Stable three-dimensional metallic carbon with interlocking hexagons

Shunhong Zhang\(^a\), Qian Wang\(^{a,b,1}\), Xiaoshuang Chen\(^c\), and Puru Jena\(^b\)

\(^a\)Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, China; \(^b\)Department of Physics, Virginia Commonwealth University, Richmond, VA 23284; and \(^c\)National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

Edited by Ho-kwang Mao, Carnegie Institution of Washington, Washington, DC

Design and synthesis of 3D metallic carbon that is stable under ambient conditions has been a long-standing dream. We predict the existence of such phases, T6- and T14-carbon, consisting of interlocking hexagons. Their dynamic, mechanical, and thermal stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Unlike the previously studied K\(_4\) and the simple cubic high pressure metallic phases, the structures predicted in this work are stable under ambient conditions. Equally important, they may be synthesized chemically by using benzene or polycenes molecules.

From the age-old graphite and diamond to more recent C\(_{60}\) fullerene (1), nanotube (2), and graphene (3), carbon displays an amazing array of physical and chemical properties and plays a leading role in science and technology. Among all of the hotly pursued research topics in this field, metallic carbon has attracted considerable attention. It has been demonstrated that metallic carbon, due to its high density of states (DOS) at the Fermi level, can be more effective as a catalyst (4). It was also found that metallic carbon exhibits phonon-plasmon coupling (5) and superconductivity (6, 7, 8). In addition, metallic carbon can become magnetic when Stoner-like criterion (9, 10) is satisfied. Therefore, metallic carbon structures can possess properties even more novel than the semiconducting carbon structures. Unfortunately, the synthesis and characterization of metallic carbon structures has been very challenging. In 1D systems, armchair carbon nanotube is metallic (11), but during synthesis it is very difficult to separate it from other semiconducting structures (12). In 2D graphene (13), the \(\pi\)-bonding of \(\pi\)-conjugated systems plays an important role in its electronic structure, displaying an array of structures: from the age-old graphite and diamond to more recent C\(_{60}\) fullerene, 1D nanotube, and 2D graphene. One of the unsolved issues in carbon science has been to find a 3D form of carbon that is metallic under ambient conditions. This paper addresses this important challenge. Using state-of-the-art theoretical calculations, we predict the existence of such a phase that is formed from interlocking hexagons and is dynamically, mechanically, and thermally stable. It is suggested that this new form of carbon may be synthesized chemically by using benzene or polycenes molecules.

Carbon is an amazing material: it not only forms the chemical basis for all known life but also, because of its rich physics and chemistry, displays an array of structures: from the age-old graphite and diamond to more recent C\(_{60}\) fullerene, 1D nanotube, and 2D graphene. One of the unsolved issues in carbon science has been to find a 3D form of carbon that is metallic under ambient conditions. This paper addresses this important challenge. Using state-of-the-art theoretical calculations, we predict the existence of such a phase that is formed from interlocking hexagons and is dynamically, mechanically, and thermally stable. It is suggested that this new form of carbon may be synthesized chemically by using benzene or polycenes molecules.

Author contributions: Q.W. designed research; S.Z. performed research; Q.W. and P.J. analyzed data; and S.Z., Q.W., X.C., and P.J. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: qianwang2@pku.edu.cn.

This article contains supporting information online at www.pnas.org/cgi/doi/10.1073/pnas.1311028110.

www.pnas.org/cgi/doi/10.1073/pnas.1311028110

PNAS | November 19, 2013 | vol. 110 | no. 47 | 18809–18813

Significance

Carbon is an amazing material: it not only forms the chemical basis for all known life but also, because of its rich physics and chemistry, displays an array of structures: from the age-old graphite and diamond to more recent C\(_{60}\) fullerene, 1D nanotube, and 2D graphene. One of the unsolved issues in carbon science has been to find a 3D form of carbon that is metallic under ambient conditions. This paper addresses this important challenge. Using state-of-the-art theoretical calculations, we predict the existence of such a phase that is formed from interlocking hexagons and is dynamically, mechanically, and thermally stable. It is suggested that this new form of carbon may be synthesized chemically by using benzene or polycenes molecules.

Author contributions: Q.W. designed research; S.Z. performed research; Q.W. and P.J. analyzed data; and S.Z., Q.W., X.C., and P.J. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: qianwang2@pku.edu.cn.

