TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice

Xiang Li · Wei-Qing Han · Krishna M. Boini · Min Xia · Yang Zhang · Pin-Lan Li

Received: 12 August 2012 / Revised: 29 September 2012 / Accepted: 8 October 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1+/+) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1+/+ CAECs, whereas these observations were not found in Smpd1−/− CAECs. Moreover, ASM deficiency reduced TRAIL-induced O2− production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside GM1 (MR marker) were trafficking together in Smpd1+/+ CAECs, which was absent in Smpd1−/− CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1−/− CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms, which may play an important role in DR4-mediated redox signaling in CAECs and consequently endothelial dysfunction.

Keywords TRAIL · Lysosome fusion · Acid sphingomyelinase · Membrane raft · Endothelial cell · Vasorelaxation

Introduction

The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is expressed as a type II TNF ligand transmembrane protein which can be released as a vesicle-associated form or a soluble form. Five receptors for TRAIL have been identified. Two death receptors, DR4 and DR5, contain a death domain and transmit an apoptotic signal in response to TRAIL [1]. Two decoy receptors (DcR1 and DcR2) bind TRAIL without activation of the apoptotic machinery and seem to antagonize DR4 and DR5 [2]. Lastly, osteoprotegerin, originally identified as a regulator of osteoclastogenesis, was shown to bind TRAIL and function as a soluble TRAIL receptor [3]. Endothelial cells (ECs) express all TRAIL receptors including DR4 and DR5, and the activation of these receptors has been implicated in the regulation of EC activities including inflammation, proliferation, differentiation, and apoptosis [4–8]. For example, TRAIL down-modulated CCL8 and CXCL10 chemokine expression in human umbilical vein endothelial cells...
TRAIL may in parallel modulate apoptotic pathways as well as anti-apoptotic/pro-inflammatory pathways in ECs. Although these studies revealed the biological activities of TRAIL on ECs, it remains unknown whether and how this death factor indeed produces endothelial dysfunction when it acts on intact vessels for a short time.

Membrane rafts (MRs, previously as lipid rafts) are dynamic assemblies of cholesterol, lipids with saturated acyl chains, such as sphingolipids and glycosphingolipids, in the exoplasmic leaflet of the membrane bilayer, and cholesterol in the inner leaflet [9]. Recently, accumulating evidence suggests that MR clustering is a novel mechanism mediating and amplifying transmembrane signaling in response to various stimuli in a variety of cell types, including lymphocytes, endothelial cells, and neurons [10–12]. Clustered MRs form membrane signaling platforms, in particular, the ceramide-enriched platforms or macromdomains [9]. These membrane platforms can recruit or aggregate various signaling molecules such as small G proteins, tyrosine kinases, and phosphatases, resulting in the activation of different signaling pathways [9]. More recently, there are increasing evidence that MR clustering on the coronary arterial endothelial cells (CAECs) is an important initiating mechanism in endothelial injury in response to damaging factors such as death receptor agonists, inflammatory factors, and irradiation [9, 11, 13]. It has been shown that MR clustering recruits or aggregates redox signaling molecules such as NADPH oxidase subunits, gp91phox, p47phox, and Rac GTPase, resulting in the formation of a membrane signal amplification platform that activates and enhances production of O2− [11, 14]. These MR signaling platforms associated with O2− production have been referred as MR redox signaling platforms. The formation of such MR redox signaling platforms in the EC membrane is associated with ceramide production via lysosomal acid sphingomyelinase (ASM), which is translocated onto the plasma membrane via membrane proximal lysosome trafficking and fusion upon stimulation of death receptors [15–17]. Ceramides spontaneously fuse MRs into large ceramide-enriched membrane domains or platforms, which can serve as MR redox signaling platforms [9, 14]. TRAIL has been demonstrated to stimulate ceramide production through ASM and consequent formation of ceramide-enriched platforms in non-endothelial cells [18]. Based on these observations, the present study hypothesized that TRAIL stimulates O2− production through the formation of the MR redox signaling platforms in CAECs, leading to the impairment of endothelium-dependent vasodilation and endothelial injury. We used a series of molecular and physiological approaches to test this hypothesis. Particularly, the roles of ASM in lysosome fusion with the plasma membrane, the formation of MR redox signaling, as well as TRAIL-induced endothelial impairment were examined in primary cultured CAECs and small resistance arteries isolated from ASM-deficient mice, respectively.

