New Graphene-based, Nano-material Has Magnetic Properties

ScienceDaily (Sep. 2, 2009) — An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

See also:
Matter & Energy
- Materials Science
- Electronics
- Nanotechnology

Computers & Math
- Hacking
- Encryption

The team of researchers from Virginia Commonwealth University; Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan, used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphene.

Ferromagnetic graphene sheet. (Credit: Puru Jena/VCU)
Researchers design new graphene-based, nano-material with magnetic properties

Published: Wednesday, September 2, 2009 - 11:17 in Physics & Chemistry

An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips. The team of researchers from Virginia Commonwealth University; Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan; used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphene.

Related images
(click to enlarge)

Image courtesy of Puru Jena/VCU

Share

Graphene & Graphene Oxide
Lowest cost Graphene (Oxide) Superior Quality & Fast Delivery
www.C6Energy.Labs.com

RealTime Raman Solutions
Semiconductor, Wet Chemistry Carbon Nanotube Fabrication
www.framotelsolutions.com

Low Freq Magnetic Shield
Avoid awkward shielding foils Direct nano coating isn’t effective
www.integra.com

Other sources

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your inbox
Enter your email Subscribe
Researchers work to design the next microchip

posted on: September 3, 2009 - 3:50pm

An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The team of researchers from Virginia Commonwealth University; Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan; used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphite.

Graphene, created by scientists five years ago, is 200 times stronger than steel, its electrons are highly mobile and it has unique optical and transport properties. Some experts believe that graphene may be more versatile than carbon nanotubes, and the ability to make graphene magnetic adds to its potential for novel applications in spintronics. Spintronics is a process using electron spin to synthesize new devices for memory and data processing.

Although graphene’s properties can be significantly modified by introducing defects and by saturating with hydrogen, it has been very difficult for scientists to manipulate the structure to make it magnetic.
Researchers design new graphene-based, nano-material with magnetic properties

Wednesday, September 2, 2009

An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The team of researchers from Virginia Commonwealth University, Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan, used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphite.

This is a ferromagnetic graphene sheet. Credit: Image courtesy of Paru Jena/VCU
Researchers Develop New Graphite-Based Magnetic Nanomaterial

An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The team of researchers from Virginia Commonwealth University; Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan; used theoretical computer modeling to design the new material they called graphone, which is derived from an existing material known as graphene.
New graphene-based nanomaterial with magnetic properties designed

September 2nd, 2009

An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.
Researchers design new graphene-based, nano-material with magnetic properties

A possible pathway to simply synthesize ferromagnetic graphene

Sathya Achia Abraham
VCU Communications and Public Relations
(804) 827-0990
sbachia@vcu.edu

9/1/2009

An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The team of researchers from Virginia Commonwealth University; Peking University in Beijing, China; the Chinese Academy of Science; and Virginia Commonwealth University led by Dr. Achia Abraham published their findings in the journal Nature. They created a new approach to developing graphene, a keystone material in the creation of electronic devices like microchips.

Graphene, an ultrathin layer of carbon atoms, has great potential for use in electronic devices because of its unique properties—its ability to conduct electricity and its strength. But producing large quantities of graphene is not easy. One technique is to use a solution of graphene to form a film, but this method is expensive and time consuming.

The Virginia Commonwealth University-Peking University team used a combination of chemical vapor deposition and enhanced etching to create a graphene film. The film is then chemically treated to make it magnetic. This process is not only cheaper and easier, but also allows for controlled magnetic properties, something previous techniques have not been able to achieve.
Researchers design new graphene-based, nano-material with magnetic properties

(Nanowerk News) An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The team of researchers from Virginia Commonwealth University (VCU), Peking University in Beijing, China, the Chinese Academy of Science in Shanghai, China, and Tohoku University in Sendai, Japan, used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphite.
Researchers design new graphene-based, nano-material with magnetic properties

By: Magali Gauthier
Date: 9/2/2009

NTbase - Nano Powders
advanced nano materials nano powders, nano silver Powder
www.ntbase.net

Magnetic Security Switch
HARCO - Manufactures and sells high security switch for SCIF's
www.harcoinc.com

Magnetometers
3-Axis Fluxgate, High-Speed Digital High Accuracy, Wide Temp. Range
www.nk.com

semi-hydrogenation provides us a very unique way to tailor magnetism. The resulting ferromagnetic graphene sheet will have unprecedented possibilities for the applications of graphene-based materials,” said Qiang Sun, Ph.D., research associate professor with the VCU team.

