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Abstract

This paper reviews the analysis of the threshold autoregressive, smooth threshold autoregressive, and Markov

switching autoregressive models from the Bayesian perspective. For each model we start by describing a baseline

model and discussing possible extensions and applications. Then we review the choice of prior, inference, tests against

the linear hypothesis, and conclude with models selection. A short discussion of recent progress in incorporating

regime changes into theoretical macroeconomic models concludes our survey.

JEL classification: C11, C22, C52

Keywords: Threshold, Smooth Threshold, Markov-switching

∗This entry has been prepared for the Springer Encyclopedia of Complexity and Systems Science (Robert A.
Meyers, Ed.) to be published in 2008. The author is grateful to Bruce Mizrach, the Finance and Econometrics
Section editor, as well as to David Harless, Carol S. Lehr, Ming Lo, Stan Radchenko, Philip Rothman, and Tara
Sinclair for many helpful comments. Oleg Korenok (korenok@vcu.edu): Department of Economics, VCU School of
Business, 1015 Floyd Avenue, Richmond, VA 23284.

1



1 Introduction

Economic fluctuations display definite nonlinear features. Recessions, wars, financial panics, and

varying government policies change the dynamics of almost all macroeconomic and financial time

series. In the time series literature, such events are modeled by modifying the standard linear

autoregressive (AR) model

yt = c + φ1yt−1 + φ2yt−2 + ... + φpyt−p + ǫt,

where yt is a covariance stationary process, ǫt is an independent and identically distributed noise

process, ǫt ∼ i.i.d.N(0, σ2), and the parameters c, φi, and σ2 are fixed over time. In particular, the

literature assumes that yt follows two or more regimes. The three most commonly used nonlinear

models differ in their description of the transition between regimes. In the threshold autoregressive

(TAR) model, regime changes abruptly; in the smooth threshold autoregressive (STAR) model,

regime changes slowly. Nevertheless, in both models the regime change depends on the time index

or lagged values of yt. In the Markov switching autoregressive (MAR) model, however, the regime

change depends on the past values of an unobserved random variable, the state of the Markov

chain, and possibly the lagged values of yt.

Arguably, the best-known example of the nonlinear time series model is the model of cyclical

fluctuations of the U.S. economy. It was first introduced and estimated by Hamilton [40] for

quarterly U.S. real Gross National Product over the 1952(II)-1984(IV) period. The model has two

discrete regimes. The first regime is associated with a positive 1.2% growth rate and the second

regime is associated with a negative -0.4% growth rate. Against his original motivation to find

decade-long changes in growth rate trends for the U.S. economy, Hamilton finds that negative

growth regimes occur at the business cycle frequency. Positive growth regimes last, on average, 10

quarters, and negative growth regimes last, on average, 4 quarters. Moreover, he finds that the

estimated regimes coincide closely with the official National Bureau of Economic Research (NBER)

recession dates.

Figure 1 illustrates Hamilton’s results for the extended 1952(II)-2006(IV) sample. Panel (a)

shows the quarterly growth rate of the U.S. real Gross Domestic Product, currently the more

common measure of output; panel (b) plots the estimated probability that the U.S. economy is
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in a negative growth regime. The shaded regions represent recessionary periods as determined

informally and with some delay by the NBER: It took six months for the NBER’s Business Cycle

Dating Committee to determine the latest peak of the U.S. economy, which occurred in March 2001

but was officially announced in November 2001. Even though the NBER dates were not used in

the model, the periods with high probability of a negative growth rate coincide almost perfectly

with the NBER dates.

Figure 1: Output Growth and Recession Probabilities in U.S.
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(a) Quarterly rate of growth of U.S. real GDP, 1952−2006

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0

0.2

0.4

0.6

0.8

1
(b) Estimated probability that economy is in negative growth regime

In addition to the formal recession dating methodology, Hamilton [40] presents clear statistical

evidence for the proposition that the U.S. business cycle is asymmetric: Behavior of output during

normal times, when labor, capital, and technology determine long-run economic growth, is distinct

from behavior during recessions, when all these factors are underutilized.

