do
9: h⇐sendRequest(v,Au) //v computes resource offer using Eq. (1)

10: Au = Au − h //Reduce the required amounts after receiving help
11: if Au = 0 then
12: break the for loop
13: end if
14: end for
15: RedirectTraffic to helpers
16: set timer (∆t, “UpdateCredit(Nu)”) //Update neighbors’ helping credits periodi-

cally (every ∆t)

V. EVALUATION

In this section we present our experiments evaluating the
proposed collaborative model. We conducted a series of ex-
periments on different case studies to evaluate the performance
of the model.

A. Simulation Setup

Since the vast majority of DDoS attacks is SYN Flood
attack, we simulate SYN Flood attack in our experiment. We
use Discrete Event Simulation (DTS) to build the environment.
A DTS framework models the operation of a network system
through processing a sequence of discrete events ordered by
time. More specifically we used SimPy [6] framework as our
simulator. SimPy is a process-based discrete-event simulation
framework based on standard Python. The packets arrival are
simulated using Poisson process.

We simulate a collaboration network with domains (nodes)
sharing their virtual IPS DDoS data filtering capability. We
defined two types of network traffic in the simulation: legit
traffic, which is the normal traffic that a node receives during
the normal situation; and attack traffic, which is the packets
flow that a domain receives when it is under attack. We set the
packet arrival rate parameter λ to 1K packets/second for legit
traffic and 6K packets/second for the attack traffic. In addition,
We set the maximum packet processing rate for each virtual
IPS to be 2K packets/second by default, and the buffer size to
be 10.

B. The Computation of Helping Credits

First of all we evaluate the helping credit computation
that one domain gains based on its helping effort to another
domain. Equation 8 is used to compute the credits. We set up
two nodes i and j. Node i is under DDoS attack and node
j provides help to node i. Node j provides help to handle
traffic with data rate rji. At first we fix rji to 1K/second and
observe the change of credit of node j perceived by node i
under different setting of parameter λ. Figure 2(a) shows the
the helping credit of node j computed by node i. As we can

5 10 15 20 25 30
0

10

20

30

40

Time (S)

M
ea

su
re

d
he

lp
in

g
cr

ed
it

(×
1K

)

(a)

λ = 0.2
λ = 0.4
λ = 0.6
λ = 0.8

5 10 15 20 25 30
0

20

40

60

80

Time (S)

M
ea

su
re

d
he

lp
in

g
cr

ed
it

(×
1K

)

(b)

H = 1K
H = 2K
H = 3K
H = 4K

Fig. 2. Helping credit measurement: (a) the helping credit of node j perceived
by node i for a fix helping rate rji = 1K/second at different λ settings; (b)
the helping credit of node j perceived by node i for a fixed value of λ = 0.6
and different settings of help rate from node j.

see, under all λ settings the the helping credits increase with
time. A higher λ leads to a higher credit value.

In the second part of the experiment, we fixed the value of
λ to 0.6 and let rji increases from 1K to 4K with step 1K.
Figure 2(b) shows that the more generous that node j helps
node i, the higher credit it gains.

Rij

(a) (b)

nj

ni

nj

ni

Ri1

Ri2

Ri3

(d)

nin1

n2

n3

nM

…

RiM

R1i

R2i

R3i

R4i

R5i

n1

n2

n3

n4

n5ni

(c)

Fig. 3. Case studies: (a) attack target ni is not equipped with CoFence; (b)
ni is using CoFence and has one neighbor; (c) attack targets n1 − n5 share
one neighbor node (ni); (d) node ni has different number of neighbor nodes
in the network

C. Case Studies

In the next set of experiments we use four case study, as
shown in Figure 3, to evaluate the efficiency of our proposed
CoFence model against DDoS attacks. Figure 4 (a) shows the
traffic trace we use in these case studies. We can see that the
normal traffic to both nodes are set to be 1K/second while the
attack traffic to node ni is 6K/second. For the proof of the
concept, we only simulate a short period of DDoS attack flow
from time 10s to 20s.