This article contains supporting information online at www.pnas.org/cgi/doi/10.1073/pnas.1311028110/DCSupplemental.
We first examine the dynamical stability of the T6-carbon by calculating the phonon spectra. Phonon dispersion and the frequency DOS are displayed in Fig. 2A. All vibrational modes are found to be real, confirming that this structure is dynamically stable. Unlike the dynamically unstable K4 phase that lacks high-frequency modes (17), we note that in the phonon spectra of T6-carbon, the highest frequency reaches about 50 THz, comparable to that in diamond. We resolve the frequency DOS into two parts contributed by C1 and C2 atoms, respectively. The partial frequency DOS in Fig. 2A explicitly shows that the high-frequency modes originate from the vibrations of the sp2 bonding C2 atoms. This character is distinct from diamond and graphite in which the high-frequency modes are attributed to the sp3 single bonds and the conjugate sp2 π bonds, respectively. Furthermore, by projecting the partial DOS (PDOS) of C2 atoms into three Cartesian directions, we find the high-frequency mode to be associated with the stretching of double bonds (Fig. S1).

Next we examine the mechanical stability of the T6-carbon. In the linear elastic range, the elastic constant tensor forms a symmetric 6 × 6 matrix with 21 independent components. For the tetragonal lattice, only C_{11}, C_{12}, C_{13}, C_{33}, C_{44}, and C_{66} are independent (27). According to Born criteria (27), the elastic constants of a tetragonal crystal have to satisfy

$$
C_{11} - C_{12} > 0, \quad C_{11}, C_{33}, C_{44}, C_{66} > 0, \quad C_{11} + C_{33} - 2C_{13} > 0, \quad 2C_{11} + C_{33} + 2C_{12} + 4C_{13} > 0.
$$

To study the elastic properties of the carbon allotropes, six finite distortions of the lattice are used to calculate the elastic constants from the strain–stress relationship (27). The calculated elastic constants of the tetragonal T6-carbon and other carbon allotropes are listed in Table 1. These constants obey all of the conditions listed above, indicating that the T6-carbon structure is mechanically stable. In the previously reported metallic K4 phase, C_{11}, C_{12} > 0 criterion could not be satisfied (The K4 phase

<table>
<thead>
<tr>
<th>Structure</th>
<th>Diamond</th>
<th>T-carbon</th>
<th>T6</th>
<th>T12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{11}</td>
<td>1,078.0</td>
<td>228</td>
<td>730.3</td>
<td>1,012.8</td>
</tr>
<tr>
<td>C_{33}</td>
<td>1,164.5</td>
<td>89</td>
<td>80.5</td>
<td>500.0</td>
</tr>
<tr>
<td>C_{44}</td>
<td>578.9</td>
<td>89</td>
<td>80.5</td>
<td>500.0</td>
</tr>
<tr>
<td>C_{66}</td>
<td>58.3</td>
<td>141</td>
<td>25.4</td>
<td>214.1</td>
</tr>
<tr>
<td>C_{12}</td>
<td>138.6</td>
<td>141</td>
<td>25.4</td>
<td>214.1</td>
</tr>
<tr>
<td>C_{13}</td>
<td>451.7</td>
<td>169</td>
<td>336.8</td>
<td>451.8</td>
</tr>
<tr>
<td>C_{0}</td>
<td>535.2</td>
<td>70</td>
<td>196.6</td>
<td>422.1</td>
</tr>
</tbody>
</table>

Fig. 1. Crystal structure of T6-carbon: (A) perspective view and (B) polyhedral view from three axial directions. (C) Corresponding first Brillouin zone and the high symmetry K point paths: $\Gamma(0,0,0) \to X(1/2,0,0) \to M(1/2,1/2,0) \to \Gamma(0,0,0) \to Z(0,0,1/2) \to R(1/2,0,1/2) \to A(1/2,1/2,1/2) \to Z(0,0,1/2)$.

Fig. 2. Stability of T6 carbon. (A) Phonon dispersions and the corresponding total and partial frequency DOS. (B) Comparison of Helmholtz free energy vs. temperature for T6-carbon with some other nanoporous carbon allotropes.
Hybrid density functional developed by Heyd, Scuseria, and Ernzerhof (HSE06) (32, 33), which is known to be more accurate in describing the exchange-correlation energy of electrons in solids. The calculated band structure is also plotted in Fig. 3A, in which a modest systematic shift of the highest occupied band can be observed compared with the Perdew–Burke–Ernzerhof (PBE) results within generalized gradient approximation (GGA). However, the metallicity remains unaltered at the HSE06 level, suggesting that the metallic feature of T6-carbon is robust. The projected electron DOS for C1 and C2 atoms in Fig. 3A shows that the dominant contribution to the DOS at the Fermi level comes from C2 atoms.