Hamilton’s paper triggered an explosion of interest in nonlinear time series. The purpose of this

paper is to give a survey of the main developments from the Bayesian perspective. The Bayesian

framework treats model parameters as random variables and interprets probability as a degree of

belief about particular realizations of a random variable conditional on available information. Given
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the observed sample, the inference updates prior beliefs, formulated before observing the sample,

into posterior beliefs using Bayes’ theorem

p(θ|y) =
f(y|θ)π(θ)

f(y)
,

where y is the sample observations y = (y1, ..., yT ), θ is the vector of parameters θ = (c, φ1, ..., φp, σ
2),

π(θ) is the prior distribution that describes beliefs prior to observing the data, f(y|θ) is the distri-

bution of the sample conditional on the parameters, f(y) is the marginal distribution of the sample,

and p(θ|y) is the posterior distribution that describes the beliefs after observing the sample. Zell-

ner [100], Bauwens, Lubrano, and Richard [83], Koop [90], Lancaster [92], and Geweke [87] cover

Bayesian econometrics extensively and provide excellent introductions to relevant computational

techniques.

We review the three most commonly used nonlinear models in three separate sections. We start

each section by describing a baseline model and discussing possible extensions and applications1

Then we review the choice of prior, inference, tests against the linear hypothesis, and conclude

with models selection. A short discussion of recent progress in incorporating regime changes into

theoretical macroeconomic models concludes our survey.

Our survey builds on reviews of the TAR and STAR models in Tong [98], Granger and Terasvirta

[86], Terasvirta [96], Bauwens, Lubrano, and Richard [83], Lubrano [93], Potter [94], Franses and

van Dijk [85], van Dijk, Terasvirta, and Franses [99], and on reviews of the MAR models in Hamilton

[88], Potter [94], and Kim and Nelson [45].

We limit our survey of nonlinear models only to the TAR, STAR, and MAR models. For a reader

interested in a wider range of time series models from a Bayesian prospective, we recommend Steel’s

[95] survey: He overviews linear, as well as nonlinear, and parametric, as well as nonparametric,

models.

2 Threshold Autoregressive Model

A threshold regression was introduced by Quandt [63] and was extended to the threshold autoregres-

sive model by Tong [78], [97] and Tong and Lim [79]. Tong [98] had a great impact on popularizing

1Matlab implementation of baseline models is available at www.people.vcu.edu/∼okorenok/share/mlab.zip.
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TAR models.

We limit our baseline model to a single switching variable zt. The choice of the switching

variable depends on the purpose of the investigation. For the analysis of structural breaks at an

unknown point in time, Perron and Vogelsang [59], as well as DeJong [22], among many others,

use the time index (zt = t). For the purpose of prediction, Geweke and Terui [35], Chen and

Lee [13], and others, use a lagged value of the time series (zt = yt−d), the self-exciting threshold

autoregressive (SETAR) model.

In our discussion, the number of lags in the model p and a delay d is fixed. We also limit the

baseline model to the homoscedastic case so that the variance of ǫt is constant in both regimes.

Introducing a more general notation, x′
t = (1, yt−1, ..., yt−p), β′ = (c, φ1, ..., φp), the two-regime

TAR model becomes

yt = x′
tβ1 + ǫt if zt < τ (first regime),

yt = x′
tβ2 + ǫt if zt ≥ τ (second regime),

or more succinctly

yt = [1 − I[τ,∞)(zt)]x
′
tβ1 + I[τ,∞)(zt)x

′
tβ2 + ǫt, (1)

where IA(x) is an indicator function that is equal to one if x ∈ A, in particular I[τ,∞)(zt) = 1

if zt ∈ [τ,∞). The indicator function introduces the abrupt transition between regimes. It is

convenient to rewrite the model in a more compact form

yt = x′
t(τ)β + ǫt, (2)

where x′
t(τ) = (x′

t, I[τ,∞)(zt)x
′
t) and β′ = (β′

1, δ
′) with δ = β2 − β1.

