Geometry and electronic structure of magic iron oxide clusters

Q. Wang, Q. Sun,* M. Sakurai, and J. Z. Yu
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan

B. L. Gu
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
and Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China

K. Sumiyama and Y. Kawazoe
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
(Received 1 February 1999)

The magic iron oxide cluster Fe$_{13}$O$_{8}$ is found by using a reactive laser vaporized cluster source. From first-principles calculations, the equilibrium geometry is determined to be of D_{4h} symmetry. Comparing with Fe$_{13}$O$_{6}$, Fe$_{12}$O$_{9}$, and Fe$_{14}$O$_{7}$, Fe$_{13}$O$_{8}$ has a closed electron configuration in highest occupied molecular orbital (HOMO), a large gap of HOMO-lowest unoccupied molecular orbital, and large binding energy, which suggest that it is most stable, confirming our experimental observation. The main interaction between oxygen and iron atoms in the cluster is the hybridization between O-2p and Fe-3d orbitals. The electronic structure and magnetic properties for this magic iron oxide cluster are discussed in detail. [S0163-1829(99)01620-3]

I. INTRODUCTION

The interaction between substance and oxygen is one of the most important chemical processes to understand corrosion, biological oxygen transport, and oxide film formation. The interest and the richness of this field lie in its interdisciplinary nature and in the diversity of questions it raises, both on fundamental and on applied levels. In recent years, with the new advent of flexible and precise experimental techniques, the studies on oxidation of clusters also have attracted great attention: Fe$_n$,$^{1-3}$ Li$_n$,4-6 Cs$_n$,7,8 Mn$_n$,9,10 Al$_n$,11 Si$_n$,12,13 and Ba$_n$ clusters.14,15 Of all the clusters, Fe-O clusters are of particular interest because of their diverse physical and chemical behaviors, and the belief that well-controlled studies on iron oxide clusters not only provide a new avenue to obtain detailed information about the interaction between oxygen and iron but also provide models for iron oxide materials16 and iron oxide surfaces.$^{17-19}$ Small iron oxide clusters have been extensively studied by Wang and his co-workers;$^{1-3}$ the photoelectron spectra for Fe$_m$O$_n$ ($m = 1-4, n = 1-6$) indicated that there exist sequential oxygen atom chemisorptions on the surfaces of small iron clusters, which provide novel model systems to understand the electronic structure of bulk iron oxides.1 However, no studies on larger iron oxide clusters have been reported to our knowledge.

Recently, we have produced iron oxide clusters by using reactive laser vaporized cluster source, where a pulsed second harmonic of Nd:YAG laser was used for vaporization of an iron rod. Metal vapor was cooled by He gas injected from a pulsed gas valve synchronizing with a vaporization laser, and oxygen gas was continuously introduced through a small orifice into a cluster formation cell with 103 mm3 in volume, where the oxygen gas flow rate was changed from 0.0 to 3.0 SCCM controlled by a needle valve and a mass flow meter.

Details of this experiment will be published elsewhere.20 Figure 1 shows the mass spectra of the Fe$_m$ and Fe$_m$O$_n$ clusters with different oxygen gas flow rates, from which the following interesting features can be seen: for pure iron clusters, Fe$_7$, Fe$_{13}$, Fe$_{15}$, Fe$_{19}$, and Fe$_{23}$ are stable; for iron oxide clusters, Fe$_{13}$O$_8$ is a magic cluster, found in experiment.20 Why is it magic? What is the geometry, and what are the electronic structure and magnetic properties of this interesting magic iron oxide cluster? In this paper we try to answer these questions by using the first-principles method.

FIG. 1. Time-of-flight mass spectra of positively ionized Fe$_m$ and Fe$_m$O$_n$ clusters produced by a reactive vaporization cluster source with oxygen flow of (a) 0.0 SCCM, (b) 0.1 SCCM, (c) 0.6 SCCM, and (d) 1.2 SCCM. The dotted line connects the observed peaks corresponding to the clusters having an odd number of iron atoms ($m =$ odd).
II. THEORETICAL METHOD