Contact: Sathya Achia Abraham
sabachia@vcu.edu
804-827-0880
Virginia Commonwealth University
Source: Eurekalert
Researchers Design New Graphene-based, Nanomaterial with Magnetic Properties

03.09.2009

An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.
New graphite-based nano-material may herald next generation of electronic devices

Washington, September 3: An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The nano-material was designed by a team of researchers from Virginia Commonwealth University (VCU); Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan.

They used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphene.
New graphite-based nano-material may herald next generation of electronic devices

Washington, September 3 (ANI): An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like...

FULL ARTICLE AT NEWSTRACK INDIA 🌐
One of the important impacts of this research is that semi-hydrogenation provides us a very unique way to tailor magnetism. The resulting ferromagnetic graphene sheet will have unprecedented possibilities for the applications of graphene-based materials.

New graphene-based nanomaterial with magnetic properties designed

This is a ferromagnetic graphene sheet. Credit: Image courtesy of Puru Jena/VCU An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the
New graphite-based nano-material may herald next generation of electronic devices

Washington, September 3 (ANI): An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The nano-material was designed by a team of researchers from Virginia Commonwealth University (VCU); Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan.

They used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphene.
New graphite-based nano-material may herald next generation of electronic devices

9/3/2009 1:04:00 PM

Washington, September 3 (ANI): An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.
Researchers Design New Graphene-Based, Nano-Material With Magnetic Properties

September 3, 2009

An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The team of researchers from Virginia Commonwealth University, Peking University in Beijing, China, the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan; used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphite.

Graphene, created by scientists five years ago, is 200 times stronger than steel, its electrons are highly mobile and it has unique optical and transport properties. Some experts believe that graphene may be more versatile than carbon nanotubes, and the ability to make graphene magnetic adds to its potential for novel applications in spintronics. Spintronics is a process using electron spin to synthesize new devices for memory and data processing.

Although graphene's properties can be significantly modified by introducing defects and by saturating with hydrogen, it has been very difficult for scientists to manipulate the structure to make it magnetic.
RESEARCH WATCH

Newly-developed 'graphene' makes spintronic devices closer than ever

By Dario Borghino
10:29 September 3, 2009 PDT

A team of researchers from the Virginia Commonwealth University, Peking University in Beijing, the Chinese Academy of Science, and Tohoku University in Japan has designed a new graphite-based magnetic nanomaterial that behaves as a semiconductor and could prove very important for ongoing research in the field of spintronics. Read More
Graphene made magnetic with hydrogen coating

R. Colin Johnson
EE Times
(09/03/2009 11:52 AM EST)

PORTLAND, Ore. — Graphene, a new magnetic version of carbon monolayers called graphene, could enable a new breed of carbon spintronic devices, researchers claim.

Graphene, consisting of pure crystalline carbon sheets, cannot be doped with impurities to adjust its semiconducting and magnetic properties as easily as silicon since carbon does not readily "heal" implantations with annealing. Rather than implanting dopants, researchers say, a surface treatment can be used to adjust a carbon sheet's properties.

Researchers say hydrogen can be used to fine-tune graphene's metallic, semiconductor and magnetic properties, resulting in either graphene (metallic), graphane (semiconducting) or graphone (ferromagnetic).
"MATERIALS: Graphene made magnetic with hydrogen coating"

Carbon sheets--graphene--can be made ferromagnetic, called graphene, by adjusting the amount of hydrogenation on their surface, according to these researchers. With an adjustable magnetic moment that can couple ferromagnetically, graphene allows the magnetism to be harnessed in semiconducting devices. Look for spintronic devices using graphene within 10 years. R.C. J.

