Probing the existence of energetically degenerate cluster isomers by chemical tagging

Qian Wang, 1,a) Qiang Sun, 1,2 and Puru Jena 1

¹Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, USA

(Received 25 August 2010; accepted 5 November 2010; published online 30 November 2010)

Current methods for identifying the ground state geometry of a cluster require synergy between theory and experiment. However, this becomes a difficult problem when the accuracy of the theoretical methods is not sufficient to distinguish between nearly degenerate isomers. Using density functional theory based calculations, we show that the near degeneracy between the planar and the cage structures can be lifted by tagging these with halogens and superhalogens moieties such as CI and BO_2 . The energy of the planar Au_{16}^- isomer is lowered from 0.15 eV before tagging to 0.51–0.55 eV after tagging, thus providing a way to probe its coexistence. © 2010 American Institute of Physics. [doi:10.1063/1.3521282]

Current methods for obtaining cluster geometries, rely on a synergy between theory and experiment where structures determined from first-principles calculations are validated by comparing computed properties with experiments such as photoelectron spectroscopy (PES), ¹⁻³ trapped ion electron diffraction, ⁴ ion mobility, ^{5,6} and infrared absorption spectroscopy. While this scheme has been useful in elucidating the structures of numerous clusters, serious limitations arise when the lowest energy structures have nearly degenerate isomers and limited accuracy of the state-of-the-art theoretical techniques does not permit a way to distinguish between them. A case in point is the Au₁₆ cluster. In combination with theory, several experiments have recently identified its geometry to be a hollow cage with T_d symmetry. This has attracted considerable attention not only because it is the metallic cluster behaving like a cousin of the C₆₀ fullerene but also because the space inside the hollow cage is large enough to accommodate guest atoms and hence can have technological applications. A recent theoretical calculation by Xing et al.4 as well that performed in our group8 have identified a planar Au₁₆⁻ that lies lower in energy than the hollow cage structure by 0.08-0.22 eV, respectively, depending on the calculation method. Second, the PES data^{1,3} show that the vertical and adiabatic detachment energies of Au₁₆⁻ are nearly identical. This implies that the geometries of anionic and neutral Au₁₆ cluster are the same. However, theoretical calculations done in our group⁸ as well those published earlier^{9,10} show that the two geometries are rather different and the neutral Au₁₆ has a compact structure. In addition, the planar geometry of neutral Au₁₆ cluster is nearly degenerate with compact three dimensional geometry. Yet, no experiments have identified this planar structure. The question then remains: is there a way to lift the degeneracy between the planar and the cage structures and thus make it easier to observe the planar isomer? In this paper, we show that this indeed can be achieved by suitable tagging. We show that by reacting Au_{16}^- with either Cl or superhalogen BO₂, the energy of the planar structure can be lowered by as much as 0.50 eV. Equally important, the geometry of the

Au₁₆⁻ cluster remains essentially the same after tagging. Thus, chemical tagging can be used to distinguish between energetically degenerate isomers just as tagging with rare gas atoms has recently been used ¹¹ to study two dimensional (2D) to three dimensional (3D) transition in the Au clusters.

In choosing an appropriate tagging agent, we recall a recent experiment involving the interaction of the Au clusters with BO₂ moieties in a pulsed arc cluster ion source. ¹² Here, it was found that the electronic properties of bare Au clusters, namely, the odd-even alternation in the electron affinity, remained unchanged after reaction. Accompanying theoretical calculations¹³ showed that the geometries of the Au clusters remained mostly unaltered. This was shown to be a consequence of the superhalogen property of BO2. For example, the electron affinity of BO₂, namely, 4.46 eV, ¹³ is much larger than that of Cl, which is 3.6 eV. Since the electron affinity of BO2 is larger than that of the Aun clusters, an electron from Au_n is transferred to the BO₂ moiety, thus leaving these clusters positively charged. As an extra electron is attached to the Au_nBO₂ clusters, it neutralizes the positive charge on the Au_n portion of the Au_nBO_2 cluster, and hence, the Au_n cluster retains its initial structure. We, therefore, tagged both neutral and anionic Au₁₆ clusters with BO₂ moiety and optimized the resulting geometries, total energies, and spectroscopic properties. We concentrated on two main isomers of Au₁₆, namely, the planar and hollow cage structures. The structures of the Au₁₆⁻ isomers were found to be unchanged after tagging even if the BO₂ moiety is bound to the planar and cage isomers with binding energies of 3.54 and 3.14 eV, respectively. The calculations were repeated by tagging the Au₁₆ isomers with Cl atom since the electron affinity of Cl is also higher than those in the Au_n clusters. The energy of the anion planar isomer is lowered from 0.15 eV before tagging to 051-0.55 eV after tagging, depending on whether Cl or BO₂ moiety is used. In the following, we present the details of our calculations and the results.

