METHODS

ABSTRACT

Animals: Eight-week-old, male mice with gp91phox+/- and gp91phox+/- gp91phox+/- (C57BL/6 strain, Jackson Laboratories) were used in the present study. These mice were either on the normal diet (ND) or folate-free diet (FF) (Dyets Inc). Hcy-induced renal injury was produced by feeding FF for 6 weeks in uninephrectomized mice. Total Hcy (Hcy) concentrations were measured by HPLC analysis and the kidneys were used for morphological examinations and biochemical analyses.

RESULTS

Electroretinographic Spin Response (ESR) Analysis of O2. Production in the Renal Cortex. Hematogenous renal cortical tissues were prepared by using sucrose buffer and reseeded with modified Krebs-Ringer bicarbonate containing different concentrations (200 U/ml) and nifedipine. NOX, NOX-mediated O2. production was examined by addition of 1 nM NaNO3 as a substrate in 95 μM probe in the presence or absence of NOD (200 U/ml), and then supplied with 1 mM O2- (Fig. 4). 2.5 3.0 3.5

CONCLUSION

Hyperhomocysteinemia (hHcys) has been reported to be a pathogenic factor to induce renal dysfunction and glomerular injury, which ultimately results in glomerular sclerotic and end-stage renal disease (ESRD).

Previous studies from our laboratory have indicated that the activation of Rac-NADPH oxidase (NOX) plays a crucial role in hHcys-induced glomerular sclerosis as shown in the following diagram:

![Diagram](image)

RESULTS

Electroretinographic Spin Response (ESR) Analysis of O2. Production in the Renal Cortex. Hematogenous renal cortical tissues were prepared by using sucrose buffer and reseeded with modified Krebs-Ringer bicarbonate containing different concentrations (200 U/ml) and nifedipine. NOX, NOX-mediated O2. production was examined by addition of 1 nM NaNO3 as a substrate in 95 μM probe in the presence or absence of NOD (200 U/ml), and then supplied with 1 mM O2- (Fig. 4). 2.5 3.0 3.5

CONCLUSION

Hyperhomocysteinemia (hHcys) has been reported to be a pathogenic factor to induce renal dysfunction and glomerular injury, which ultimately results in glomerular sclerotic and end-stage renal disease (ESRD).

Previous studies from our laboratory have indicated that the activation of Rac-NADPH oxidase (NOX) plays a crucial role in hHcys-induced glomerular sclerosis as shown in the following diagram:

![Diagram](image)

RESULTS

Electroretinographic Spin Response (ESR) Analysis of O2. Production in the Renal Cortex. Hematogenous renal cortical tissues were prepared by using sucrose buffer and reseeded with modified Krebs-Ringer bicarbonate containing different concentrations (200 U/ml) and nifedipine. NOX, NOX-mediated O2. production was examined by addition of 1 nM NaNO3 as a substrate in 95 μM probe in the presence or absence of NOD (200 U/ml), and then supplied with 1 mM O2- (Fig. 4). 2.5 3.0 3.5

CONCLUSION

Hyperhomocysteinemia (hHcys) has been reported to be a pathogenic factor to induce renal dysfunction and glomerular injury, which ultimately results in glomerular sclerotic and end-stage renal disease (ESRD).

Previous studies from our laboratory have indicated that the activation of Rac-NADPH oxidase (NOX) plays a crucial role in hHcys-induced glomerular sclerosis as shown in the following diagram:

![Diagram](image)