Graphene, a new magnetic version of carbon monolayers called graphene, could enable a new breed of carbon spintronic devices, researchers claim. Graphene, consisting of pure crystalline carbon sheets, cannot be doped with impurities to adjust its semiconducting and magnetic properties as easily as silicon since carbon does not readily "heat" implantations with annealing. Rather than implanting dopants, researchers say, a surface treatment can be used to adjust a carbon sheet's properties. Researchers say hydrogen can be used to fine-tune graphene's metallic, semiconductor and magnetic properties, resulting in either graphene (metallic), graphene (semiconducting) or graphene (ferromagnetic).
New graphene-based nanomaterial with magnetic properties designed

(Thursday, 03 September 2009 00:21)

An international team of researchers has designed Graphene, a new magnetic nanomaterial made by adding hydrogen atoms to graphene (a form of carbon), with the potential for novel applications in spintronics devices for memory and data processing.

AI news
a new kind of mind - all the latest artificial intelligence news - a glimpse into our future

@ 16:30:23 Justice Stevens to Retire? [Dispatches from the Culture Wars] The New York Times notes that Justice John Paul Stevens has only hired one law clerk for next year, the term beginning in October 2010, prompting speculation that he may be retiring at the end of the 2009 term. Souter did the same thing last year, signaling his retirement from the court. And at least one person close to Stevens thinks this is a likely sign because Stevens would like to be replaced by President Obama: Read the rest of this post... | Read the comments on this post... ...

@ 16:30:21 Graphene made magnetic with hydrogen coating Graphene, a new magnetic version of carbon monolayers called graphene, could enable a new breed of carbon spintronic devices, researchers claim. Graphene, consisting of pure crystalline carbon she... ...
New graphene-based nanomaterial with magnetic properties designed

physorg.com yesterday 14 related

Enlarge This is a ferromagnetic graphene sheet. Credit: Image courtesy of Puru Jena/VCU. An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips. The team of researchers from Virginia Commonwealth University; Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan; used theoretical computer modeling to design the new material they called graphyne, which is derived from an existing material known as graphene. Graphene, created by scientists five years ago, is 200 times stronger than steel, its electrons are highly mobile and it has unique optical and transport properties. Some experts believe... [read full story]
Graphene-based nanomaterial with magnetic properties
(Virginia Commonwealth University)

A team of researchers has designed a new graphene-based, magnetic nanomaterial that acts as a semiconductor. They used computer modeling to design the new material they called graphene. Although graphene’s properties can be significantly modified by introducing defects and by saturating with hydrogen, it has been very difficult for scientists to manipulate the structure to make it magnetic. The new material predicted — graphene — makes graphene magnetic simply by controlling the amount of hydrogen coverage — basically, how much hydrogen is put on graphene. It avoids previous difficulties associated with the synthesis of magnetic graphene. Thus the semi-hydrogenation provides a very unique way to tailor magnetism.

Newly-developed ‘graphone’ makes spintronic devices closer than ever

A team of researchers from the Virginia Commonwealth University, Peking University in Beijing, the Chinese Academy of Science, and Tohoku University in Japan has designed a new graphite-based magnetic nanomaterial that behaves as a semiconductor and could prove very important for ongoing research in the field of spintronics.

Spintronics, or magnetoelectronics, is an emerging technology that harnesses the spin of electrons along with their electrical charge to store and transfer information in digital form. Because the electronic spin is closely related to magnetism, techniques that attempt to manipulate these particles must present strong and highly controllable magnetic properties.
New graphite-based nano-material may herald next generation of electronic devices

WASHINGTON - An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The nano-material was designed by a team of researchers from Virginia Commonwealth University (VCU); Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan.

They used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphene.
Researchers design new graphene-based, nano-material with magnetic properties

- 2 Sep 2009

By Virginia Commonwealth University

A possible pathway to simply synthesize ferromagnetic graphene

RICHMOND, Va. (Sept. 1, 2009) – An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.
Graphene made magnetic with hydrogen coating

Abstract:
Graphene, a new magnetic version of carbon monolayers called graphene, could enable a new breed of carbon spintronic devices, researchers claim.

Graphene, consisting of pure crystalline carbon sheets, cannot be doped with impurities to adjust its semiconducting and magnetic properties as easily as silicon since carbon does not readily "heal" implantations with annealing. Rather than implanting dopants, researchers say, a surface treatment can be used to adjust a carbon sheet's properties.