Materials and methods

Isolation of mouse coronary arterial endothelial cells

The isolation and the characterization of mouse coronary endothelial cells were performed as described previously [19]. Briefly, the heart was excised with an intact aortic arch and immersed in a Petri dish filled with ice-cold Krebs–Henseleit (KH) solution (in millimolars): 118, NaCl; 1.2, MgSO4; 1.2, KH2PO4; 25, NaHCO3; 2.5, CaCl2; and 11, glucose. Surrounding fat and connective tissue were removed from the heart. The cleaned heart with intact aorta was transferred to another Petri dish with fresh KH solution. A 25-gauge needle filled with HBSS (in millimolars: 5.0, KCl; 0.3, KH2PO4; 138, NaCl; 4.0, NaHCO3; 0.3, Na2HPO4·7H2O; 5.6, D-glucose; and 10.0, HEPES; with 2 % antibiotics) was inserted into the aortic lumen opening while the whole heart remained in the ice-cold buffer solution. The opening of the needle was inserted deep into the heart close to the aortic valve. The aorta was tied with the needle as close to the base of the heart as possible. The infusion pump was started with a 20-mL syringe containing warm HBSS at a rate of 0.1 mL/min and the heart was then flushed for 15 min. HBSS was replaced with a warm enzyme solution (1 mg/mL collagenase type I, 0.5 mg/mL soybean trypsin inhibitor, 3 % BSA, and 2 % antibiotic–antimycotic) which was flushed through the heart at a rate of 0.1 mL/min. Perfusion fluid was collected at 30-, 60-, and 90-min intervals. At 90 min, the heart was cut with scissors and the apex was opened to flush out the cells that collected inside the ventricle. The fluid was centrifuged at 1,000 rpm for 10 min, the cell-rich pellets were mixed with the one of the media described below, and the cells were planted in 2 % gelatin-coated six-well plates and incubated in 5 % CO2–95 % O2 at 37 °C. Medium 199-F-12 medium (1:1) with 10 % fetal bovine serum (FBS) and 2 % antibiotics was used for isolated endothelial cells. The medium was replaced 3 days after cell isolation and then once or twice each week until the cells grew to confluence. All biochemical studies in the present study were performed using CAECs of two to four passages. CAECs were identified by Dil-Ac-LDL staining.
as described previously [19, 20]. Six-week-old male C57BL/6J ASM-deficient (Smpd1^{−/−}; Smpd1^{−/−}) mice and their wild-type littermates (Smpd1^{+/+}) were used in the present study; mouse genotyping was performed as described previously [21]. All animals were provided standard rodent chow and water ad libitum in a temperature-controlled room. All protocols were approved by the Institutional Animal Care and Use Committee of Virginia Commonwealth University (Richmond, VA).