The calculations were carried out using density functional theory and generalized gradient approximation for exchange and correlation with PW91 functional.¹⁴ We used plane-wave basis set with the projector augmented wave

²Department of Advanced Materials and Nanotechnology and Center for Applied Physics and Technology, Peking University, Beijing 1000871, People's Republic of China

a)Electronic mail: qwang@vcu.edu.

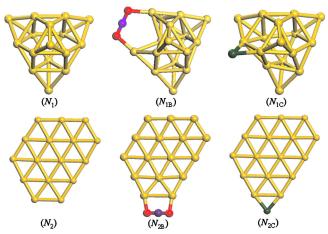


FIG. 1. (Color online) (N_1) and (N_2) are two of the lowest lying isomers of the neutral Au_{16} cluster. (N_{1B}) and (N_{2B}) represent the corresponding lowest energy configurations after BO₂ is attached. (N_{1C}) and (N_{2C}) are the corresponding lowest energy isomers after Cl is attached.

method ¹⁵ as implemented in the *Vienna ab initio simulation package* (VASP). ¹⁶ We used the supercell approach where clusters were placed at the center of the $24 \times 24 \times 24$ Å ³ cubic cell. The geometries were optimized without any symmetry constraint and high precision calculations with a cutoff energy of 400 eV for the plane-wave basis were performed. Due to the large supercell, the Brillouin zone integration was performed only at the Γ point. In all calculations, self-consistency was achieved with a tolerance in the total energy of at least 0.2 meV. Hellman–Feynman force components on each ion in the supercells were converged to 2 meV/Å.

In Fig. 1, we present the geometries of neutral Au₁₆ cluster. The compact isomer with T_d symmetry, labeled N_1 , is 0.14 eV lower in energy than the planar isomer, labeled N_2 . Note that Chen et al. 8 found the 3D compact structure to be 0.12 eV lower in energy than the 2D planar one. Within the accuracy of DFT calculations, these two isomers can be regarded as energetically nearly degenerate. To compute the geometries of the Au₁₆ cluster after BO₂ or Cl is attached, we carried out extensive geometry optimization by considering all the possible binding configurations. To facilitate the choice of initial configurations, we calculated the charge on each of the Au atoms in the ${\rm Au_{16}}$ cluster using Bader charge analysis 17,18 and attached BO₂ or Cl, starting with the atoms carrying more positive charge. We found that the corner edge Au atoms are more reactive than others and preferably bind to BO₂ and Cl. The final geometries given in Fig. 1 are labeled N_{1B} , N_{1C} , N_{2B} , and N_{2C} , respectively, and B and C represent Au₁₆BO₂ and Au₁₆Cl clusters. The binding energies of neutral Au₁₆ in the 3D compact structure with BO₂ and Cl $[(N_{1B})$ and (N_{1C}) in Fig. 1] were calculated to be 2.87 and 2.58 eV, respectively, while those for the planar structures $[(N_{2B})$ and (N_{2C}) in Fig. 1] are 3.03 and 3.02 eV. The Au-O bonding distances between the Au₁₆ cluster and the BO₂ molecule in the 3D and 2D structures are 2.19 and 2.13 Å, respectively. Tagging slightly elongates the bond length of the BO₂ molecule where the B-O bond length increases to 1.28 and 1.29 Å for the 3D and 2D structures, respectively, from 1.26 Å in its free state. For Cl tagging, the Au-Cl bonding distances in the 3D (N_{1C}) and 2D (N_{2C}) isomers are 2.45 and 2.43 Å, respectively. We note that the bonding distance in the 3D structure for both BO2 and Cl tagging is larger than that in the 2D structure. Consequently, the bind-

TABLE I. The calculated relative energies ΔE (in eV) of isomers (N_1 and N_2) of the Au₁₆ cluster tagging with BO₂ and Cl. The energies are measured with respect to the lowest energy structure for which ΔE is marked as 0.00 eV. Also given are the HOMO-LUMO gaps ($\Delta_{\rm gap}$ in eV), and the first VIPs (in eV) for the compact cage and planar isomers of the neutral Au₁₆BO₂ and Au₁₆Cl clusters (see Fig. 1).