If the number of observations in regime i is less than or equal to the number of parameters, we

cannot estimate parameters, or the model is not identified. In the Bayesian inference, we resolve

the identification problem by restricting the region of possible parameter values to the one where

the number of observations per regime is greater than the number of regressors.

The baseline model can be extended in several ways. First, we can allow the variance of the
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error term to differ in each regime. In this case, we rescale the data and introduce an additional

parameter φ =
σ2
2

σ2
1
, as in Lubrano [93]. Second, we can allow the number of lags to differ in each

regime. Then p equals to max{p1, p2}.

A more substantial change is required if we want to increase the number of regimes r. We can

either use a single transition variable

yt = xtβi(t) + σi(t)ǫt,

where i(t) = 1 if zt < τ1, i(t) = 2 if τ1 ≤ zt < τ2, ..., i(t) = r if τr − 1 ≤ zt; or we can use a

combination of two (or more) transition variables as in Astatkie, Watts, and Watt [5], where first

stage transition is nested in the second stage transition

yt = [(1 − I[τ1,∞)(z1t))x
′
tβ1 + I[τ1,∞)(z1t)x

′
tβ2][1 − I[τ2,∞)(z2t)]

+ [(1 − I[τ1,∞)(z1t))x
′
tβ3 + I[τ1,∞)(z1t)x

′
tβ4]I[τ2,∞)(z2t) + ǫt,

nested TAR model.

Also, we can treat either the choice of number of lags, the delay, or the number of regimes as

an inference problem. Then p, d, and r are added to the vector of the model parameters, as in

Geweke and Terui [35] and Koop and Potter [50].

Finally, the univariate TAR model can be extended to describe a vector of time series as in Tsay

[80]. The n dimensional two-regime TAR model can be specified in a manner similar to equation

(1) as

Yt = [1 − I[τ,∞)(zt)](C1 + Φ11Yt−1 + ... + Φ1pYt−p)

+ I[τ,∞)(zt)(C2 + Φ21Yt−1 + ... + Φ2pYt−p) + ǫt,

where Yt = (y1t, ..., ynt)
′ is a (n × 1) vector, C1 is a (n × 1) vector, Φji, j = 1, 2, i = 1, ..., p are

(n×n) matrices, and ǫt = (ǫ1t, ..., ǫnt) is a vector of error terms with mean zero and positive definite

covariance matrix Σ.

The TAR model has a wide range of applications. Tiao and Tsay [77], Potter [62], Pesaran and

Potter [60], Rothman [66], and Koop and Potter [47] demonstrate both statistically significant and
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economically important nonlinearities in the U.S. business cycle. Pfann, Schotman, and Tschernig

[61] find strong evidence of high volatility and low volatility regimes in the behavior of U.S. short-

term interest rates. Dwyer, Locke, and Yu [24], Martens, Kofman, and Vorst [55], and Forbes, Kalb,

and Kofman [31] describe the relationship between spot and futures prices of the S&P 500 index

and model financial arbitrage in these markets as a threshold process. Obstfeld and Taylor [57]

study the law of one price and purchasing power parity convergences and find strong evidence of

two regimes. They demonstrate fast, months rather than years, convergence when price differences

are higher than transaction costs, and slow or no convergence otherwise.

To simplify the exposition, our discussion of inference for all models will be conditional on the

initial observations in the sample. We assume that y1−p, ..., y0 are observable. Two alternative

treatments are possible. One can treat the initial observations as unobserved random variables

and include the marginal density of initial observations into the likelihood. Alternatively, in the

Bayesian analysis, one can treat the initial observations as any other parameter and augment the

parameter space, θ, with y1−p, ..., y0.

2.1 Prior

The first step in Bayesian inference is to formalize prior beliefs about the model’s parameters by

choosing functional forms and parameters of prior distributions.

The prior density for τ depends on our choice of zt. First, we can limit the prior support by

the minimum and the maximum of zt. Second, if zt = t the threshold is a date, and so the prior

density is naturally discrete. If, however, zt = yt−d, the threshold τ is continuous and so is the

prior density.