Immunofluorescent microscopic analysis of MR clusters

CAECs were grown on poly-L-lysine-coated glass coverslips. After fixation with 4 % PFA, cells were incubated with Alexa Fluor 488-conjugated cholera toxin B (Alexa488-CTXB, 2 μg/mL, 2 h; Molecular Probes, Palo Alto, CA), which binds with the MR-enriched ganglioside GM1. For dual-staining detection of the co-localization of MRs with DR4/5, ASM, ceramide, or gp91^{phox}, the cells were first incubated with Alexa488-CTXB and then with anti-DR4 or DR5 (1:250, BD Biosciences, San Jose, CA), anti-ASM (1:200, Santa Cruz, CA), anti-ceramide (1:200, Enzo Life Sciences, Farmingdale, NY), and anti-gp91^{phox} (1:200, BD Biosciences), respectively, which was followed by corresponding Alexa555-conjugated secondary antibodies (1:500, Invitrogen, Grand Island, NY). Then, co-localization was visualized with confocal microscopy. To accurately observe staining on the cell membrane, these cells were not permeabilized by excluding detergent in the washing and incubation buffer (phosphate-buffered saline, PBS). Clustering was defined as one or several intense spots or patches of fluorescence on the cell surface, while unstained cells displayed a homogenous distribution of the fluorescence throughout the membrane. The results were given as the percentage of cells showing a cluster as described previously [11, 22].

Electron spin resonance detection of endothelial O₂[−]

Electron spin resonance was performed as described previously [11]. Gently collected CAECs were suspended in modulated cells displayed a homogenous distribution of the fluorescence throughout the membrane. The results were given as the percentage of cells showing a cluster as described previously [11, 22].

Vascular reactivity in in vitro perfused and pressurized small resistance arteries

Small mouse mesenteric arteries (third-order branch from the superior mesenteric artery, ∼100 μm) were dissected from 6-week-old mice in ice-cold physiological saline solution (PSS) with the following composition (in millimolars)—NaCl, 119; KCl, 4.7; CaCl₂, 1.6; MgSO₄, 1.17; Na₂HPO₄, 1.18; NaHCO₃, 24; EDTA, 0.026; and glucose, 5.5 (pH 7.4)—and carefully cleaned off of fat and connective tissues under a dissection microscope. The dissected arteries were immediately transferred to a water-jacketed perfusion chamber and cannulated with two glass micro-pipettes at their in situ length as described previously [23]. The outflow cannula was clamped and the arteries were pressurized to 60 mmHg and equilibrated in PSS at 37 °C. PSS in the bath was continuously bubbled with a gas mixture of 95 % O₂ and 5 % CO₂ throughout the experiment. After a 1-h equilibration period, the arteries were precontracted with phenylephrine (PE, 1–10 nM) until an ∼50 % of decrease in resting diameter was reached. Once steady-state contraction was obtained, cumulative dose–response curves to the endothelium-dependent vasodilator acetylcholine (10^{−9}–10^{−5}M) were determined by measuring changes in internal diameter. To induce endothelial impairment, small arteries were perfused with TRAIL (100 ng/mL) in the lumen and incubated for 1 h. All other drugs were added into the bath solution unless otherwise indicated. The vasodilator response was expressed as the percent relaxation of PE-induced pre-contraction based on changes in arterial internal diameter. The arteries were excluded from statistical analysis if the contractile response to PE was <40 % or dilator response to acetylcholine was <80 %. Internal arterial diameter was measured with a video system composed of a stereomicroscope (Leica MZ8), a charge-coupled device camera (KP-MI AU, Hitachi), a video monitor (VM-1220U, Hitachi), a video measuring apparatus (VIA-170, Boeckeler Instrument), and a video printer (UP890 MD, Sony). The arterial images were recorded continuously with a videocassette recorder (M-674, Toshiba).

Fluorescence resonance energy transfer analysis

Fluorescein isothiocyanate (FITC)/tetramethyl rhodamine isothiocyanate (TRITC) pairs were used for fluorescence
resonance energy transfer (FRET) assay. CAECs were stained with FITC-conjugated anti-Lamp-1 (a lysosomal marker protein, 1:200; BD Biosciences) and TRITC-labeled CTXB (TRITC-CTXB, 2 μg/mL, 2 h; Molecular Probes) as described above. An acceptor bleaching protocol was used to measure FRET between FITC/TRITC as described previously [22]. Briefly, after the pre-bleaching image was normally taken, the laser intensity at the excitation wavelength of the acceptor (TRITC) was increased from 50 to 98 % and continued to excite the cell sample for 2 min to bleach the acceptor fluorescence. After the intensity of the excitation laser for acceptor was adjusted back to 50 %, the post-bleaching image was taken for FITC. A FRET image was obtained by the subtraction of the pre-bleaching images from the post-bleaching images and given a dark blue color. After measuring the FITC fluorescence intensity of the pre-, post-, and FRET images, FRET efficiency was calculated through the following equation:

\[
E = \frac{\text{FITC}_{\text{post}} - \text{FITC}_{\text{pre}}}{\text{FITC}_{\text{pre}}} \times 100\%
\]

