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Extensive calculations based on density functional theory have been carried out to understand the origin of
magnetism in undoped ZnO thin films as found in recent experiments. The observed magnetism is confirmed
to be due to Zn, instead of O, vacancy. The main source of the magnetic moment, however, arises from the
unpaired 2p electrons at O sites surrounding the Zn vacancy with each nearest-neighbor O atom carrying a
magnetic moment ranging from 0.490 to 0.740 �B. Moreover, the study of vacancy-vacancy interactions indi-
cates that in the ground state, the magnetic moments induced by Zn vacancies prefer to ferromagnetically
couple with the antiferromagnetic state lying 44 meV higher in energy. Since this is larger than the thermal
energy at room temperature, the ferromagnetic state can be stable against thermal fluctuations. Calculations and
discussions are also extended to ZnO nanowires that have larger surface to volume ratio. Here, the Zn
vacancies are found to lead to the ferromagnetic state too. The present theoretical study not only demonstrates
that ZnO samples can be magnetic even without transition-metal doping but also suggests that introducing Zn
vacancy is a natural and an effective way to fabricate magnetic ZnO nanostructures. In addition, vacancy
mediated magnetic ZnO nanostructures may have certain advantages over transition-metal doped systems in
biomedical applications.
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I. INTRODUCTION

Currently, ZnO-based materials have been receiving con-
siderable attention due to their potential applications in spin-
tronics, light-emitting diodes, laser diodes, UV detectors,
cosmetics, and biomaterials. The attractive properties of ZnO
include �1� large exciton binding energy �60 meV� that al-
lows efficient excitonic lasing at room temperature, �2� pi-
ezoelectricity enabling high electromechanical coupling, �3�
capability to be grown at low temperature even on a plastic
substrate, and �4� large electronegativity of oxygen leading
to strong p-d exchange coupling between band carriers and
localized spins. The novel magnetic, electronic, optical, and
electromechanical properties of ZnO offer the unique possi-
bility to multifunctionally create integrated devices for sens-
ing, processing, and actuating functions in one monolithic
structure. However, one of the main obstacles in realizing the
full potential of ZnO materials is lack of a full understanding
of the role of intrinsic and extrinsic lattice defects, which
largely affect the electronic and optical properties. For ex-
ample, the origin of magnetism of transition-metal doped
ZnO1 is poorly understood and there are debates whether this
is caused by defects other than the metal dopants. Several
types of defects, such as oxygen vacancy,2–4 zinc
interstitial,5,6 hydrogen interstitial,7,8 zinc vacancy,9,10 as well
as oxygen interstitial,11 have been reported, which attract ex-
tensive research interest.12,13

Recently, some experiments have reported that one of the
main species of defects detected by positron annihilation
spectroscopy is Zn vacancy in both ZnO thin films9,10,14,15

and bulk samples.16 More interestingly, a recent experiment
reported that Zn vacancy induces ferromagnetism in undoped

ZnO thin films, where the magnetization depends on thick-
ness of the thin films.17 Thus, an essential question arises:
How do Zn vacancies induce magnetism in ZnO thin films?

Due to the covalent bonding features in ZnO, the physics
of defects in ZnO is quite complex, and the understanding of
the nature of defects is challenging. No explanation exists to
account for the reason why Zn vacancy could cause ferro-
magnetism in undoped ZnO thin films. Similarly, one does
not know how the magnetic moments are distributed around
the Zn vacancy. It is also important to know whether Zn
vacancies prefer to occupy the surface, subsurface, or bulk
sites. Do they like to cluster or remain isolated? If they do
cluster, is the magnetic coupling affected? Does the observed
ferromagnetism originate from surface Zn vacancies? If so,
ZnO nanowires would also exhibit ferromagnetism because
of its large surface to volume ratio.