Researchers say hydrogen can be used to fine-tune graphene's metallic, semiconductor and magnetic properties, resulting in either graphene (metallic), graphene (semiconducting) or graphene (ferromagnetic).
Graphene made magnetic with hydrogen coating

PORTLAND, Ore. - Graphene, a new magnetic version of carbon monolayers called graphene, could enable a new breed of carbon spintronic devices, researchers claim.

Graphene, consisting of pure crystalline carbon sheets, cannot be doped with impurities to adjust its semiconducting...
Graphene: New Magnetic Graphene-Based Nanomaterial

impactlab.com Sep 5, 2009 1 related

Ferromagnetic graphene sheet An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips. The team of researchers from Virginia Commonwealth University; Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan; used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphite. Graphene, created by scientists five years ago, is 200 times stronger than steel, its electrons are highly mobile and it has unique optical and transport properties. Some experts believe that graphene may be more versatile than carbon nanotubes,... [read full story]

There are also 1 related articles

View all news articles about*: China Institutions Japan Scientific Scientists

*Newstine tag cloud displays all featured persons, associated organizations, related topics, regions and companies

Add Comment
Researchers design new graphene-based, nano-material with magnetic properties

By Virginia Commonwealth University

The team of researchers from Virginia Commonwealth University, Peking University in Beijing, China, the Chinese Academy of Science in Shanghai, China, and Tohoku University in Sendai, Japan, used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphite.

Graphene, created by scientists five years ago, is 200 times stronger than steel, its electrons are highly mobile and it has unique optical and transport properties. Some experts believe that graphene may be more versatile than carbon nanotubes, and the ability to make graphene magnetic adds to its potential for novel applications in spintronics. Spintronics is a process using electron spin to synthesize new devices for memory and data processing.
Researchers design new graphene-based, nano-material with magnetic properties
A possible pathway to simply synthesize ferromagnetic graphene

04 Sep 2009 - An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The team of researchers from Virginia Commonwealth University; Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan; used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphene.

Graphene, created by scientists five years ago, is 200 times stronger than steel, its electrons are highly mobile and it has unique optical and transport properties. Some experts believe that graphene may be more versatile than carbon nanotubes, and the ability to make graphene magnetic adds to its potential for novel applications in spintronics. Spintronics is a process using electron spin to synthesize new devices for memory and data processing.

Although graphene's properties can be significantly modified by introducing defects and by saturating with hydrogen, it has been very difficult for scientists to manipulate the structure to make it magnetic.
Researchers Design New Graphene-Based, Nano-Material With Magnetic Properties

September 3, 2009

An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The team of researchers from Virginia Commonwealth University, Peking University in Beijing, China, the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan; used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphite.

Graphene, created by scientists five years ago, is 200 times stronger than steel, its electrons are highly mobile and it has unique optical and transport properties. Some experts believe that graphene may be more versatile than carbon nanotubes, and the ability to make graphene magnetic adds to its potential for novel applications in spintronics. Spintronics is a process using electron spin to synthesize new devices for memory and data processing.

Although graphene’s properties can be significantly modified by introducing defects and by saturating with hydrogen, it has been very difficult for scientists to manipulate the structure to make it magnetic.
New graphite-based nano-material may herald next generation of electronic devices

Thu, Sep 3 01:05 PM

Washington, September 3 (ANI): An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The nano-material was designed by a team of researchers from Virginia Commonwealth University (VCU); Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan.

They used theoretical computer modeling to design the new material they called graphone, which is derived from an existing material known as graphene.
Graphene: New Magnetic Graphene-Based Nanomaterial

September 5th, 2009 at 9:25 am » Comments (0)

Ferromagnetic graphene sheet
An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.
"MATERIALS: Graphene made magnetic with hydrogen coating"

Carbon sheets—graphene—can be made ferromagnetic, called graphene, by adjusting the amount of hydrogenation on their surface, according to these researchers. With an adjustable magnetic moment that can couple ferromagnetically, graphene allows the magnetism to be harnessed in semiconducting devices. Look for spintronic devices using graphene within 10 years. R.C.J.