FM1-43 fluorescence quenching

FM1-43 quenching was performed to detect lysosomal fusion to the plasma membrane as described previously [22]. CAECs were firstly loaded with 8 μM FM1-43 (Molecular Probes) for 2 h at 37 °C. After washing with FBS-free medium, a FM1-43 quenching reagent, bromide phenol blue (BPB, 1 mM; Molecular Probes), was added in the extracellular medium. Cells were then stimulated with or without TRAIL and FM1-43 fluorescence scanned under a confocal microscopy (Olympus) with a low-power laser (λ_{excitation}=488 nm) to avoid fluorescent bleaching.

Statistics

Data are presented as the mean±SE. Significant differences between and within multiple groups were examined using ANOVA for repeated measures, followed by Duncan’s multiple-range test. Student’s t test was used to detect significant differences between two groups. A value of P<0.05 was considered statistically significant.

Results

TRAIL induces MR clustering in mouse CAECs

As shown in Fig. 1a, representative MR patches in CAECs under resting control condition and during TRAIL (100 ng/mL, 15 min) stimulation were detected by confocal microscopy. Under the resting condition, there was only a diffuse fluorescent staining on the cell membrane by Alexa488-CTXB (CTXB specifically binds MR marker ganglioside G_{M1}), indicating the possible distribution of single MRs
A Representative confocal images showing TRAIL-induced clustering of MR markers ganglioside GM1, which were detected by cholera toxin subunit B (CTXB). b Summarized data showing the dose-dependent effect of TRAIL (0–100 ng/mL) on MR clustering in Smpd1+/+ CAECs (n=6). c Confocal microscopy of Smpd1−/− CAECs revealed a co-localization of DR4, but not DR5, with MR clusters upon TRAIL stimulation. d Summarized data showing the co-localization between MRs and DR4 or DR5 in mouse Smpd1+/+ CAECs. *P<0.05 vs. control (n=6)

Fig. 1 TRAIL induces MR clustering in mouse CAECs via DR4 receptor. a Representative confocal images showing TRAIL-induced clustering of MR markers ganglioside GM1, which were detected by cholera toxin subunit B (CTXB). b Summarized data showing the dose-dependent effect of TRAIL (0–100 ng/mL) on MR clustering in Smpd1+/+ CAECs (n=6). c Confocal microscopy of Smpd1−/− CAECs revealed a co-localization of DR4, but not DR5, with MR clusters upon TRAIL stimulation. d Summarized data showing the co-localization between MRs and DR4 or DR5 in mouse Smpd1+/+ CAECs. *P<0.05 vs. control (n=6)

TRAIL triggers ASM translocation and ceramide production in MR clusters

To investigate the spatial relation between MR clusters and ASM or ceramide, CAECs were stained with Alexa488-CTX- and Alexa555-conjugated antibodies against ASM or ceramide. As shown in Fig. 2a–d, confocal microscopy revealed that ASM or ceramide co-localized with MR clusters in CAECs upon TRAIL stimulation. However, such TRAIL-induced co-localization of ASM or ceramide with MR clusters was abolished in Smpd1−/− CAECs.

TRAIL-induced NADPH oxidase aggregation in MR clusters requires ASM activity

We next investigated whether TRAIL induces the formation of MR redox signaling platforms by examining the aggregation of gp91phox in MR clusters since gp91phox is a major NADPH oxidase subunit in the plasma membrane of CAECs. As shown in Fig. 3a, b, TRAIL increased the co-localization between MRs and gp91phox in Smpd1+/+ CAECs, whereas TRAIL failed to increase such co-localization in Smpd1−/− CAECs.