II. COMPUTATIONAL METHOD

In this paper, we present the first comprehensive theoret-
ical investigation that addresses above questions. The theo-
retical calculations are carried out by using density func-
tional theory18 that incorporates exchange and correlation
effects within the generalized gradient approximation
�GGA�.19 We have used the PW91 functional20 for GGA and
a plane-wave basis set with the projector augmented wave
method21 as implemented in the Vienna ab initio simulation
package �VASP�.22 The cutoff energy was set at 350 eV for
the plane-wave basis �the default of maximum cutoff energy
is 276.75 eV�. In all calculations, self-consistency was
achieved with a tolerance in the total energy of at least
1 meV. Hellman–Feynman force components on each ion in
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the supercells are converged to 1 meV /Å. The accuracy of
our calculations for ZnO system has been well established
from our previous work.23,24 The calculated unit cell lattice
parameters, a=b=3.262 Å and c=5.226 Å, are in good
agreement with experimental results within the average error
of �1%.

The formation energy of a point defect in neutral state is
calculated25 by using the following equation:

Ef = �Etot
d − Etot

0 + ni�i�/ni, �1�

where Etot
d is the total energy of the supercell containing the

defects, Etot
0 is the total energy of the corresponding perfect

supercell, ni is the number of atoms removed, and �i is
chemical potential of the corresponding atom. The chemical
potential �i depends on the experimental growth conditions.
In thermodynamic equilibrium, the Zn and O chemical po-
tentials must satisfy the stability condition for ZnO, namely,

�Zn + �O = �H�ZnO� . �2�

Here, �H is the formation enthalpy of ZnO, which is deter-
mined from the computed total energies of wurtzite ZnO,
hexagonal close-packed Zn, and molecular O2. The calcu-
lated formation enthalpy of ZnO is −3.42 eV, which is com-
parable with the experimental value of −3.6 eV.26 The ex-
treme O-rich condition is given by the energy of O in an O2
molecule. The extreme Zn-rich condition is given by the en-
ergy of Zn in bulk zinc ��Zn=Etot

Zn�, which corresponds to the
lower limit of O-poor condition. The range of ambient O
from O poor to O rich is subject to the magnitude of the
formation enthalpy of ZnO.

III. RESULTS AND DISCUSSION

A. Vacancy-induced magnetism in ZnO thin films

We first study the effect of O and Zn vacancies on the
electronic properties and magnetism of ZnO thin films. The
ZnO thin film was modeled by a �2�2� seven-layer slab

having �112̄0� surface orientation �see Fig. 1�, which con-
tains a total of 56 f.u of ZnO. Each slab was separated from

the other by a vacuum region of 10 Å along the �112̄0� di-
rection. The central three layers of the slab were held at their
bulk position, while the two layers on either side of the slab
were taken to be identical to preserve symmetry and allowed
to relax without any symmetry constraint. The surface recon-
struction was carried out by optimizing geometry of the su-
percell by using a 5�5�1 Monkhorst–Pack k-point mesh.27

The relaxation energy per surface Zn-O dimer is found to be
0.215 eV. The relaxed Zn-O bond length on the surface layer
along the �0001� direction is 1.888 Å, which corresponds to
a contraction of −5.2% from the bulk value. The Zn-O bond

length approximately along the �11̄00� changes from
1.973 to 1.901 Å, which corresponds to a contraction of
−3.6%. The calculated results are in good agreement with
our previous work for the �1�2� slab supercell, in which the
thickness of the slab with seven layers and the vacuum space
with 10 Å have been verified to be adequate for studying the
effects of surface.23 The total electronic densities of states
�DOSs� for spin-up and spin-down electrons that correspond

to the pure ZnO �112̄0� thin film supercell are plotted in Fig.
2 �a1�. We note that the curves of DOS for spin-up and
spin-down states are totally symmetric, and the Fermi level
is located in the gap region, suggesting that ZnO �112̄0� thin
film is a semiconductor and nonmagnetic.