Isomers	ΔE	$\Delta_{ m gap}$	VIP
N_{1B}	0.00	0.12	5.84
N_{2B}	0.16	0.11	6.25
N_{1C}^{2D}	0.44	0.12	5.71
N_{2C}	0.00	0.11	6.10

ing between the attached molecules and the neutral Au₁₆ in the 3D structures is weaker than that in the planar structures. The calculated relative binding energies are given in Table I. The following observations can be made from Fig. 1 and Table I: (1) geometries of the Au_{16} isomers remain relatively undisturbed after tagging, although change in the structure due to BO₂ attachment is more that than when Cl is attached. (2) While isomer N_{1B} in Fig. 1 is lower in energy than isomer N_{2B} by only 0.16 eV, the energy ordering of N_{1C} and N_{2C} is reversed; here, the 2D structure becomes 0.44 eV lower in energy than the 3D one. The energy degeneracy between the isomers in the planar structure is lifted in three dimensions. (3) Among all the four geometries, although 2D isomers have almost the same highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) gap (about 0.1 eV) as the 3D isomers, the first vertical ionization potentials (VIPs) of the 2D isomers are about 0.40 eV higher than those of the 3D isomers.

The results for the Au_{16} anionic cluster are given in Fig. 2 and Table II. The planar Au_{16} isomer (labeled A_1) is found to be 0.15 eV lower in energy than the hollow cage structure (A_2) . Note that Xing *et al.*⁴ and Chen *et al.*⁸ found the planar structures to be 0.08 and 0.22 eV lower in energy than the hollow cage structure, respectively. We optimized the geometries of the $Au_{16}BO_2$ and $Au_{16}Cl$ anions again by considering all the possible binding sites. We found that for the 2D isomer (A_1) , the corner edge sites are much more reactive than other sites. The resulting geometries of $Au_{16}BO_2^-$ and $Au_{16}Cl^-$ anions, labeled A_{1B} and A_{1C} , are shown in Fig. 2. For the cage isomer (A_2) of Au_{16}^- , the four triangle faces are found to be more reactive than other sites. The lowest energy configurations of $Au_{16}BO_2^-$ and $Au_{16}Cl^-$ starting from the

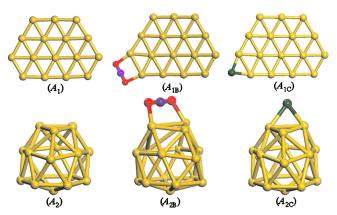


FIG. 2. (Color online) (A_1) and (A_2) are two of the lowest lying isomers of the anionic Au_{16} cluster. (A_{1B}) and (A_{2B}) represent the corresponding lowest energy configurations after BO_2 is attached. (A_{1C}) and (A_{2C}) are the corresponding lowest energy isomers after Cl is attached.

TABLE II. The calculated relative energies ΔE (in eV) of isomers (A_1 and A_2) of the Au_{16} anion cluster tagging with BO_2 and Cl. The energies are measured with respect to the lowest energy structure for which ΔE is marked as 0.00 eV. Also given are the HOMO-LUMO gaps ($\Delta_{\rm gap}$ in eV), and the first VDEs (in eV) for the hollow cage and planar isomers of the anionic $Au_{16}BO_2^-$ and $Au_{16}Cl^-$ clusters (see Fig. 2).

Isomers	ΔE	$\Delta_{ m gap}$	VDE
1B	0.00	0.78	4.92
2B	0.55	0.84	4.91
1C	0.00	0.75	4.79
1B 2B 1C 2C	0.51	0.77	4.76

cage structure of A_2 are also shown in Fig. 2. These are labeled A_{2B} and A_{2C} , respectively. Our observations can be summarized as follows: (1) degeneracy in energy between the planar and the cage isomers of the Au₁₆⁻ cluster is lifted. For the bare Au₁₆ anion, the energy difference between the planar and the hollow cage is only 0.15 eV, which increases to 0.55 and 0.51 eV after attaching BO₂ and Cl, respectively. (2) The reaction with BO_2 and Cl has little effect on the HOMO-LUMO gaps, which are 0.78 and 0.84 eV for the 2D (A_{1B}) and 3D (A_{2B}) Au₁₆BO₂⁻ isomers, and 0.75 and 0.77 eV for the 2D (A_{1C}) and 3D (A_{2C}) Au₁₆Cl⁻ isomers. (3) The first vertical detachment energies (VDEs) for the 2D and the hollow cage Au₁₆BO₂⁻ isomers are 4.92 and 4.90 eV, respectively, while these are 4.79 and 4.76 eV for the 2D and the hollow cage Au₁₆Cl⁻ isomers. While these energy differences between 2D and hollow cage isomers may be difficult to distinguish from photoelectron spectra, totally different shapes of 2D and hollow cage isomers should enable ion mobility experiment to detect the planar isomer tagged with BO_2 or Cl as they are thermodynamically more stable. (4) Compared to the neutral clusters, the geometry distortions of anion are much less when BO₂ and Cl are introduced. The B-O bond lengths in both the planar and cage isomers of anionic Au₁₆BO₂ are nearly identical at 1.28 Å. The Au–O bonding distance, however, is slightly different: 2.22 Å in the planar structure and 2.26 Å in the cage structure. Similarly, the Au-Cl bonding distance of 2.37 Å in the 2D isomer is shorter compared to 2.60 Å in the 3D structure. (5) The binding energies of anionic Au₁₆ planar structure with BO₂ and Cl are 3.54 and 3.57 eV, respectively, while those for the hollow cage structure Au₁₆BO₂⁻ and Au₁₆Cl⁻ are 3.14 and 3.22 eV, respectively.