ASM deficiency reduces TRAIL-induced O2− production in CAECs

To further examine whether TRAIL-induced MR redox signaling is mediated via ASM/ceramide, Smpd1+/+ or Smpd1−/− CAECs were stimulated with TRAIL and the O2− production was measured by ESR spectroscopic analysis. As shown in Fig. 4, in Smpd1+/+ CAECs, TRAIL significantly increased O2− production by 2.4-fold compared to the control. However, there was no significant increase in O2− production observed in Smpd1−/− CAECs with TRAIL treatment.

ASM deficiency reverses TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries

The results above demonstrate that TRAIL activates NADPH oxidase-derived O2− production via the MR redox signaling pathway. To further investigate the functional significance of TRAIL-induced MR redox signaling, we examined the effects of TRAIL on acetylcholine-induced vasodilation response in small mesentery resistance arteries. As shown in Fig. 5a, acetylcholine produced a concentration-dependent vasorelaxation in Smpd1+/+ arteries with a maximal response of 86±2.5 % at a concentration of 10−5 M. Incubation of these arteries with TRAIL significantly attenuated acetylcholine-induced vasodilation with maximal attenuation of arterial diameters by 40 %. In contrast, TRAIL failed to attenuate the endothelium-dependent vasodilation to acetylcholine in similar arteries isolated from Smpd1−/− mice (Fig. 5b).

TRAIL-induced lysosome trafficking to MRs in CAECs is ASM-dependent

We previously reported that lysosome-targeted ASM is able to traffic to and expose to the cell membrane surface, which may lead to MR clustering and NADPH oxidase activation in CAECs in response to various death receptor stimuli such as Fas ligand (FasL) and endostatin [11, 22]. Thus, we tested the hypothesis that TRAIL triggers lysosomal trafficking and fusion with the plasma membrane that is involved in ASM translocation, ceramide production, and MR redox signaling. As shown in Fig. 6a–c, TRAIL significantly increased the FRET (blue images) between FITC-Lamp-1 (lysosome marker) and TRITC-CTXB in Smpd1+/+ CAECs, but not in Smpd1−/− CAECs. As summarized in Fig. 6d, FRET efficiency between FITC-Lamp-1 and TRITC-CTXB was significantly increased in response to TRAIL stimulation in Smpd1+/+ CAECs; however, such increase in FRET efficiency was not observed in Smpd1−/− CAECs.
ASM deficiency disrupts TRAIL-induced lysosome fusion with the plasma membrane

We further investigated whether TRAIL-induced lysosomal trafficking to MRs is followed by lysosomal fusion with the plasma membrane and whether ASM is needed for this fusion process. CAECs were loaded with FM1-43, a fluorescence probe accumulated in lysosomes, and then incubated in fresh culture medium containing BPB, which binds FM1-43 and quenches its fluorescence. As shown in Fig. 7a, c, TRAIL induced a significant decrease in FM1-43 fluorescence in Smpd1+/+ CAECs, indicating that the lysosome fuses with the plasma membrane and exposes its contents to extracellular spaces. However, TRAIL did not decrease FM1-43 in Smpd1−/− CAECs (Fig. 7b, c). These results indicated that TRAIL-induced lysosome fusion requires ASM activity.

Discussion

The present study demonstrates that death receptor ligand, TRAIL, triggers MR clustering, the formation of MR redox signaling platforms, the activation of NADPH oxidase, and the production of O₂⁻ in these platforms in isolated mouse CAECs and induces impairment in endothelium-dependent vasodilation in isolated and pressurized small resistance arteries. In addition, ASM deficiency abolishes these TRAIL-induced signaling events in CAECs and impairment in arteries. These data suggest a novel role of lysosomal ASM-mediated MR redox signaling in the action of TRAIL on ECs and TRAIL-induced endothelial injury.