Ab initio methods based on density-functional theory (DFT) are well established tools to study the structures and properties of materials. As for structure optimization, the plane-wave basis and pseudopotential method combined with DFT has provided a simple framework, in which the calculation of the Hellmann-Feynman force is greatly simplified so that extensive geometry optimization is possible. To determine the geometry of a Fe$_{13}$O$_8$ cluster, we used a more powerful *ab initio* ultrasoft pseudopotential scheme with plane-wave basis\cite{21,22} [Vienna *Ab initio* Simulation Program (VASP)]\cite{21,22}, in which the finite-temperature local-density functional theory developed by Mermin\cite{23} is used, and variational quantity is the electronic free energy. Finite temperature leads to broadening of the one-electron levels that is very helpful to improve the convergence of Brillouin-zone integrations. The electron-ion interaction is described by a fully nonlocal optimized ultrasoft pseudopotential\cite{24,25}, which has been extensively tested for transition metals.\cite{26} The minimization of the free energy over the degrees of freedom of electron densities and atomic positions is performed using the conjugate-gradient iterative minimization technique.\cite{27} In the optimizations, the cluster is placed in a cubic cell with edge length of 14 Å, which is sufficiently large to make dispersion effects negligible, in such a big supercell only the Γ point can be used to represent the Brillouin zone. The cutoff energy used was 400 eV in the plane-wave expansion of the pseudowave functions, which is large enough to obtain a good convergence, and the exchange-correlation energy of valence electrons is adopted in the form of Ceperly and Dale\cite{28} as parametrized by Perdew and Zunger.\cite{29} The structure optimization was symmetry unrestricted, and the optimization was terminated when all the forces acting on the atoms are less than 0.03 eV/Å.
In order to obtain more detailed information on the electronic and magnetic properties, the numerical atomic wave functions are used as the basis set for the expansion of wave functions. The group theory is used to symmetrize the basis functions, which transforms as one of the irreducible representations of the point group of the cluster. The optimized structure with VASP is adopted, and the 3d, 4s, 4p orbitals in Fe, and 2s and 2p orbitals in O atom are used as the basis set, and the cluster spin orbitals are expanded in a linear combination of the symmetrized basis functions. The Kohn-Sham equation is solved self-consistently with the discrete variational method.

III. RESULTS AND DISCUSSIONS

In order to test our calculations, we first performed calculations on an FeO molecule. The obtained equilibrium bond length is 1.606 Å which is in agreement with the experimental result of 1.618 Å.

It is well known that for an Fe_{13} cluster, there are two high symmetry structures: icosahedron (I_h) and cuboctahedron (O_h), the former is more stable than the latter, but the difference in total binding energy is small (~less than 1.0 eV), which is also confirmed by our calculations. Therefore we start with these two structures to search for the stable structure of Fe_{13}O_8. In the icosahedron Fe_{13} cluster, there are 8 nonadjacent triangles among the 20 triangle surfaces. From the previous study on small iron oxide clusters and for the sake of symmetry, we can assume that the 8 oxygen atoms are capped to the 8 nonadjacent triangle surfaces of icosahedron configuration I. In cuboctahedron Fe_{13} cluster, there are 8 threefold adsorption sites and 6 fourfold adsorption sites, the 8 oxygen atoms are assumed to occupy the 8 threefold adsorption sites configuration II. We fully optimize these two configurations without any symmetry restrictions.

For configuration I, the final structure gives the total binding energy of 117.7 eV, but without any symmetry as shown in Fig. 2(a), the average distance between oxygen and central Fe atom is 3.087 Å, the average distance between Fe and central Fe atom is 2.387 Å, and the average Fe-O bond length is 1.835 Å. Figure 2(b) gives the pair distribution function of this structure. For configuration II, the final structure has D_{4h} symmetry, in which there are three nonequivalent Fe atoms: central Fe atom (labeled as Fe1), surface Fe2 and Fe3, as shown in Fig. 3. The bond lengths and bond angles are as follows: \(r_{O-Fe1} = 3.141 \) Å, \(r_{O-Fe2} = 1.848 \) Å, \(r_{O-Fe3} = 1.807 \) Å, \(\angle O-Fe2-O = 178.4^\circ \), and \(\angle O-Fe3-O = 159.1^\circ \). The total binding energy is 118.6 eV, which is more stable than the former one. Comparing Fig. 2(a) and Fig. 3, it can be found that the appearances of these two structures are similar with each other.

The next question is why is Fe_{13}O_{8} magic, and not other component clusters, e.g., Fe_{13}O_{6}, Fe_{12}O_{9}, and Fe_{14}O_{7}? Because in a cuboctahedron Fe_{13} cluster, there are 6 fourfold adsorption sites, which could make a possible candidate of Fe_{13}O_{6}. What about Fe_{13}O_{6}? We optimized this cluster, and the final structure is given in Fig. 4, which has \(O_h \) symmetry, where the Fe-O bond length is 1.957 Å, Fe-Fe bond length is 2.297 Å, and the total binding energy is 99.513 eV, which is less stable than \(D_{4h} Fe_{13}O_{8} \). In order to further check the

TABLE I. Electronic structures for Fe_{m}O_{n} clusters.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Spin</th>
<th>Energy</th>
<th>Symbol</th>
<th>Electrons</th>
<th>Configuration</th>
<th>Energy</th>
<th>Symbol</th>
<th>Spin</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe_{13}O_{6}</td>
<td>–</td>
<td>–6.5010</td>
<td>(a_g)</td>
<td>1</td>
<td>Closed</td>
<td>–6.400</td>
<td>(a_g)</td>
<td>–</td>
<td>0.101</td>
</tr>
<tr>
<td>Fe_{13}O_{6}</td>
<td>+</td>
<td>–7.9917</td>
<td>(t_g)</td>
<td>2</td>
<td>Open</td>
<td>–7.9755</td>
<td>(e_g)</td>
<td>–</td>
<td>0.016</td>
</tr>
<tr>
<td>Fe_{13}O_{6}</td>
<td>–</td>
<td>–6.3979</td>
<td>(a_g)</td>
<td>1</td>
<td>Closed</td>
<td>–6.3900</td>
<td>(a_g)</td>
<td>–</td>
<td>0.008</td>
</tr>
</tbody>
</table>