We created an O vacancy by removing a single O atom
from the surface layer of the slab. To preserve the symmetry,
the O atom on opposite side of the slab was also removed, as
shown in Fig. 1 �C11�. This led to a Zn56O54 supercell with O
vacancy concentration of 3.6%. The total energy calculation
and the geometry optimization for this configuration were
carried out by using a 5�5�1 Monkhorst–Pack grid. The
formation energy is found to be 3.179 eV /O vacancy, but no
magnetism appears in the system. To see if O vacancy pre-
fers to lie on a subsurface site, we removed an O atom from
the subsurface layer on either side of the slab, as shown in
configuration C12 in Fig. 1. The corresponding formation en-
ergy is found to increase to 3.791 eV, which is comparable
to the calculated value of 3.72 eV for O vacancy in ZnO
bulk.25 Thus, it is clear that formation of an O vacancy on the
surface layer is easier than that in the subsurface layer or in
the bulk. More importantly, ZnO with O vacancy is nonmag-
netic irrespective of where the O vacancy lies.

Next, we generated a Zn vacancy by removing a single Zn
atom on each side of the surface and subsurface layers in the
supercell. These are, respectively, labeled as configurations
C13 and C14 in Fig. 1. The formation energies of Zn vacancy
for configurations C13 and C14 are 5.377 and 5.988 eV, re-
spectively. Note that like O vacancy, Zn vacancy prefers to
be on the surface. We should note that the large formation
energies for both Zn and O vacancies are due to strong co-
valent Zn-O bonds and the surface vacancies are easier to
form because there is less number of bonds that need to be
broken on the surface than in the subsurface.

Unlike the system with O vacancies, ZnO containing Zn
vacancies is magnetic. The calculated total magnetic mo-

C11 C12 C13 C14

C21 C22 C23 C24

C25 C26 C27 C28

FIG. 1. �Color online� Schematic representation of the non-
equivalent vacancy configurations in Zn56O56 supercell modeling

ZnO �112̄0� thin film. The darker spheres represent O atoms, the
lighter spheres represent Zn atoms, and the red and blue spheres
correspond to O and Zn vacancies, respectively.
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ments for configurations C13 and C14 are 3.091 and 2.196 �B,
respectively, which imply that one Zn vacancy on the surface
of ZnO thin film can induce a moment of up to 1.504 �B. To
further examine the origin and distribution of this moment,
we calculated the magnetic moment on each O and Zn atom
self-consistently for all of the configurations as well as the
charge-density distribution for configuration C13 with and
without Zn vacancy. The latter are plotted in Figs. 3�a� and
3�b�, respectively. We see that no significant amount of
charge is left at the vacancy site. The main contribution to
the magnetic moment comes from the three O atoms that are
nearest neighbor to the Zn vacancy. On the �112̄0� thin film
surface, each Zn atom directly binds with three O atoms, in
which two of them are on the surface layer while the third
one resides in the subsurface layer. The two surface O atoms
�labeled O1 and O2 in Fig. 3�b�� have magnetic moments of
0.480 and 0.385 �B, respectively. These mainly arise from
the O 2p orbitals �0.478 and 0.383 �B�. The O atom in the
subsurface layer has a moment of 0.116 �B with 0.114 �B
resulting from O 2p orbitals. The Zn atoms nearest to the Zn
vacancy on the surface layer, i.e., Zn1 and Zn2 in Fig. 3�b�,
contribute only 0.033 and 0.024 �B, respectively, to the mag-
netic moment, which are negligible. In configuration C14,
although the total moment introduced by Zn vacancy is
smaller �2.196 �B� than that in configuration C13 �3.091 �B�,
the moment distribution has similar feature, i.e., the mo-
ments mainly come from the O atoms nearest to the Zn va-
cancy. The O atom on the surface layer has the largest local
moment, namely, 0.335 �B. The other two O atoms on the
second layer only carry magnetic moments of 0.172 and
0.170 �B, and the one in the third layer has a magnetic mo-
ment of only 0.060 �B. The calculated results are in good
agreement with recent experiment in which the magnetiza-
tion of very thin films was found to be much larger than that
of the thicker films,17 suggesting that the Zn vacancies are
mostly located on the surface.