MR clustering was first visualized on the cell membrane of CAECs by confocal microscopic analysis of CTXB-positive clusters. CTXB relatively specifically binds to MR-enriched ganglioside G₄M₁. The present study demonstrated that TRAIL dose-dependently increased MR clustering in primary cultured CAECs. Our findings are consistent with our previous studies demonstrating that MRs in the EC membrane are evenly distributed and CTXB staining displays a random punctuate staining pattern, whereas stimulation of ECs with death factors including FasL, TNF-α, or endostatin results in the formation of multiple “non-polarized” CTXB-positive patches [11]. Several previous studies also demonstrated that TRAIL can induce MR...
clustering in other cell types such as splenocytes and glioblastomas [18, 24, 25]. Together, these findings support the view that MR clustering may serve as a common mechanism for death receptor activation-coupled transmembrane signaling. Despite the presence of both TRAIL receptors DR4 and DR5 in MR microdomains in non-endothelial cells [24, 26, 27], the present study only found DR4, but not DR5, in MR clusters after TRAIL stimulation, implicating that DR4 is activated by TRAIL and involved in MR clustering in CAECs.

Next, we explored the mechanism by which TRAIL stimulates MR clustering. Ceramide spontaneously fuses MR microdomains to larger ceramide-enriched membrane domains. In this regard, ceramide has been proposed as the driving force in promoting MR clustering and subsequent signaling pathway in a variety of mammalian cells [9, 10, 28]. Our previous study has demonstrated that ASM activation serves as a triggering mechanism and driving force leading to the fusion of membrane proximal lysosomes into MR clusters on the cell membrane of CAECs in response to FasL, TNF-α, and endostatin [11, 16, 22]. In addition, TRAIL-induced MR clustering requires ASM–ceramide signaling in non-endothelial cells such as splenocytes and Jurkat leukemia cells [18, 29]. Consistently, the present study found that TRAIL significantly increased the enrichment of ASM and ceramide in the MR clusters, which was almost completely blocked in Smpd1−/− CAECs. These results confirm that ASM aggregation and activation in MR clusters are essential to the MR clustering process in CAECs in response to TRAIL. Moreover, our findings further reinforce the concept that ASM activation is a common mechanism mediating MR clustering and corresponding signaling platform formations in ECs, in particular upon death receptor activation.

Increasing evidence suggests that MR clustering is able to promote the aggregation of NADPH oxidase subunits and to form MR redox signaling platforms after death receptor activation [11, 30–32]. By using confocal microscopy, the present study again demonstrated the formation of such MR redox signaling platforms, which were characterized by the aggregation of gp91phox in MR clusters in Smpd1+/+ CAECs in response to TRAIL activation. Interestingly, in Smpd1−/− CAECs, the TRAIL-induced aggregation of NADPH oxidase subunits was abolished. Correspondingly, ESR analysis of O2− production also showed that TRAIL-enhanced NADPH oxidase activation in MR clusters was prevented in CAECs with Smpd1 gene deletion. These results support the

Fig. 3 ASM deficiency abolishes TRAIL-induced clustering of NADPH oxidase subunits gp91phox in MR domains in CAECs. a Representative confocal fluorescence images showing the colocalization between MRs and gp91phox in Smpd1+/+ and Smpd1−/− CAECs. b Displayed are the summarized data showing the colocalization between MRs and gp91phox from six independent experiments. *P<0.05 vs. Smpd1+/+ control; #P<0.05 vs. Smpd1+/+ TRAIL (n=6)

Fig. 4 Reduction of TRAIL-induced O2− production in ASM-deficient CAECs. CAECs were stimulated with or without TRAIL and then incubated with O2−-specific spin trap CMH to form more stable free radicals (CMH–O2−), which were immediately analyzed by ESR. Summarized data showing the effect of TRAIL on O2− production in Smpd1+/+ and Smpd1−/− CAECs. *P<0.05 vs. Smpd1+/+ control; #P<0.05 vs. Smpd1+/+ TRAIL (n=6)
view that in CAECs upon TRAIL stimulation, MR clustering is associated with lysosomal ASM-mediated ceramide production and serves as a driving force to assemble and activate NADPH oxidase on the EC membrane. To our knowledge, the present study, for the first time, reveals that TRAIL triggers lysosomal ASM-mediated MR redox signaling in ECs.