To understand the origin of metallicity displayed in the unique phase of carbon, the band decomposed charge density was calculated to visualize the charge distribution in the partially occupied band near the Fermi level. We find that the main contribution to the charge density comes from the C2 atoms, and the electrons in their \(p \) orbitals form a delocalized network respectively along the [100] and [001] directions (Fig. 3B). These conducting channels are reminiscent of the metallic wires in graphene with 558 topological line defects (15). Referring to the PDOS in Fig. 3A, we can conclude that metallicity of T6-carbon originates from the delocalization of electrons in \(2p \) orbitals of C2. Unlike the unstable \(K_d \) phase where the metallicity comes from the twisted \(\pi \) bonds that lead to soft modes in the phonon spectra (17), the double bonds in T6 phase help avoid the dynamical instability.

Based on MD simulations, we demonstrated that T6-carbon can withstand temperature up to 300 K. The question is: what is the highest temperature that the T6 phase can withstand? We found that when heated to 500 K, the \(sp^2 \) hybridized C2 atoms deviate from their original positions along the direction perpendicular to the hexagonal rings, resulting in the breakage of the double bonds. After 250 fs, these C2 atoms form single \(\sigma \) bonds with their next nearest neighbor C2 atoms, leading to a new phase with all C atoms has a cubic lattice. Therefore, it has three independent elastic constants \(C_{11}, C_{44}, \) and \(C_{12} \). Its mechanical stability, according to Born criteria, has to be subject to \(C_{11} > 0, C_{44} > 0, C_{11} - C_{12} > 0, C_{11} + 2C_{12} > 0 \). Hence, the \(K_d \) phase is mechanically unstable (18). The bulk modulus calculated from fitting the energy–volume relationship (SI Methods) agrees very well with that estimated from the Voigt–Reuss–Hill approximation (28). The magnitude of the bulk modulus is fairly large (337.4 GPa); it is more than three quarters of that of diamond (433.1 GPa) (29) but comparable to that of cubic boron nitride (30). This indicates that T6-carbon is resistant to hydrostatic compression. The calculated mechanical properties of the T6 and other carbon allotropes are listed in Table S2.

To check the thermal stability, we need to take into account the contribution from lattice vibration. Helmholtz free energies of the T6-carbon and some other recently reported new phases of nanoporous carbon calculated by using the quasi-harmonic approximation (31) are plotted in Fig. 2A. In a wide temperature range, the T6-carbon is thermodynamically metastable compared with diamond and graphite but more stable than many other carbon allotropes including T-carbon (20), L-carbon (21), Y- and TY-carbon (22), and cubane-16 (23). To examine whether the T6-carbon is therimally stable at room temperature, we performed ab initio molecular dynamics (MD) simulations at 300 K with a \(4 \times 4 \times 2 \) supercell. The geometry of T6-carbon remains nearly intact after heating for more than 6 picoseconds, and the total energy remains almost invariant. These results indicate that the T6-carbon, once synthesized, can be stable at room temperature.

The metallic properties of T6-carbon are studied by calculating the electronic band structure. The results are plotted in Fig. 3A. The Fermi level crosses the highest occupied band in the vicinity of the M point in the Brillouin zone, indicating that T6-carbon is metallic. To further confirm this feature, we recalculated the electronic structure of the system using the screened Coulomb hybrid density functional developed by Heyd, Scuseria, and...
in sp^3 bonding mode. Snapshots of the structure at different simulation times are given in Fig. 4A. To see if the 500-K structure would remain stable down to 0 K, we reoptimized this structure at 0 K using density functional theory. The relaxed geometry led to a $\sqrt{2} \times \sqrt{2} \times 1$ reconstruction, which is identical to the recently reported T12 phase (29) (Fig. 4B). This thermal-induced phase transition indicates that the T6 phase could be a possible precursor of the T12 phase. From the T6- to T12-carbon, the density changes from 2.95 to 3.34 g/cm3. To aid experimentalists in identifying the T6-carbon phase, we calculated its Raman spectrum and compared it with graphite. The results are plotted in Fig. S2. We note that the Raman line is blue-shifted compared with graphite. Our results on graphite agree well with experiment (34), providing confidence on the predicted spectra for T6 carbon.