For a model to be identified, we restrict the support of the prior density to the region where

the number of observations per regime is greater than the number of regressors. We assign an

equal weight to the entire support to get the ‘non-informative’ prior for τ that is proportional to a

constant

π(τ) ∝ I[z(k1),z(T−k2)](τ), (3)

where k1 and k2 are the number of regressors in the first and second regimes, and the subscript (t)

indicates the order in the sample, z(1) ≤ z(2) ≤ ... ≤ z(T ). For example, z(1) = 1 and z(T ) = T if zt

is a time index since the ordering is natural. For an alternative prior distribution of τ see Ferreira
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[29].

We assume that the prior density for β and σ2 is independent of the prior density for τ . Also,

because, conditional on τ , the model (2) is linear, we use the natural conjugate prior for β and σ2

π(β|σ2) = N(β|β0, σ
2M−1

0 ),

π(σ2) = IG2(σ
2|ν0, s0),

where IG2(.) denotes the density of the Inverted Gamma-2 distribution. The functional form of

the Inverted Gamma-2 density is given by

IG2(σ
2|ν, s) = Γ

(ν

2

)−1 (s

2

) ν
2 (

σ2
)− 1

2
(ν+2)

exp
(

−
s

2σ2

)

.

The natural conjugate prior allows us to use analytical integration that considerably simplifies the

inference.

2.2 Estimation

The next step of the Bayesian analysis is to combine sample information with our prior beliefs

to form the posterior beliefs. Given prior distributions, we update prior distributions with the

sample likelihood into posterior distributions using Bayes’ theorem. The posterior distribution can

be further summarized for each parameter with its marginal expectation and variance.

Using the assumption of Normal errors, the likelihood function of the model (2) is

f(β, σ2, τ |y) ∝ σ−T exp

{

−
1

2σ2

∑

(yt − x′
t(τ)β)2

}

. (4)

The posterior density is a product of the prior and the likelihood

p(β, σ2, τ |y) = π(β|σ2)π(σ2)π(τ)f(β, σ2, τ |y). (5)

Conditional on the threshold parameter, model (2) is linear. Applying the results from the

standard natural conjugate analysis in the linear regression model (for details see Zellner [100]),

the posteriors density of β, conditional on threshold and the data, can be obtained by integrating
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the posterior with respect to σ2

p(β|τ, y) =

∫

p(β, σ2|τ, y)dσ2 = t(β|β(τ), s(τ), M(τ), ν), (6)

where t(.) denotes the density of the multivariate Student t-distribution with

M(τ) = M0 +
∑

xt(τ)′xt(τ),

β(τ) = M(τ)−1(
∑

xt(τ)yt + M0β0),

s(τ) = s0 + β′
0M0β0 +

∑

y2
t − β′(τ)M(τ)β(τ),

ν = ν0 + T.

Further, by integrating equation (6) with respect to β, we obtain the marginal posterior density for

τ , which is proportional to the inverse of the integrating constant of t(β|β(τ), s(τ), M(τ), ν) times

the threshold prior density

p(τ |y) ∝ s(τ)−ν/2|M(τ)|−1/2π(τ). (7)

Though analytical integration of this function is not available, the fact that it is a univariate

function defined on bounded support greatly simplifies the numerical integration.

By integrating numerically the posterior for β conditional on the threshold and the data, we

find marginal posterior density for β

p(β|y) =

∫

p(β|τ, y)p(τ |y)dτ.

Finally, using analytical results for the expectation of the conditional density β, we can find the

marginal moments of β by integrating only over τ

E(β|y) =

∫

E(β|τ, y)p(τ |y)dτ,

V ar(β|y) =

∫

V ar(β|τ, y)p(τ |y)dτ +

∫

(E(β|τ, y) − E(β|y))(E(β|τ, y) − E(β|y))′p(τ |y)dτ.

Similarly, applying the results from the standard natural conjugate analysis, we obtain the pos-

terior density of σ2 conditional on the threshold and the data. Then we integrate out τ numerically

9



to get the marginal posterior density for σ2

p(σ2|y) =

∫

IG2(σ
2|ν, s(τ))p(τ |y)dτ,

and the marginal moments E(σ2|y) and V ar(σ2|y).