Graphene, a new magnetic version of carbon monolayers called graphene, could enable a new breed of carbon spintronic devices, researchers claim. Graphene, consisting of pure crystalline carbon sheets, cannot be doped with impurities to adjust its semiconducting and magnetic properties as easily as silicon since carbon does not readily "heal" implantations with annealing. Rather than implanting dopants, researchers say, a surface treatment can be used to adjust a carbon sheet's properties. Researchers say hydrogen can be used to fine-tune graphene's metallic, semiconductor and magnetic properties, resulting in either graphene (metallic), graphene (semiconducting) or graphene (ferromagnetic).

New graphene-based nanomaterial with magnetic properties designed

PhysOrg.com, Sept. 3, 2009

An international team of researchers has designed Graphene, a new magnetic nanomaterial made by adding hydrogen atoms to graphene (a form of carbon), with the potential for novel applications in spintronics devices for memory and data processing.
Nuevo material magnético basado en el grafeno/A new graphene based magnetic material

Un equipo internacional de investigadores (pertenecientes a la Virginia Commonwealth University (VCU), Universidad de Pekín, Academia China de Ciencias de Shanghai y la Universidad Teikoku de Sedai en Japón) ha diseñado un nuevo nano-material magnético basado en el grafito que actúa como semiconductor y que podría ayudar a fabricar componentes electrónicos, como micro-chips, de próxima generación.

El nuevo material se llama grafeno (grafeno) y deriva del...
New graphite-based nano-material may herald next generation of electronic devices

September 3rd, 2009 - 2:08 pm ICT by ANI

Graphene & Graphene Oxide
Lowest cost Graphene (Oxida) Superior Quality & Fast Delivery
www.carbonsystems.com

Particle Sciences Inc.
Micro/Nano Particle Technology Fabrication and Preparation
www.particlesciences.com

Buy Single Layer Graphene
Single Layer Graphene Specification Graphene Images | Prices | Applications
www.carbonsystems.com/graphene.htm

Washington, September 3 (ANI): An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The nano-material was designed by a team of researchers from Virginia Commonwealth University (VCU); Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan.

They used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphite.

Graphene, created by scientists five years ago, is 200 times stronger than steel, its electrons are highly mobile and it has unique optical and transport properties.

Some experts believe that graphene may be more versatile than carbon nanotubes, and the ability to make graphene magnetic adds its potential for novel applications in spintronics.

Spintronics is a process using electron spin to synthesize new devices for memory and data processing.

Although graphene’s properties can be significantly modified by introducing defects and by saturating with hydrogen, it has been very difficult for scientists to manipulate the structure to make it magnetic.
Hot topics

Carbon chipped

Posted on September 10th, 2009 by David Bradley

An international team of researchers has developed a new magnetic carbon material that not only acts as a semiconductor but is also magnetic and could help scientists develop the next generation of microelectronic devices.

The new carbon material is based on graphene, which resembles graphite, the form of carbon found in pencil "lead," but which exists as single sheet-like layers resembling nanoscopic chicken wire fencing. Graphene was first created by scientists in Manchester five years ago and is not only 200 times stronger than steel but because its electrons are highly mobile it has unique electro-optical properties. As such, some researchers think that graphene is the natural successor to silicon and could lead to the advent of spintronic devices that exploit electron spin and charge in computer memory and data processing.
New graphite based magnetic nano material developed

Science Daily reported that an international team of researchers has designed a new graphite based, magnetic nano material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The team of researchers from Virginia Commonwealth University, Peking University in Beijing, the Chinese Academy of Science in Shanghai and Tohoku University in Sendai used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphite.

Graphene, created by scientists five years ago, is 200 times stronger than steel, its electrons are highly mobile and it has unique optical and transport properties. Some experts believe that graphene may be more versatile than carbon nano tubes, and the ability to make graphene magnetic adds to its potential for novel applications in spintronics. Spintronics is a process using electron spin to synthesize new devices for memory and data processing.

Although graphene’s properties can be significantly modified by introducing defects and by saturating with hydrogen, it has been very difficult for scientists to manipulate the structure to make it magnetic.
Huntsman levels sites on Tronox, PPG to get new CFO, Sulzer posts financials
SpecialChem | Mark Drukenbrod - Sep 8, 2009

Hello and welcome to your early week international coatings industry update, brought to you by SpecialChem. News has surged again, and we have a lot to talk about, starting with lessons learned in mergers and acquisitions.

