Role of Acid Sphingomyelinase Knockout Mice in Protection Against Hyperhomocystenimia Induced Glomerular Injury

Sophie S. Yuth

Department of Pharmacology and Toxicology Medical College of Virginia Virginia Commonwealth University Summer Program for Undergraduate Research 2009

31 July 2009

Background

Hyperhomocystenemia is known as a critical pathogenic factor in the progression of end stage renal disease (ESRD) and in the development of cardiovascular complications related to ESRD.

Chronic elevations of plasma Hcys levels induce proteinuria, mesangial expansion and glomerulosclerosis.

Elevated Hcys levels increase *de novo* ceramide synthesis in rat mesangial cells. This increased ceramide production enhances NADPH oxidase activity.

Increased NADPH oxidase activity generates superoxide production and ultimately causes glomerular injury.

However, nothing is known about hyperhomocysteinemia induced glomerular injury on mice lacking the acid sphingomyelinase gene.

Hypothesis

To explore the role of acid sphingomyelinase and NAD(P)H oxidase in the development of hHCys-induced glomerular injury in ASM mice

Biosynthesis of Ceramide

Homocysteine

Animal Model

8-weeks old ASM mice

ASM mRNA level, Plasma Hcy, Urinary protein excretion, Superoxide production and Glomerular injury markers

Plasma Hcys concentration in mice

ASM mRNA expression in mice

Morphological features of the glomeruli from different groups of mice

Urinary total protein excretion in mice

Structure and function of podocytes

Podocin expression in mice treated with control or folate free diet

Nephrin expression in mice treated with control or folate free diet

	400x	1000x
Negative Control		
WTND		
WTFF		
KOND		
KOFF		

Desmin expression in mice treated with control or folate free diet

Ceramide expression in mice treated with control or folate free diet

ASM expression in mice treated with control or folate free diet

	400x	1000x	
WTND			
WTFF			
KOND			
KOFF			

Superoxide production in ASM mice

Mechanism:

FF Diet- [†]Hcy - [†]ASM and Ceramide – [†]LR platform- [†]Nox/O₂⁻ - Glomerular injury

Conclusions:

➤ASM gene knockout mice attenuates folate free diet induced plasma homocysteine concentration, mRNA level, urinary total protein excretion, and superoxide production compared to the wild type mice.

ASM gene knockout protects against hyperhomocystenimia induced glomerular injury.

Acknowledgments

Dr. Pin-Lan Li, MD, PhD

Dr. Ningjun Li, MD

Dr. Krishna Boini, PhD

Dr. Qing Zhu, PhD (Carl) Dr. Chun Zhang, MD, PhD (Peter) Dr. Zhengchao Wang, PhD (Jackie) Dr. Fan Zhang, MD, PhD (Max) Dr. JunJun Hu, MD (June) Min Xia (Mark) Laura Laperle Christopher Brimson Jessica Cardwell Jennifer Doughman Shante' Hinton

VCU SPUR Program NIH - R01 DK054927 ARRA Supplement Award

Thank you for everything!