To visualize the changes in electronic structure and mag-
netic properties resulting from Zn vacancies, we plot the to-

tal DOS corresponding to configuration C13 in Fig. 2. This
shows that Zn vacancy induces spin polarization of the top of
the valence band. We note that there is a significant change
in the spin-up and spin-down total DOS at the Fermi level in
Zn54O56 compared to that in nonmagnetic pure ZnO. The
energy gap disappears and the Zn vacancies introduce new
states near the Fermi level resulting in an asymmetric
spin-up and spin-down DOSs. To understand the origin of
this change, we calculated the partial DOS at Zn1 and O1
sites in Fig. 3�b�, which are the nearest neighbors to the Zn
vacancy. These are plotted in Figs. 2�b� and 2�c�, respec-
tively. They show that there is no visible contribution to the
observed magnetism from the Zn atom. On the other hand,
the main contribution to the moment comes from the O 2p
orbitals. The spins of O 2p electrons are polarized and intro-
duce new states near the Fermi level. Thus, it is clear that in
ZnO thin film, the presence of Zn vacancies leads to the spin
polarization of O 2p orbitals in the gap region and magne-
tism does not result from Zn 3d orbitals. This confirms the
experimental suggestion that the observed ferromagnetism
arises not from O vacancies but from Zn vacancies.17 Al-
though the formation energy of Zn vacancy is higher than
that of O vacancy, both Zn and O vacancies can be generated
during the growth and deposition process because of thermal
fluctuation or growth conditions, as found in
experiments.9,10,14,15,17

To study the effect of vacancy concentration on ferromag-
netism in the undoped ZnO thin film with Zn vacancy, we
generated two O and two Zn vacancies, respectively, on ei-
ther side of the slab with different vacancy distances. This
corresponds to 7.14% O and Zn vacancy concentration, re-
spectively. The vacancy configurations are schematically pic-
tured in Fig. 1 ��C21�– �C28��. The geometries were fully re-
laxed and the total energies were calculated using the same
procedure as described above. The calculated results are
listed in Table I.

The formation energies per O vacancy are found to be
3.304, 3.215, 3.203, and 3.820 eV for configurations

-8 -6 -4 -2 0 2 4

Spin-down

Spin-up(a) Zn
56
O
56

Zn
54
O
56

Ef

D
en
sit
y
of
St
at
es
(a
rb
.u
ni
t)

Spin-down

Spin-up(b) Zn-4s
Zn-3p
Zn-3d

Energy relative to Fermi energy (eV)

Spin-down

Spin-up(c) O-2s
O-2p

-6 -4 -2 0 2 4

Spin-down

Spin-up(d) Zn
48
O
48

Zn
46
O
48

E
f

Spin-down

Spin-up(e) Zn-4s
Zn-3p
Zn-3d

D
en
sit
y
of
St
at
es
(a
rb
.u
ni
t)

Energy relative to Fermi energy (eV)

Spin-down

Spin-up(f) O-2s
O-2p

FIG. 2. �Color online� �a� Total DOS, �b� par-
tial DOS of Zn atom, and �c� partial DOS of O

atom in the �112̄0� thin film Zn56−xO56 �x=0 and
2� supercell. �d� Total DOS and partial DOS of
�e� Zn and �f� O atoms in the nanowire Zn48−xO48

�x=0 and 2� supercell.
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C21–C24, respectively, which indicates again that O vacan-
cies prefer to be on the surface. In addition, the O vacancies
do not prefer to cluster as configuration C23 where the dis-
tance between two vacancies is 5.68 Å is lower in energy by
0.403 eV than configuration C21. None of the configurations,
C21–C24, exhibit magnetism, suggesting that O vacancies
will not lead to magnetism in ZnO even if the vacancy con-
centration is increased.

On the other hand, we found that the system exhibits
magnetism with a total magnetic moment of 6.478–6.970 �B
when the ZnO thin film contains a 7.14% Zn vacancy �see
Fig. 1 and Table I�. We note that a higher Zn vacancy con-
centration introduces a larger total moment in the system.
The moments at the nearest neighboring O atom of the va-
cancy are found to be 0.737, 0.742, 0.510, and 0.604 �B for
configurations C25–C28, respectively. The formation energies
of Zn vacancy range from 5.12 to 6.04 eV.