Graphene, a new magnetic version of carbon monolayers called graphene, could enable a new breed of carbon spintronic devices, researchers claim.

Graphene, consisting of pure crystalline carbon sheets, cannot be doped with impurities to adjust its semiconducting and magnetic properties as easily as silicon since carbon does not readily "heal" implantations with annealing. Rather than implanting dopants, researchers say, a surface treatment can be used to adjust a carbon sheet's properties.

Researchers say hydrogen can be used to fine-tune graphene's metallic, semiconductor and magnetic properties, resulting in either graphene (metallic), graphene (semiconducting) or graphene (ferromagnetic).
Researchers design new graphene-based, nano-material with magnetic properties

An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a semiconductor and could help material scientists create the next generation of electronic devices like microchips.

The team of researchers from Virginia Commonwealth University; Peking University in Beijing, China; the Chinese Academy of Science in Shanghai, China; and Tohoku University in Sendai, Japan; used theoretical computer modeling to design the new material they called graphene, which is derived from an existing material known as graphite.

Graphene, created by scientists five years ago, is 200 times stronger than steel, its electrons are highly mobile and it has unique optical and transport properties. Some experts believe that graphene may be more versatile than carbon nanotubes, and the ability to make graphene magnetic adds to its potential for novel applications in spintronics. Spintronics is a process using electron spin to synthesize new devices for memory and data processing.

Although graphene’s properties can be significantly modified by introducing defects and by saturating with hydrogen, it has been very difficult for scientists to manipulate the structure to make it magnetic.
Researchers design new graphene-based nanomaterial with magnetic properties

Edited By Ann_Science • September 3, 2009

A team of researchers at Virginia Commonwealth University reports that it has designed a new graphite-based, magnetic nanomaterial that acts as a semiconductor and could help material scientists create the next generation of electronic devices and microchips.
Researchers design new graphene-based, nano-material with magnetic properties (9/4/2009)

A possible pathway to simply synthesize ferromagnetic graphene...> Full Article
Ferromagnetism in Semihydrogenated Graphene Sheet.

Zhou J, Wang Q, Sun Q, Chen XS, Kawazoe Y, Jena P.

Department of Advanced Materials and Nanotechnology, and Center for Applied Physics and Technology, Peking University, Beijing 100871, China, Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083, China, and Institute for Material Research, Tohoku University, Sendai, 980-8577, Japan.

Single layer of graphite (graphene) was predicted and later experimentally confirmed to undergo metal-semiconductor transition when fully hydrogenated (graphane). Using density functional theory we show that when half of the hydrogen in this graphene sheet is removed, the resulting semihydrogenated graphene (which we refer to as graphane) becomes a ferromagnetic semiconductor with a small indirect gap. Half-hydrogenation breaks the delocalized pi bonding network of graphene, leaving the electrons in the unhydrogenated carbon atoms localized and unpaired. The magnetic moments at these sites couple ferromagnetically with an estimated Curie temperature between 278 and 417 K, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. This is very different from the widely studied finite graphene nanostructures such as one-dimensional nanoribbons and two-dimensional nanoholes, where zigzag edges are necessary for magnetism. From graphene to graphane and to graphane, the system evolves from metallic to semiconducting and from nonmagnetic to magnetic. Hydrogenation provides a novel way to tune the properties with unprecedented potentials for applications.

PMID: 19719061 [PubMed - as supplied by publisher]
Chemistry & Materials News

Get News Updates by Email | What is RSS?

Page: Previous | Next (Showing: 1-30 of 386)

- Unraveling the Chemistry of Titan's Hazy Atmosphere
 Released September 15, 2009
 Press Release

- Bananas Gone Bad Glow Blue in UV-Light
 Released September 9, 2009
 Press Release

- University of Georgia Researchers Show Component of Metballs is Present in Deep-space Clouds
 Released September 2, 2009
 News From the Field

- Researchers Design New Graphene-based, Nanomaterial with Magnetic Properties
 Released September 1, 2009
 News From the Field
Top blogs about new discoveries

Graphene: New Magnetic Graphene-Based Nanomaterial

Ferromagnetic graphene sheet An international team of researchers has designed a new graphite-based, magnetic nano-material that acts as a
3 days ago