The changes in the electronic structure of the Au_{16} clusters after being tagged by BO_2 and Cl can also be seen by examining their respective frontier HOMO and LUMO orbitals. These are plotted in Fig. 3. Note that the 5d orbital characteristics of Au are enhanced after tagging, and the orbital distributions become more homogeneous. We conclude from the above results that tagging with BO_2 and Cl not only lifts the energy degeneracy between the planar and hollow cage isomers for the anion but also enhances the energetic stability of the planar isomer.

In summary, we have shown that by chemical tagging, it is possible to distinguish between nearly degenerate isomers of their host cluster as one may be able to thermodynamically stabilize one isomer against another. Even if the binding energies of BO_2 and Cl to Au_{16} cluster isomers are rather large, the distortions in their geometry due to tagging are

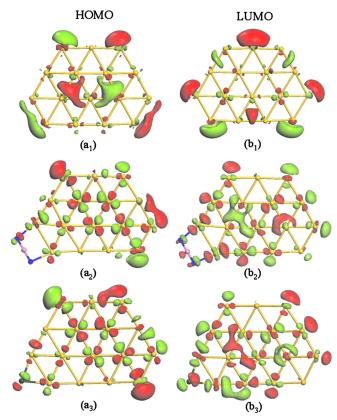


FIG. 3. (Color online) (a_1) , (a_2) , and (a_3) are the HOMO; (b_1) , (b_2) , and (b_3) are the LUMO for the planar configurations of the anionic clusters: Au_{16}^- , $Au_{16}BO_2^-$, and $Au_{16}Cl^-$, respectively.

rather minimal. We hope that this finding will stimulate future experimental studies.

This work was partially supported by grants from the U.S. Department of Energy and the National Natural Science Foundation of China (Grant No. NSFC-10874007).

¹M. Ji, X. Gu, X. Li, X. G. Gong, J. Li, and L. S. Wang, Angew. Chem., Int. Ed. 44, 7119 (2005).

²J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science **299**, 864 (2003).

³S. Bulusu, X. Li, L. S. Wang, and X. C. Zeng, Proc. Natl. Acad. Sci. U.S.A. **103**, 8326 (2006).

⁴X. Xing, B. Yoon, U. Landman, and J. H. Parks, Phys. Rev. B **74**, 165423 (2006).

⁵F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes, J. Chem. Phys. 117, 6982 (2002).

⁶S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. **116**, 4094 (2002).

⁷M. P. Johansson, A. Lechtken, D. Schooss, M. M. Kappes, and F. Furche, Phys. Rev. A 77, 053202 (2008).

⁸G. Chen, Q. Wang, Q. Sun, and P. Jena, J. Chem. Phys. **132**, 194306 (2010).

⁹J. Wang, G. Wang, and J. Zhao, Phys. Rev. B **66**, 035418 (2002).

¹⁰S. Bulusu and X. C. Zeng, J. Chem. Phys. **125**, 154303 (2006).

¹¹W. Huang and L. S. Wang, Phys. Rev. Lett. **102**, 153401 (2009).

¹²M. Götz, M. Willis, A. K. Kandalam, G. Ganteför, and P. Jena, ChemPhysChem 11, 853 (2010).

¹³H. J. Zhai, L. M. Wang, S. D. Li, and L. S. Wang, J. Phys. Chem. A 111, 1030 (2007)

¹⁴Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).

¹⁵G. Kresse and J. Joubert, Phys. Rev. B **59**, 1758 (1999).

¹⁶G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

¹⁷R. W. F. Bader, *A Quantum Theory* (Oxford University Press, Oxford, 1990)

¹⁸G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).