It is interesting to note that, unlike O vacancies, Zn va-
cancies prefer to cluster and reside on the surface of ZnO
thin film. The ground state configuration is found to be C25
that is, respectively, 0.260, 1.068, and 3.662 eV lower in
energy than the other three configurations, C26, C27, and C28.
This is associated with the bond length contraction of the
atoms around the vacancies and is caused by the large sur-
face reconstruction when the two Zn vacancies are close to
each other. For instance, the bond length of ZnO along the
�0001� direction contracted from 1.888 to 1.830 Å around
the vacancies. Clustering Zn vacancies found here is consis-
tent with recent experiment16 where Zn vacancy clusters of
up to five missing Zn-O pairs have been observed.

To further understand the onset of ferromagnetism ob-
served in the recent experiment,17 we study the stability of
the ferromagnetic �FM� state vs antiferromagnetic �AFM�
state and the coupling between the two Zn vacancies. The
energy difference between the FM and AFM couplings of the
two Zn vacancies �VZn1

and VZn2
�, which is defined as

�Emag�VZn1
-VZn2

�=E�VZn1
↑VZn2

↓ �−E�VZn1
↑VZn2

↑ � is calcu-
lated. The results are plotted in Fig. 4. The symbol VZn↑
stands for spin-up state, where the spins at O sites nearest to
the Zn vacancy are up. VZn↓ corresponds to the analogous
spin-down state. For ground state configuration C25 �see Fig.
1�, it was found that the FM state is 44 meV lower in energy
than the AFM state. For the other two higher energy configu-
rations of C26 and C27, the energy differences �Emag were
found to be 35 and 33 meV, respectively, which are larger
than the thermal energy that corresponds to the room tem-
perature. Therefore, the FM state could be stable against
thermal fluctuation. This is in agreement with the experimen-
tally observed ferromagnetism17 in undoped ZnO thin film
induced by Zn vacancy.

B. Vacancy-induced magnetism in ZnO nanowires

To study the effect of surface curvature on the magnetic
properties of ZnO, we have carried out calculations on nano-
wires. We constructed a ZnO nanowire from a �7�7�2�
ZnO bulk supercell having wurtzite structure by removing
zinc and oxygen atoms from the outside area of the circle in
Fig. 5�a� and replacing with a vacuum space. The nanowire

TABLE I. Formation energy Ef �in eV� of the vacancy, total
magnetic moment Mtot �in �B� per supercell, and local magnetic
moment Mlocal �in �B� at the nearest-neighbor O site in Zn56O52 and
Zn52O56 supercells �see Fig. 1�.

Configuration Ef Mtot Mlocal

C21 �VO� 3.304 0.000 0.000

C22 �VO� 3.215 0.000 0.000

C23 �VO� 3.203 0.000 0.000

C24 �VO� 3.820 0.000 0.000

C25 �VZn� 5.120 6.542 0.737

C26 �VZn� 5.177 6.478 0.742

C27 �VZn� 5.387 6.970 0.510

C28 �VZn� 6.036 6.581 0.604
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FIG. 3. �Color online� Two-dimensional distribution of charge

density on the surface of the �112̄0� plane for both �a� Zn56O56 and
�b� Zn55O56 supercells.
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supercell thus created contains 48 f.u. of ZnO with a vacuum

space of 12.997 and 13.011 Å along the �101̄0� and �011̄0�
directions, respectively. The wire extends to infinity along
the �0001� direction through repetition of the periodic super-
cell �see Fig. 5�b��.

To study the properties of O and Zn vacancies in the
nanowire, we first created an O and Zn vacancy on the sur-
face sites marked by red and blue spheres in Fig. 6 �a1� and
�b1�, respectively. O and Zn vacancies created inside the

nanowire are shown in Fig. 6 �a2� and �b2�, respectively. The
later calculations are carried out to investigate the preferred
sites of the vacancies. We then removed two and three O and
Zn atoms in the supercell, respectively �see Fig. 6 �a3�, �a4�,
�b3�, and �b4��, to study the influence of vacancy concentra-
tion on the magnetic properties of the nanowire.

