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Abstract
The study of the properties of nanostructures in an electric field is very
important not only from the fundamental point of view but also for practical
applications. According to classical physics, an insulating system will be
broken down in a large electric field. Can we predict such a behaviour for
nanostructures using ab initio calculation? Such an attempt is made in this
paper. The electronic structure and charge distributions of the thinnest
(SiO2)n wire in electric field are studied in detail with a first-principles
method. It is found that the HOMO–LUMO gap increases with size and
saturates at large values of 6.4 eV when n � 12, suggesting that the SiO2
chain can be a very good insulating nanowire. However, when the wire is in
an applied electric field, the HOMO and LUMO energies of the wire
decrease linearly at different speeds, and the gap approaches zero, at which
point the insulating wire is broken down by the electric field.

The discovery of C60 [1] and carbon nanotube [2] greatly
stimulated the investigations of nanostructures, which have
great potential use in nanoscale devices such as quantum dots,
quantum wires, nonlinear electronic elements, transistors,
molecular memory devices and electron field emitters. There
are two important features of nanostructures. Firstly, size can
be used as a variable to modulate the structure and properties.
Secondly, due to the small size, quantum effects are dominant,
and therefore quantum mechanical methods should be used to
elucidate their behaviours and properties. Up to now, great
effort has been devoted to the evolutions of structure and
properties with size. For a metal element system, when the
size is small, the energy levels are discrete and result in a large
HOMO–LUMO gap. However, when the size becomes large,
nonmetal to metal transition will take place resulting from the
orbital overlap; this has been well established for many metallic
systems [3]. Besides the size induced transition, another kind
of transition, that induced by an external field, is an extremely
important subject, but one which has not been well explored.
In many practical applications, the nanostructure will be in
an applied or in a self-produced electric field. According to
classical physics, the insulating system will be broken down
by a large electric field. Can we predict such a behaviour
for nanostructures using a first-principles method? For this
purpose, we take the SiO2 chain as an example against the
following background:

(1) bulk SiO2 is a good insulating material;

(2) it has been found recently that oxidation can enhance the
synthesis of Si nanowires [4], and SiO2 layer covers on
the surface of Si nanowires [5];

(3) SiO2 nanowire can be used not only as an intensive blue
light emitter [6] but also as a nanosized electronic resonant
tunnelling transistor;

(4) silicon nanostructures attract great attention [7–12].

We use molecular orbital theory in which the wavefunction
is represented by a linear combination of atomic orbitals
centred at each atomic site. The Gaussian98 package [13]
was used and calculations were performed at the B3LYP level
of theory [14] with the composite basis set, 3-21G for Si and 6-
31G* for O, which have been extensively tested and determined
to be the economic basis set for silicon oxide systems [15].
The convergences for energy and force are 0.0001 eV and
0.01 eV Å−1, respectively.

Based on the previous studies for small (SiO2)n clusters
(n = 1–6) [16], where the chain configuration was determined
to be the most stable geometry, we start with this chain
structure and continue to grow by adding SiO2 units one by
one. Figure 1(a) shows the geometry of (SiO2)15 wire. It
should be noted that the ground state geometry may be changed
for larger size, and there would be a lot of structural isomers.
However, there is no method good enough to guarantee that one
can find the real ground state geometry. Therefore, we confine
ourselves with this chain configuration, which represents the

0957-4484/04/030260+04$30.00 © 2004 IOP Publishing Ltd Printed in the UK 260

http://stacks.iop.org/Nano/15/260


Soft breakdown of an insulating nanowire in an electric field

0 200 400 600 800 1000 1200 1400
0

2000

4000

6000

8000

10000

12000

In
te

n
si

ty
 (

K
m

/m
o

l)

Frequency (cm-1)

(a)

(b)

(c)

Figure 1. Equilibrium geometry (a), the distorted initial structure (b), and the vibration spectrum (c) for (SiO2)15 wire. The empty big balls
represent Si atoms, and the small solid balls denote O atoms.
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Figure 2. The size evolution of adding energy (squares) and the
HOMO–LUMO gap (circles).

thinnest SiO2 wire and can be used as a simple model for the
theoretical studies.

We define the adding energy as

�E(n) = E(n) + E(1) − E(n + 1) (1)

where the E(i) is the total energy of i units. The changes for
�E are shown in figure 2 (curve with squares). We can see
that there is a big jump from (SiO2)2 to (SiO2)3. In (SiO2)2,
the two SiO2 units are respectively at the two ends; the binding
is enhanced by adding a SiO2 unit. When the size becomes
larger, the saturation in �E begins at n = 4 with the value
of 4.49 eV, and there are no meaningful oscillations there,
indicating no magic behaviours existed, quite different from
the pure Si clusters [17]. Therefore, oxidation provides an
effective way to modulate behaviour in nanostructures.

The results for the HOMO–LUMO gap are shown in
figure 2 (curve with circles). From n = 1 to 11, the gap

increases with size. This can be understood on the basis
of charge transfer and bonding characteristics. Mulliken
population analysis indicates that the atoms in the end part
of the chain have lower charge. For different size, the charge
transfers are different. For example, for n = 3, 10 and 15, the
average charge of Si atom is 1.77, 1.90 and 1.92, respectively.
The corresponding charge at O atom is −0.88,−0.95 and
−0.96, respectively. We can see that as the size increases more
electrons are transferred from Si atoms to O atoms, making
the chain more ionic and resulting in a larger gap. On the
other hand, going from n = 12 the gap begins to saturate in
6.4 eV; this is larger than the gaps of α-quartz and β-quartz,
and is comparable with the gap of the β-tridymite phase in
bulk SiO2 [18]. Therefore, this SiO2 nanochain would be a
very good insulator. Compared with the previous results for
small clusters [10], the HOMO–LUMO gap that we obtained
is larger. This can be attributed to the different basis set and
different exchange correlation functionals, especially as we
used a hybrid method, which has been shown in other systems
to dramatically improve the HOMO–LUMO gap with respect
to experiment [19, 20].