2.3 Testing for Linearity and Model Selection

After estimating the TAR model, we might ask whether our data are best characterized by two

regimes or a single regime? Model (2) becomes linear when both regimes have identical regression

coefficients, so that the difference β1−β2 = δ is zero. There are two methods to the test H0 : δ = 0.

The first approach is the Bayesian equivalent of the F-test. Taking into account that β conditional

on τ has a Student t-distribution and that the linear transformation of a Student random vector is

also a Student, the quadratic transformation of δ

ξ(δ|τ, y) = (δ − δ(τ))′M22.1(τ)(δ − δ(τ))
T − k

k2s(τ)
(8)

has a Fisher distribution, where M22.1(τ) = M22(τ)−M21(τ)M−1
11 (τ)M12, and δ(τ) is our estimate.

M(τ) is partitioned by dividing β into β1 and δ. The posterior ‘p-value’ of the Bayesian F-test

gives the unconditional probability that ξ(δ|y) exceeds ξ(δ = 0|y). It can be computed numerically

as

Pr(ξ(δ) > ξ(δ = 0)|y) =

∫

F (ξ(δ = 0|y), k2, T − k)p(τ |y)dτ, (9)

where F (ξ(δ = 0|y), k2, T − k) is the Fisher distribution function with k2 and T − k degrees of

freedom. The null hypothesis is accepted if, for example, (ξ(δ) > ξ(δ = 0)|y) is larger than 5%.

The second approach, the posterior odds, is more general, and can also be used to select the

number of lags p, the delay parameter d, or the number of regimes r. Koop and Potter [48], [49]

advocate and illustrate this approach in the context of the TAR model. To choose between two

competing models, m1 with θ1 = (β1, δ, τ, σ
2) and m2 with θ2 = (β1, 0, τ, σ2), we calculate the

posterior odds ratio

po12 =
f(y|m1)π(m1)

f(y|m2)π(m2)
,

where π(mi) is the prior probability for the model i, and f(y|mi) is the marginal likelihood or

10



marginal density of the sample. Since f(y|mi) is a normalizing constant of the posterior density, it

can be calculated as

f(y|mi) =

∫

f(y|θi, mi)π(θi|mi)dθi.

With a ‘non-informative’ prior that assigns equal weight to each model, the posterior odds

reduces to the ratio of marginal likelihoods, or the Bayes factor. Again, applying the standard

natural conjugate analysis of the linear regression model to the TAR model, the marginal likelihood

for model i is

f(y|mi) =

∫

Γ(ν(τi|mi)
2 )s

ν0
2

0

Γ(ν0
2 )π

T
2

s(τi|mi)
−

ν(τi|mi)

2

(

|M0|

|M(τi|mi)|

) 1
2

π(τi|mi)dτ, (10)

which can be calculated numerically. The model with the highest marginal likelihood is preferred.

3 Smooth Transition Autoregressive Model

In some applications, imposing an abrupt transition between regimes might be undesirable. For

example, if the initial estimate of output is slightly below the threshold, even a small upward

revision will result in a substantial change of the forecast in the TAR model. Bacon and Watts [6],

in a regression model context, and Chan and Tong [12], in the TAR model context, propose to make

the transition between regimes smooth. Terasvirta [75] develops a modeling cycle for the STAR

model that includes specification, estimation, and evaluation stages as in the Box and Jenkins [84]

modeling cycle for the linear time series model.

In the STAR model, a smooth transition is imposed by replacing the indicator function in

equation (1) by the cumulative distribution function

yt = [1 − F (γ(zt − τ))]x′
tβ1 + F (γ(zt − τ))x′

tβ2 + ǫt. (1a)

Terasvirta [75] uses the logistic function

F (γ(zt − τ)) =
1

1 + exp(−γ(zt − τ))
,

where γ ∈ [0,∞) determines the degree of smoothness. As γ increases, smoothness decreases. In
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the limit, as γ approaches infinity, F (.) becomes an indicator function, with F (γ(zt − τ)) ∼ 1 when

zt ≥ τ . We can rewrite equation (1a) as

yt = x′
t(γ, τ)β + ǫt, (2a)

where x′
t(γ, τ) = (x′

t, F (γ(zt − τ))x′
t).