Endothelial dysfunction in small resistance arteries is typically characterized by reduced or loss of endothelium-dependent vasodilation. To this end, the present study demonstrated that TRAIL impairs the endothelium-dependent vasodilator responses in isolated and pressurized small resistance arteries. Our results provide direct evidence that TRAIL produces an early action to induce endothelial dysfunction before detectable apoptotic effect. TRAIL has been reported to induce a detectable apoptosis only with long-term treatment of ECs (>15 h) [33, 34]. Given a relative resistance of ECs to apoptosis, functional impairment may represent one of the most important pathological actions of this apoptotic peptide in ECs. Additionally, TRAIL-induced impairment on vasodilator responses was not observed in ASM-deficient arteries, indicating that this inhibitory action of TRAIL is associated with the lysosomal ASM-mediated formation of MR clusters. Taken together, the results from CAECs and vessel preparation support the view that TRAIL-induced endothelial dysfunction is associated with increased O$_2^-$ production from the lysosomal ASM-mediated formation of MR redox signaling platforms. We also found that acetylcholine-induced vasodilation was attenuated by inhibiting nitric oxide (NO) synthase, suggesting a NO-dependent vasodilation induced by acetylcholine (data not shown). Thus, increased endothelial O$_2^-$ production by TRAIL could reduce the bioavailability of NO, resulting in the impairment of endothelium-dependent vasodilation, as shown in our previous studies and by others [11, 23, 35].

Lysosome trafficking to and fusion with the plasma membrane has been identified as an early signaling event in ECs upon death receptor activation [10, 22]. However, there is no direct evidence showing that ASM is actively involved in this fusion process. To this end, we performed more experiments to directly confirm and compare the fusion of lysosomes to the plasma membrane in $Smpd1^{+/+}$ and $Smpd1^{-/-}$ CAECs upon TRAIL stimulation. We found that TRAIL caused the co-localization of lysosome marker Lamp-1 with MR clusters on the cell membrane and increased FRET efficiency between MRs and Lamp-1 in $Smpd1^{+/+}$ CAECs. Because FRET can only occur between molecules in a distance within a 10-nm range, increased FRET between Lamp-1 and the MR component ganglioside G$_{M1}$ should indicate that some lysosomes are indeed fused into the cell membrane within MR clusters. We also provided direct evidence that TRAIL triggers lysosome fusion in living cells using FM1-43, a lysosome-specific fluorescence which can be reversibly quenched by BPB. In the quenching experiments, TRAIL was found to cause a decrease in the FM1-43 fluorescence in $Smpd1^{-/-}$ CAECs, which was attributable to TRAIL-stimulated lysosome fusion with the plasma membrane, allowing BPB to enter the lysosomes to quench FM1-43 fluorescence. The TRAIL-induced increase in FRET signals and the decrease in FM1-43 fluorescence were not observed in $Smpd1^{-/-}$ CAECs. Thus, all these direct or indirect evidence strongly suggest that the fusion of lysosomes into the cell plasma membrane occurs in these CAECs on TRAIL stimulation and that such TRAIL-