We recall that the metallic T6 phase is stable at room temperature and zero pressure. To see if additional phases of carbon can be designed such that their stability and the metallic properties can be further enhanced over that of T6-carbon, we designed a unique structure by replacing the hexagon units in T6-carbon with fused hexagons. This phase could be synthesized experimentally by using acene molecules or polyacenes (like C$_{10}$H$_8$, C$_{14}$H$_{10}$, C$_{18}$H$_{12}$) instead of benzene molecules (C$_6$H$_6$). Fig. 5A shows the geometry containing 14 atoms in the primitive cell (labeled as T14-carbon). Its dynamical stability is also confirmed from the phonon spectra, as shown in Fig. 5B. The calculated electronic band structure clearly shows that the T14-carbon is even more metallic than the T6-carbon (Figs. 3A and 3C). MD simulations at $T = 500$ K suggest that the T14-carbon undergoes a $\sqrt{2} \times \sqrt{2} \times 1$ reconstruction yielding a new phase containing 28 atoms per cell, labeled as T28-carbon (Fig. 3D). Here double bonds between the sp^2 atoms still exist; thus, metallic-remains. The free energy curves of the T14- and T28-carbon are also presented in Fig. 2B, indicating that both the T14 and T28 phases are thermodynamically more stable than the T6 phase. The dynamic stability of the T28 phase is confirmed by calculating the phonon spectrum (Fig. S3B).

In summary, we showed that the rich physics and chemistry of carbon got even richer with the demonstration that 3D carbon structures formed of interlocking hexagons are metallic under ambient conditions. These studied metallic 3D carbon structures are systems with hybridized sp^3 and sp^2 bonding. They have the unique feature that sp^2 bonded C atoms guarantee their stability and the sp^2 bonded C atoms ensure their metallicity. This magic combination results in the following desired properties: (i) unlike previously reported structures, our designed structures are metallic and stable at ambient thermodynamic conditions; (ii) unlike high pressure techniques that require 3 TPa to make carbon metallic, our studied structures may be chemically fabricated using benzene or polyacenes molecules that have already been used in the synthesis of carbon nanotubes; and (iii) at 500 K, the metallic T6 phase changes to the recently identified T12 phase, whereas the metallic T14 phase changes to the metallic T28 phase. The displayed metallicity, high stability, porosity, and ultra-lightness of the unique carbon phases could usher new technologies. We hope that the present study will stimulate experimental effort in this direction.

Methods

Our studies are based on density functional theory (DFT) and the projector augmented wave (PAW) method (35) as implemented in the Vienna ab initio Simulation Package 5.2 (VASP 5.2) (36). The valence electron wave functions of C (2$s^2$2p^2) are expanded using plane-wave basis sets with a kinetic energy cutoff of 500 eV. The electronic exchange-correlation functional prescribed by PBE (37) is used except as otherwise stated. The integration in the reciprocal space is replaced by the summation over K points sampled by the 1-point-centered Monkhorst-Pack scheme (38) with a grid density of $2\pi \times 0.02$ Å$^{-1}$. A conjugate gradient algorithm is used to optimize the lattice constants and the atomic configurations. Convergence criteria for total energy and Hellmann–Feynman force components are set at 10^{-6} eV and 10^{-7} eV/Å, respectively. Phonon dispersions and frequency DOS are calculated using finite displacement method (39) implemented in the Phonopy code (40). The accuracy of this method is carefully checked by recalculating the phonon dispersion of T6-carbon using density functional perturbation theory (DFPT) (41), yielding consistent results. The Canonical (NVT) ensemble is used for MD simulations with the Nosé thermostat (42). A 4 x 4 x 2 supercell is used for the MD simulation to ensure accuracy. Each simulation lasted for 6 ps, with a time step of 1 fs. Elastic constants of carbon allotropes are determined by the finite distortion formalism (27), and bulk modulus is obtained by fitting the equation of states (3 Methods).

For calculations of lattice properties, the Helmholtz free energy is given by

$$F(T) = E(0) + \frac{1}{2} \sum_{q\neq 0} h\omega(q) + k_B T \sum_{q} \ln [1 - \exp(-h\omega(q)/k_B T)],$$

where $E(0)$ is the static lattice energy at 0 K. The second and third terms in the above formula correspond to the zero point energy and vibrational energy at finite temperature, respectively. k_B and h are the Boltzmann constant and Planck’s constant, respectively, and $\omega(q)$ stands for the nth phonon frequency with a wave vector q at 0 K. The variations in the temperature-dependent electron occupation and electron-phonon coupling are neglected.