1) Case Study 1: In the first experiment we measure the
packets dropping rate in the network when CoFence is not
in place. The corresponding case study is Figure 3 (a). In
this scenario node i is under attack. Since node i can only
handle data rate 2K/second, much traffic to node i has to
drop. Figure 4 (b) shows the packet dropping rate at both
node i and node j. We can see that the drop rate on node i
increases significantly under attack. In contrast, node j handles
its incoming network traffic which is half of its capacity
without with minimum packets drops.

2) Case Study 2: In the second experiment we evaluate the
efficiency of CoFence when the attacked target (node i) has
one neighbor (node j) in CoFence. The case study is illustrated
in Figure 3 (b). In this case, when node i is under attack, node
j can offer its spare resource to process part of the excessive
data flow from node i so that it can reduce the dropping rate
on node i. Figure 5 (a) illustrates the packet dropping rate

5 10 15 20 25 30
0

2

4

6

Time (S)

Pa
ck

et
ar

riv
al

ra
te

(1
00

0/
S)

(a)

nj
ni

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time (S)

D
ro

p
ra

te
(P

ac
ke

ts
/S

)

(b)

nj
ni

Fig. 4. Incoming packet and drop rate for case study (a).

on both nodes. We can see that the drop rate on node i is
reduced with the help of node j. In this case, node j offered
1K/second processing power to node i. Note that in this case
node j’s packet incoming rate reaches its processing capacity,
a small portion of the packets are dropped.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time (S)

D
ro

p
ra

te
(P

ac
ke

ts
/S

)

(a)

nj
ni

5 10 15 20 25 30
0

1

2

3

4

Time (S)

Pr
oc

es
si

ng
de

la
y

(m
ill

is
ec

on
ds

)

(b)
Fig. 5. Average dropping rate and processing delay for case study (b).

We also study the average processing delay for legit packets
arriving at both node i and j. We define the processing delay to
be the time elapsed from a legit packet’s arrival at a gateway to
its arrival at the online server. Figure 5 (b) shows the average
processing delay for packets arriving at both nodes i and j.
Since every node processing rate is 2K packets per second,
the average process time (in a second) per packet is 0.5ms or
slightly higher than the nodes’ processing time when no node
is under attack. When attack happens, a packets’ processing
delay at node i increases to 1.8ms − 2.3ms. At node j we
have two types of packets to be processed: node’s j’s regular
incoming packets and packets coming from node i. The delay
for incoming regular packets follows the same delay as node
i, but the computed delay for received packets from node i
includes the redirection time, which includes the transmission
time and propagation time between two domains. For the
simplicity we assume that the average redirecting packets from
one domain to another takes 1ms. Therefore, the delay for this
packets is 1ms higher.

3) Case Study 3: In the third experiment, we evaluate the
case that 5 nodes (n1 ∼ n5) are under attack and all of them
share one helper node (ni) (Figure 3(c)). We stress all nodes
with DDoS traffic 6K/s on each node. Under this case all
attacked nodes turned to node i for help. We let the credits
for nodes 1−−5 range from 0 to 80 with step 20. Each round
we let the node’s i maximal shared capacity be 1K, 10K, 20K,
and 25K. Figure 6 shows the amount of received help from
node i. We observe that when node i has more free capacity,
attacked nodes receive more help. The higher a node’s credit is,

the more resource it received from node i. When the available
free capacity is set to 25K, all the nodes including the node
with 0 credit will receive all they request. This demonstrate
the efficiency and fairness of the resource allocation. i.e., all
available resource will be utilized and no node should starve
if resource is available.

Nodes

N
1

N
2

N
3

N
4

N
5

A
m

o
u

n
t

o
f

re
ce

iv
ed

 h
el

p

0

1K

2K

3K

4K

5K

6K
1K 10K 20K 25K

Fig. 6. Amount of help that nodes 1 − 5 receive for different available
capacities of node i (case study (c)).