The chain configuration is very graceful, but is it stable
dynamically? in other words, can this chain configuration
be maintained under some disturbance? This is a very
critical point, but one that has not being checked for small
clusters [15, 16]. Conventional geometry optimizations
generally converge to a structure in a local minimum of
the potential energy surface or a saddle point, and dynamic
stability analysis becomes an important tool. In the case of
a saddle point, the system displays one or more imaginary
vibration frequencies, suggesting that the energy of the system
can be lowered by structural displacements. Such an instability
in structure cannot be easily detected with conventional total
energy calculations. Therefore, calculations of the vibration
spectra are necessary, which are given in figure 1(c) for
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Figure 3. Vibration spectrum for (SiO2)15 wire in several applied fields: 0.0 (a), 5.20 (b), 10.3 (c), 15.4 (d) and 20.5 MV cm−1 (e). The
corresponding maximum frequency fmax and the maximum infrared intensity Imax are shown in (f), where the field is expressed as voltage.

(SiO2)15. All the frequencies are real, suggesting that this
chain structure is stable dynamically. To confirm this point
further, we distort the structure as shown in figure 1(b).
When reoptimized, it is very encouraging to find that the final
geometry converges to the structure in figure 1(a). In the
frequency spectrum, the maximum frequency corresponds to
the relative vibrations along the chain for the Si and O atoms
in the two ends, while the maximum intensity corresponds to
the relative vibrations along the chain for the Si and O atoms
in the mid-part of the chain.

Now we study the behaviour of (SiO2)15 chain in the
electric field. We apply a uniform electric field along the chain
axis, and fully optimize the geometry. Figures 3(a)–(e) show
the vibration spectra in different fields. The results suggest that
the chain-like SiO2 nanowire is still stable dynamically in the
field. The changes of maximum vibration frequency ( fmax ) and
maximum infrared intensity (Imax) with the field are displayed
in figure 3(f). We can see that with the increase of field, the
maximum intensity is reduced, while the maximum frequency
is almost linearly increased, indicating that the Si and O atoms
at the two ends vibrate more quickly along the wire axis in
the field.

It is well known that the HOMO–LUMO gap is a
very important quantity for understanding and predicting the
properties and behaviours of nanostructure. But how does the
gap change with the applied field? As shown in figure 4, it
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Figure 4. Energies of HOMO and LUMO change with applied field
for (SiO2)15 wire.

is quite interesting to note that the energies for both HOMO
and LUMO levels decrease linearly but at different speeds,
and that therefore a crossover occurs, which corresponds to
the breakdown of this insulating wire. The breakdown field
is 22 MV cm−1 (or 8.1 V), which is comparable with the
values for SiO2 film, which were found to be in the region
of 18–27 MV cm−1 [21]. The geometric structure of the wire
is still maintained in the breakdown state, and the process is
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Figure 5. (a) Charge distributions and (b) charge difference
between E = 20.5 MV cm−1 and E = 0.0 for (SiO2)15 wire.
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Figure 6. Asymmetric charge distribution for (SiO2)15 wire in the
electric field.

reversible. In this sense, the breakdown for this SiO2 nanowire
can be classified as soft breakdown [22].

From Mulliken population analysis, it is found that the
charges are redistributed in the field. Figure 5(a) shows the
charge distribution for the wire of (SiO2)15 with no field:
except for the Si and O atoms at the two ends there are nearly
two electrons transferred from each Si atom, and each O atom
gets one electron. When the electric field is applied, the
situation changes. Figure 5(b) displays the charge difference
of corresponding atoms of the wire in the field of 20.5 and
0.0 MV cm−1. The big difference occurs for the O atoms at the
two ends: the charges decrease at one end while they increase
at the another end, resulting in an asymmetric distribution of
charges along the wire. In the (SiO2)15 wire, starting from
one end, we label the atoms 1, 2, 3, . . . , 45, where the first
and the 45th sites are the O atoms at the two ends, and the
23th site is the Si atom in the centre of the wire. If the charge
on the i th atomic site is q(i), we define a parameter Q as
Q(i + 1) = q(1 + i) − q(45 − i) (i = 0, 1, . . . , 22), which

measures the asymmetric charge distribution along the wire, as
shown in figure 6. When there is no applied field, the charges
are symmetric with respect to the centre of the wire, so Q
is zero. When a larger field is applied, Q becomes larger
especially for the O atoms in the ends, and the dipole moment
of the wire is increased.

In summary, detailed studies on the behaviour of an
insulating nanowire in an electric field are performed on
a SiO2 chain, which is the thinnest wire and provides the
simplest model for theoretical study with a first-principles
method. In practical applications, the nanowires may be
assembled by interconnecting with each other or being attached
to some electrodes, and then the situation will be much more
complicated. However, the present study on isolated nanowire
sheds light on the mechanism and behaviour of nanowire in an
electric field, and provides a little fundamental understanding
of the complicated nanostructures.
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