ACKNOWLEDGMENTS. The computational resources used in this research were provided by the Shanghai Supercomputer Center. This work is supported by National Natural Science Foundation of China Grants NSFC-11174014, NSFC-21273012, NSFC-10990104, and NSFC-11334008, and National Fundamental Research 973 Program of China Grant 2012CB921404. P.J. acknowledges the support of the Department of Energy, Office of Basis Energy Sciences, Division of Materials Sciences and Engineering Award DE-FG02-96ER45579.

6. Ni Y, et al. (2013) The transport properties and new device design: The case of 6,6,12-
Supporting Information

Zhang et al. 10.1073/pnas.1311028110

SI Methods

Fitting of Equation of States. The bulk modulus (B_0; GPa) and the equivalent volume of the carbon allotropes are obtained by least-square fitting of the equation of states (EOS). Three universal forms of EOS, namely, Vinet EOS (1), Murnaghan EOS (2), and the third-order Birch-Murnaghan EOS (3), are independently used for the fitting, all of which yield consistent results.

Vinet EOS.

$$P(V) = 3B_0a^{-2}(1-x)\exp[\eta(1-x)], \quad x = \left(\frac{V}{V_0}\right)^{1/3}, \quad \eta = \frac{3}{2}(B_0 - 1).$$

Murnaghan EOS.

$$P(V) = \frac{B_0}{B_0'} \left[\left(\frac{V_0}{V}\right)^{B_0'} - 1\right].$$

Third-Order Birch-Murnaghan EOS.

$$P(V) = \frac{3B_0}{2} (x^2 - x^{-5}) \left[1 + \frac{3}{4}(B_0 - 4)(x^2 - 1)\right], \quad x = \left(\frac{V}{V_0}\right)^{1/3}.$$

Here P and V denote the pressure and the corresponding volume of cell, respectively. V_0 is the equivalent volume at zero pressure and B_0 is the bulk modulus pressure derivative. Integrating these two EOSs with V yields the corresponding E-V relationship, where E is the total energy at volume V.

Vinet EOS.

$$E(V) = E_0 + \frac{9B_0V_0}{\eta} \left[1 - [1 - \eta(1-x)]\exp[\eta(1-x)]\right].$$

Murnaghan EOS.

$$E(V) = E(0) + B_0V_0 \left[\left(\frac{V_0}{V}\right)^{B_0'} - 1\right] \left[\frac{B_0V_0}{B_0' - 1}\right].$$

Third-Order Birch-Murnaghan EOS.

$$E(V) = E_0 + \frac{9B_0V_0}{16} \left[(x^2 - 1)^3 B_0^* + (x^2 - 1)^2 (6 - 4x^{-2})\right],$$

$$x = \left(\frac{V}{V_0}\right)^{1/3}.$$

Fig. S1. Direction-resolved phonon frequency density of states for C2 atoms in T6-carbon. The x direction here is parallel to the C=C double bond in the structure.
Fig. S2. Calculated first-order Raman spectra of graphite and T6-carbon. Our result in graphite is in good agreement with previous work (1).

Fig. S3. (A) Optimized geometry of T28-carbon viewed along the [100] and [110] directions, (B) phonon dispersions, and (C) electronic band structure of T28-carbon.
Table S1. Optimized structural data of the carbon allotropes investigated in this work