TABLE II. Main orbital components (%) of HOMO and LUMO for Fe_{m}O_{n} clusters.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Symmetry</th>
<th>HOMO</th>
<th>LUMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe_{13}O_{6}</td>
<td>(D_{4h})</td>
<td>8.3</td>
<td>90.6</td>
</tr>
<tr>
<td>Fe_{13}O_{6}</td>
<td>(O_h)</td>
<td>16.1</td>
<td>83.2</td>
</tr>
<tr>
<td>Fe_{13}O_{6}</td>
<td>(D_{4h})</td>
<td>12.6</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 6. (a) Optimized structure of Fe_{13}O_{7}. (b) The pair distribution function.
stability of the cluster, in Fe$_{13}$O$_8$, we use one oxygen atom to replace the central Fe atom forming Fe$_{12}$O$_9$, or use one Fe atom to replace one oxygen atom forming Fe$_{14}$O$_7$. The optimized structure for Fe$_{12}$O$_9$ is shown in Fig. 5, which has D_{4h} symmetry, similar to Fe$_{13}$O$_8$, the distance to the central O atom for Fe2 and Fe3 is 2.372 and 2.546 Å, respectively, and the total binding energy is 114.5 eV. The optimized structure for Fe$_{14}$O$_7$ is shown in Fig. 6(a), which has no symmetry. The Fe-O bond length changes from 1.769 to 1.88 Å, and the Fe-Fe bond length varies in the region of 2.176 to 2.414 Å. The total binding energy is 114.4 eV, and Fig. 6(b) gives the pair distribution function of this cluster. Comparing the binding energies of Fe$_{13}$O$_8$, Fe$_{13}$O$_6$, Fe$_{12}$O$_9$, and Fe$_{14}$O$_7$, we can see that Fe$_{13}$O$_8$ is most stable. Therefore it is determined to be magic, confirming our experimental result.

Table I lists some numerical results on the electronic structures of clusters with symmetry, and the corresponding orbital percentage components for the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are given in Table II. We can see that the Fe$_{13}$O$_8$ cluster has a closed electron configuration in HOMO and a large gap between HOMO and LUMO, which makes this cluster stable. It can also be found that different components in a cluster result in a different electronic structure. For example, in an Fe$_{13}$O$_8$ cluster with D_{4h} symmetry, the HOMO is contributed by 95.4% Fe-3d orbitals, and LUMO by 90.6% Fe-3d orbitals; in an Fe$_{13}$O$_6$ cluster with O_h symmetry, the HOMO is a mixture of 16.1% O-2p orbitals and 83.2% Fe-3d orbitals, and LUMO consists of 98.7% Fe-3d orbitals; in an Fe$_{14}$O$_7$ cluster with D_{4h} symmetry, the HOMO is composed of 8.3% Fe-4p orbitals and 90.6% Fe-3d orbitals, and LUMO consists of 88.6% Fe-3d orbitals and 8.4% Fe-4p orbitals; the common feature is that LUMO is
nearly d type, quite different from what has been found in bulk Fe$_2$O$_3$, where the lowest unoccupied state is not Fe 3d-like but is the bottom of the Fe 4s band.

Table III shows the occupation numbers and moments of atomic orbitals of the Fe$_{13}$O$_8$ cluster with D_{4h} symmetry, from which we can obtain the following results.

(1) Comparing with the electronic configurations of 3d^6(4$s^2$4p^0) and 2s^2(2p^4) for the isolated Fe and O atoms, we find that the O atom is an electron acceptor with 0.56517 e.u. (d \sim u). The electron density of the Fe atom and the Fe-O distance to the oxygen atom gradually decreases as the bond length increases, which can be understood as originating from the fcc structure of the bulk systems and by realizing that ultrastable clusters are fragments of their bulk; but for transition metal-oxide clusters, the situation is more complicated, different magic number can be exhibited, and more richness in physics and chemistry would exist.

In this paper, by the first-principles calculations, the equilibrium geometry, and electronic structures of Fe$_{13}$O$_8$, which was found as a magic cluster by our experiment, are studied and the stability of this cluster is confirmed.

ACKNOWLEDGMENTS

The authors would like to express their sincere thanks to Dr. G. Kresse and Dr. Y. Hashi for their kind help in our calculations, to Professor V. Kumar for useful discussions, and to the Materials Information Science Group of the Institute for Materials Research, Tohoku University, for its continuous support of the HITAC S-3800/380 supercomputing facility. This work was supported by a Grant-in-Aid for Scientific Research (No. 08505004) from the Ministry of Education, Science, Culture and Sports of Japan, and from CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation (JST).

*Author to whom correspondence should be addressed.