![Fig. 5 Effect of TRAIL on the concentration-dependent vasodilator response in freshly isolated and pressurized mouse arteries. a Summarized data showing that pretreatment with TRAIL significantly attenuated acetylcholine (Ach)-induced endothelium-dependent relaxation in small arteries isolated from $Smpd1^{+/+}$ mice. b Summarized data showing that pretreatment with TRAIL had no inhibitory effect on Ach-induced endothelium-dependent relaxation in small arteries isolated from $Smpd1^{-/-}$ mice. *$P<0.05$ vs. $Smpd1^{+/+}$ control (n=6 mice)](image-url)
induced lysosome fusion requires ASM activity. Our findings are consistent with recent studies showing that ASM was required for the efficient phagolysosomal fusion [36, 37]. However, lysosomal fusion still occurs in ASM-deficient lymphoblasts, but endocytosis and plasma membrane repair were impaired in these cells [38]. Moreover, a recent study showing TCR-triggered fusion of lysosome-type lytic granules is not altered in ASM-deficient cytotoxic T lymphocytes compared to wild-type cells; in contrast, ASM deficiency results in an impaired expulsion of the vesicular contents [39]. Most recently, it has been demonstrated that oxidative stress triggered by H2O2 induces Ca2+-dependent, but ASM-independent, lysosome fusion with the plasma membrane in Jurkat T cells [40]. It is possible that DR4 activation and H2O2 trigger different pathways to activate the ASM, for instance cleavage vs. oxidation, and that these different pathways also show a selective requirement of the ASM for the fusion process. Nonetheless, these studies suggest that the lysosome fusion process may involve ASM-dependent or ASM-independent mechanisms which depend on the cell types and the specific treatment used.

The present study did not attempt to further explore the precise mechanism of how ASM contributes to the lysosome fusion process in CAECs. It is possible that TRAIL induces a small amount of ceramide production (kindling ceramide) via the activation of ASM in the plasma membrane. This kindling ceramide may trigger lysosome trafficking and fusion to MR microdomains, which results in the translocation of more lysosomal ASM onto MRs, producing bonfire ceramide. Such bonfire ceramide may function as a driving force to promote MR clustering and the formation of important signaling platforms, which may further enhance lysosome trafficking and the fusion process [10, 41]. Nonetheless, this kindling and bonfire ceramide hypothesis in

Fig. 6 TRAIL increases the expression of lysosome marker Lamp-1 in MR clusters in CAECs. a–c Representative confocal images of fluorescence resonance energy transfer (FRET) between FITC-Lamp-1 and TRITC-CTXB in Smpd1+/+ CAECs treated with vehicle control (PBS buffer only) (a), TRAIL (b), or in Smpd1−/− CAECs with TRAIL (c). The FRET images were obtained by the subtraction of the pre-bleaching images from the post-bleaching images and shown in a dark blue color. Increased intensity of the blue color represents a higher level of FRET in these cells. d Displayed are the summarized data showing the effect of TRAIL on FRET efficiency between FITC-Lamp-1 and TRITC-CTXB in Smpd1+/+ and Smpd1−/− CAECs. *P<0.05 vs. Smpd1+/+ control; †P<0.05 vs. Smpd1+/+ TRAIL (n=6)
lysosome/MR-associated signaling needs to be tested in future studies.

In summary, the present study was the first to demonstrate that TRAIL is able to induce endothelial dysfunction as an early-stage acute action, which is associated with the assembly and activation of NADPH oxidase in MR clusters. The clustered MRs, together with the activated NADPH oxidase, constitute a redox signaling platform mediating the pathological actions of TRAIL on the vascular endothelium. Finally, we explored an essential role of ASM in the initiation of lysosome trafficking to and fusion with the plasma membrane in CAECs. The findings from the present study might increase our understanding of how MR redox signaling platforms are formed in ECs. Since death receptor ligands including TRAIL are implicated in the pathogenesis of various cardiovascular diseases such as atherosclerosis, the formation of the redox signaling platforms on the membrane of ECs may mediate the early response of the death receptors, leading to endothelial dysfunction in vivo and to the development of these diseases.

Acknowledgment This study was supported by grants from the National Institutes of Health (HL-57244, HL-075316, and HL-091464).

Disclosure of potential conflict of interests The authors declare no conflict of interests related to this study.

References