<table>
<thead>
<tr>
<th>Structure</th>
<th>Lattice parameters (Å)</th>
<th>Atomic Wyckoff positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>2.60 6.00</td>
<td>C(2f): (1/2, 1/2, 1/4)</td>
</tr>
<tr>
<td>P4_2/mmc (131)</td>
<td></td>
<td>C(4i): (1/2, 0, 0.1118)</td>
</tr>
<tr>
<td>T14</td>
<td>2.56 14.62</td>
<td>C(4h): (1/2, 1/2, 0.9517)</td>
</tr>
<tr>
<td>P4_2/mmc (131)</td>
<td></td>
<td>C(4i): (0, 1/2, 0.9027)</td>
</tr>
<tr>
<td>T12 (1)</td>
<td>3.43 6.09</td>
<td>C(8i): (0.5819, 0.5819, 0.6097)</td>
</tr>
<tr>
<td>P4_2/nmc (138)</td>
<td></td>
<td>C(4b): (1/4, 3/4, 1/4)</td>
</tr>
<tr>
<td>T28</td>
<td>3.55 14.66</td>
<td>C(8i): (0.5022, 0.9978, 0.9039)</td>
</tr>
<tr>
<td>P4_2/nmc (138)</td>
<td></td>
<td>C(8i): (0.9115, 0.05885, 0.8059)</td>
</tr>
<tr>
<td>Cubic-C16 (2)</td>
<td>4.88</td>
<td>C(16f): (0.3374, 0.3374, 0.3374)</td>
</tr>
<tr>
<td>T-carbon (3)</td>
<td>7.52</td>
<td>C(32e): (0.5544, 0.5544, 0.5544)</td>
</tr>
<tr>
<td>Fd3m (227)</td>
<td></td>
<td>C(32e): (169)</td>
</tr>
<tr>
<td>L-carbon (4)</td>
<td>5.32 8.68</td>
<td>C(4f): (0.5726, 0.4274, 0.5267)</td>
</tr>
<tr>
<td>P6_3/mmc (194)</td>
<td></td>
<td>C(12k): (2/3, 1/3, 0.6274)</td>
</tr>
<tr>
<td>Y-carbon (5)</td>
<td>9.64</td>
<td>C(8a): (1/8, 1/8, 1/8)</td>
</tr>
<tr>
<td>Fd3m (227)</td>
<td></td>
<td>C(32e): (0.2138, 0.2138, 0.2138)</td>
</tr>
<tr>
<td>TY-carbon (5)</td>
<td>13.46</td>
<td>C(32e): (0.5853, 0.5853, 0.5853)</td>
</tr>
<tr>
<td>Fd3m (227)</td>
<td></td>
<td>C(32e): (0.4370, 0.4370, 0.4370)</td>
</tr>
</tbody>
</table>

The numbers in parentheses are also listed from the given references for comparison.

Table S2. Calculated equilibrium volume (V_0), bulk modulus (B_0), and corresponding pressure derivatives (B'_0)

<table>
<thead>
<tr>
<th>Structure</th>
<th>ρ (g/cm3)</th>
<th>B_0 (GPa)</th>
<th>B'_0</th>
<th>V_0 (Å3/atom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>3.550</td>
<td>433.1 (1) (454.6)</td>
<td>3.71</td>
<td>5.621</td>
</tr>
<tr>
<td>Lonsdaleite</td>
<td>3.487</td>
<td>433.1 (1) (454.5)</td>
<td>3.63</td>
<td>5.719</td>
</tr>
<tr>
<td>graphite</td>
<td>2.017</td>
<td>245.0</td>
<td>3.51</td>
<td>9.890</td>
</tr>
<tr>
<td>T6</td>
<td>2.952</td>
<td>337.4</td>
<td>3.79</td>
<td>6.766</td>
</tr>
<tr>
<td>T12</td>
<td>3.342</td>
<td>403.2 (1) (424.8)</td>
<td>3.75</td>
<td>5.968</td>
</tr>
<tr>
<td>T14</td>
<td>2.923</td>
<td>349.6</td>
<td>3.69</td>
<td>6.800</td>
</tr>
<tr>
<td>T28</td>
<td>3.019</td>
<td>356.2</td>
<td>3.46</td>
<td>6.606</td>
</tr>
<tr>
<td>Cubic-C16</td>
<td>2.750</td>
<td>309.1</td>
<td>3.74</td>
<td>7.253</td>
</tr>
<tr>
<td>T-carbon</td>
<td>1.503</td>
<td>159.8 (2) (169)</td>
<td>3.61</td>
<td>13.274</td>
</tr>
<tr>
<td>L-carbon</td>
<td>1.500</td>
<td>158.1 (3) (159)</td>
<td>3.80</td>
<td>13.293</td>
</tr>
<tr>
<td>Y-carbon</td>
<td>0.891</td>
<td>83.5 (4) (82.9)</td>
<td>3.74</td>
<td>22.373</td>
</tr>
<tr>
<td>TY-carbon</td>
<td>0.523</td>
<td>54.3 (4) (54.2)</td>
<td>3.71</td>
<td>38.103</td>
</tr>
</tbody>
</table>

The numbers in parentheses are also listed from the given references for comparison.