Total energy calculations with full geometry optimization
were carried out for all the configurations of Zn48−xO48−y �x
=0, 1, 2, and 3 and y=0, 1, 2, and 3, respectively� in Fig. 6
by using a 5�5�1 Monkhorst–Pack k-point mesh.27 The
calculated results are summarized in Table II. Calculations
were also carried out for supercell Zn48O48 without any va-
cancy. It was found that the relaxation of the atomic posi-
tions is significant due to the large surface area. For instance,
in perfect ZnO crystal, the calculated Zn-O bond length
along the �0001� direction is 1.993 Å and that between Zn
and the three nearest O atoms in �0001� plane is 1.975 Å.

0.745
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0.0720.134

0.686

∆Emag = 44 meV

(a)

0.4730.5070.507

0.1940.194

0.473

∆Emag =33 meV

(b)

FIG. 4. �Color online� The spin alignments and the magnetic
moments �in �B� of the nearest-neighbor O sites to the Zn vacancies
in configurations �a� C25 and �b� C27, respectively.

(b)

[0001]

[1010]
-

(a)

FIG. 5. �Color online� �a� Top view of a 7
�7�2 ZnO supercell �0001� plane having
wurtzite structure. �b� A ZnO nanowire supercell
�Zn48O48� which extends to infinite along the
�0001� direction.

(a1) (a2) (a3) (a4)

(b2) (b3) (b4)(b1)

FIG. 6. �Color online� The schematic representation of the non-
equivalent vacancy configurations in Zn48−xO48−y nanowire super-
cell. The darker and lighter spheres represent O and Zn atoms,
respectively. The red and blue spheres show the sites where the
atoms are removed to generate O and Zn vacancies, respectively.
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The Zn-O bond length changed to 1.888 Å for the surface
atoms in the �0001� direction and to 1.956 Å between the
surface and subsurface layer atoms in the �0001� plane of the
Zn48O48 supercell. The electronic structure of the nanowire
can be seen from the total DOS in Fig. 2�d�, where the
spin-up and spin-down DOSs are totally symmetric and the
energy gap is located around the Fermi level. Thus, the sys-
tem is nonmagnetic and semiconducting.

The calculated O and Zn vacancy formation energies on
the nanowire surface are, respectively, 3.051 and 5.149 eV,
while those inside of the nanowire are 3.907 and 5.318 eV.
This indicates that the energy cost to remove an O atom is
much less than that for a Zn atom in the nanowire, and both
O and Zn vacancies prefer to reside on the nanowire surface.
These features are the same as that found in the thin film.
However the vacancy formation energies for O and Zn on the
nanowire are less than those for corresponding configura-
tions �C11–C14� in the thin film, demonstrating that vacan-
cies can more easily form in nanowires than in thin films. It
was also found that Zn47O48 supercell carries a total moment
of 1.55 �B, while the total moment for Zn48O47 is calculated
to be 0 �B. This shows that O vacancy does not introduce
any magnetism in the nanowire system in spite of its curved
surface. We also found that the nanowire remains nonmag-
netic even though the O vacancy concentration is increased
to 6.35%.

For Zn vacancy, however, the situation is different. The
total magnetic moment changes from 1.546 �B to 4.954 �B
when the concentration increases from 2.08% to 6.35%. On
the contrary, the vacancy formation energy changes only by
0.06 eV. Thus, nanowires provide the added advantage that
the magnetic moments can be increased by increasing the Zn
vacancy concentration without significant energy cost. It is
also found that the moment is contributed from the neighbor-
ing O atoms of the vacancy. The local moments on the
nearest-neighbor O site are 0.510 and 0.604 �B and mainly
arise from the from O 2p orbitals �0.507 and 0.602 �B�.
From the calculated results for configuration �b2� in Fig. 6
�see Table II�, we note that the formation energy for Zn va-
cancy inside of the nanowire is higher than that on the sur-
face and these Zn vacancies inside do not lead to magnetism

because of the stronger orbital hybridizations. This is similar
to the situation in bulk as found in experiment.16 Therefore,
the Zn vacancy prefers to reside on the nanowire surface,
which results in a magnetic nanowire. The electronic struc-
ture of the nanowire bears some resemblance to that of the
thin film surface. This can be seen from the total DOS and
partial DOS of Zn and O atoms for configuration �b3� plotted
in Figs. 2�d�–2�f�.