4) Case Study 4: In the fourth experiment we evaluate the
impact of the number of neighbors (helper nodes) for the
attacked node. Figure 3 (d) illustrates the case study for this
experiment. In the network node i has m neighbor nodes in the
collaboration network. In our experiment we start from m = 1
and increase m by one in each round. We measure the packet
dropping rate of node ni is under DDoS attack. Figure 7 shows
that after adding the five helper nodes, the drop rate of node i
reduces to 0. This implies that more neighbors a domain has,
the more DDoS attack resistant it is.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of nodes

H
ig

he
st

dr
op

ra
te

of
n
i

ni

Fig. 7. The impact of different number of nodes (1 − 6) in a attack target
node’s locality on packet drop rate (case study (d)).

VI. CONCLUSION

In this paper we propose CoFence, a collaborative network
to defend against DDoS attacks based on network virtualiza-
tion technology, where domain networks under DDoS attack
can redirect excessive traffic to other collaborating domains
for filtering. Specifically we focus on the resource allocation
mechanism that determines how much resource one domain
should offer to the requestors so that the resource is distributed
efficiently, fairly, and with incentives. Our evaluation results
demonstrate that the collaborative DDoS defense can effec-
tively reduce the impact from the attack and the proposed
resource allocation mechanism can meet the design goal. In
order to make our credit evaluation process more fair and
effective we will include the impact of link bandwidth into
our credit evaluation process.

REFERENCES

[1] Arbor ddos detection and protection. http://security.arbornet
works.com/protection/?gclid=CNrToYHYqM0CFRY7gQodjvcN w.

[2] Atlas q2 2015 update. http://www.slideshare.net/Arbor Networks/atlas-
q2-2015final.

[3] Biggest internet attack in history threatens critical systems.
http://www.ibtimes.co.uk/biggest-internet-attack-history-threatens-
critical-infrastructure-450969.

[4] The booter website. https://booter.xyz/.
[5] Prolexic routed. https://www.akamai.com/us/en/solutions/products/cloud-

security/prolexic-routed.jsp.
[6] The simpy simulator. https://simpy.readthedocs.io.
[7] ETSI NFV ISG. Network Functions Virtualization White Paper 3:

Network Operator Perspectives on Industry Progress. In SDN and
OpenFlow World Congress, Oct. 2014.

[8] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei: Flexible and
elastic ddos defense. In 24th USENIX Security Symposium (USENIX
Security 15), pages 817–832, Washington, D.C., 2015. USENIX Asso-
ciation.

[9] C. J. Fung and B. McCormick. Vguard: A distributed denial of service
attack mitigation method using network function virtualization. In
Network and Service Management (CNSM), 2015 11th International
Conference on, pages 64–70. IEEE, 2015.

[10] F. Guenane, M. Nogueira, and A. Serhrouchni. Ddos mitigation cloud-
based service. In Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 1,
pages 1363–1368, Aug 2015.

[11] A. H. M. Jakaria, W. Yang, B. Rashidi, C. Fung, and M. A. Rahman.
Vfence: A defense against distributed denial of service attacks using
network function virtualization. In 11th IEEE International Workshop
on Security, Trust, and Privacy for Software Applications(STPSA 2016).
IEEE, 2016.

[12] S. Khandelwal. 602 gbps! this may have been the largest ddos attack
in history. http://thehackernews.com/2016/01/biggest-ddos-attack.html.

[13] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang. A sdn-oriented ddos
blocking scheme for botnet-based attacks. In 2014 Sixth International
Conference on Ubiquitous and Future Networks (ICUFN), pages 63–68,
July 2014.

[14] J. J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto, M. Wier-
bosch, L. Zambenedetti Granville, and A. Pras. Booters - an analysis
of ddos-as-a-service attacks. In Integrated Network Management (IM),
2015 IFIP/IEEE International Symposium on, pages 243–251. IEEE,
2015.

[15] H. Wang, D. Zhang, and K. G. Shin. Detecting syn flooding attacks.
In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 3,
pages 1530–1539. IEEE, 2002.