The origin of magnetism from O 2p orbitals, instead of
Zn 3d orbitals, may have its roots in the atomic properties of
oxygen. Note that the electronic configuration of O atom is
1s22s22p4 with two unpaired 2p electrons that lead to a mo-
ment of 2.0 �B. In O2 molecules, there are also two unpaired
electrons in the degenerate 2p-�* antibonding orbitals, so
that the electronic ground state of O2 is a spin triplet state. A
monolayer O2 on graphite also shows some interesting mag-
netic properties.28 It is well known that solid O2 in � phase is
antiferromagnetic, and solid O2 in � phase is a frustrated
antiferromagnetic.29,30 When O atom is substitutionally
doped in solid of K, Rb, and Cs, the impurity O carries a
magnetic moment of 0.870, 0.990, and 1.070 �B
respectively.31 When an O atom is placed in Li12, Na12, K12,
and Rb12 clusters with an icosahedral geometry, the O atom
exhibits magnetic moments of 0.529, 1.216, 1.370, and
1.460 �B, respectively.32 Similarly, a substitutionally doped
O atom in BN sheet carries a magnetic moment of 1.0 �B.33

Rb4O6 is found to be an intrinsic ferromagnet in which the
magnetic moment is exclusively carried by the p electrons of
O anions.34

Systems with magnetism based on 2p electrons are ex-
pected to display some novel properties not found in 3d- or
4f-electron systems. For example, valence electrons in p or-
bitals are more delocalized than those in d and f orbitals and
the spin-orbit coupling is much smaller or negligible for at-
oms containing 2p valence electrons since it scales with the
fourth power of the atomic number. Especially because the
magnetism comes from O not from other d- or f-metal ele-
ment, the system is more biocompatible for medicinal appli-
cations since metal atoms usually can induce the formation
of some dangerous free radicals.

V. SUMMARY

In summary, using first-principles theory, we have system-
atically examined the electronic properties and magnetism of
ZnO thin films and nanowires by using both Zn and O va-
cancies. We show that Zn vacancy introduces spin polariza-
tion of the top of the valence band and the observed magne-
tism in ZnO thin films arises indeed from Zn vacancies.
These vacancies prefer to reside on the surface, as has been
suggested from experiments. The origin of magnetism does
not result from the Zn 3d electrons but from the unpaired 2p
electrons of O atoms in the immediate vicinity of the Zn
vacancies. Compared to thin films, it is not only easier to
introduce Zn vacancy in ZnO nanowire, but the resulting
magnetic moment is also larger. Our theoretical study con-
firms that one can have an alternative way to generate the
low dimensional magnetic ZnO nanostructures by introduc-
ing Zn vacancies instead of doping with transition-metal

TABLE II. Formation energy E f �in eV� of the vacancies, total
magnetic moment Mtot �in �B� per supercell, and local magnetic
moment Mlocal �in �B� on the nearest-neighbor O site for different
vacancy concentrations and configurations �see Fig. 6� for
Zn48−xO48−y nanowire supercell.

Configurations Ef Mtot Mlocal

�a1� �VO at 2.08%� 3.051 0.000 0.000

�a2� �VO at 2.08%� 3.907 0.000 0.000

�a3� �VO at 4.17%� 3.058 0.000 0.000

�a4� �VO at 6.35%� 3.139 0.000 0.000

�b1� �VZn at 2.08%� 5.149 1.546 0.492

�b2� �VZn at 2.08%� 5.318 0.000 0.000

�b3� �VZn at 4.17%� 5.173 3.216 0.510

�b4� �VZn at 6.35%� 5.310 4.954 0.604
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atoms. This provides us some advantages for biomedical ap-
plications �e.g., magnetic healing, oxygen delivery, improv-
ing biofluid circulation for effective transport and release,
helping to bring a normal charge back to each body cell by
increasing cellular oxygen, and restoring pH balances�, as the
absence of transition-metal atoms may prevent the formation
of dangerous free radicals.
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