Note that the identification problem discussed for the TAR model does not occur in the STAR

model. We cannot have fewer observations than regressors because we no longer classify observa-

tions into regimes. The new parameter γ, however, introduces a new identification problem. If

γ = 0, the logistic function equals 1
2 for any value of τ , so τ is not identified. Also x′

t(γ, τ) is

perfectly collinear unless the two regimes have no common regressors. Perfect collinearity implies

that δ is also not identified. As in the TAR model, we choose such prior densities that resolve the

identification problem.

The baseline model can be extended in several directions. Generally, the transition function

F (.) is not limited to the logistic function. Any continuous, monotonically increasing function F (.)

with F (−∞) = 0 and F (∞) = 1 can be used. For example, the popular alternative to the logistic

function is the exponential function

F (γ(zt − τ)) = 1 − exp(−γ(zt − τ)2).

In the regression model context, Bacon and Watts [6] show that results are not sensitive to the

choice of F (.). As in the TAR model, we can increase the number of regimes either with a single

transition variable

yt = x′
tβ1 + F (γ1(zt − τ1))x

′
t(β2 − β1) + ... + F (γr(zt − τr))x

′
t(βr − βr−1) + ǫt,

or with a combination of transition variables

yt = [(1 − F (γ1(z1t − τ1)))x
′
tβ1 + F (γ1(z1t − τ1))x

′
tβ2][(1 − F (γ2(z2t − τ2)))]

+ [(1 − F (γ1(z1t − τ1)))x
′
tβ3 + F (γ1(z1t − τ1))x

′
tβ4][F (γ2(z2t − τ2))] + ǫt.
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See van Dijk and Franses [81] for a discussion of the multiple regime STAR model.

Also, we can treat the choice of number of lags p, delay d, or number of regimes r as an inference

problem, adding p, d, and r to the vector of parameters in the model. In addition, we can allow

the variance of the error term to change between regimes, or more generally, use an autoregressive

conditional heteroscedasticity form as in Lundbergh and Terasvirta [53], or a stochastic volatility

form as in Korenok and Radchenko [51].

Finally, similar to the TAR model, the univariate STAR model can be extended to model a

vector of time series as in Granger and Swanson [37]. The n dimensional two-regime STAR model

can be specified as

Yt = [1 − F (γ(zt − τ))](C1 + Φ11Yt−1 + ... + Φ1pYt−p)

+ F (γ(zt − τ))(C2 + Φ21Yt−1 + ... + Φ2pYt−p) + ǫt,

where we use the same notation as in the multivariate TAR model.

Applications of the STAR model include models of the business cycles, real exchange rates,

stock and futures prices, interest rates, and monetary policy. Terasvirta and Anderson [76] and van

Dijk and Franses [81] demonstrate nonlinearities in the U.S. business cycles. Skalin and Terasvirta

[70] find similar nonlinearities in Swedish business cycles. Michael, Nobay, and Peel [56], Sarantis

[68], and Taylor, Peel, and Sarno [73] show that the real exchange rate nonlinearly depends on the

size of the deviation from purchasing power parity; Lundbergh and Terasvirta [54] and Korenok

and Radchenko [51] use the STAR model to fit the behavior of exchange rates inside a target zone.

Taylor, van Dijk, Franses, and Lucas [74] describe the nonlinear relationship between spot and

futures prices of the FTSE100 index. Anderson [1] uses the STAR model to study yield movements

in the US Treasury Bill Market. Finally, Rothman, van Dijk, and Franses [67] find evidence of a

nonlinear relationship between money and output; Weise [82] demonstrates that monetary policy

has a stronger effect on output during recessions.

3.1 Prior

As in the TAR model, the natural conjugate priors for β and σ2 facilitate analytical integration.

Bauwens, Lubrano, and Richard [83] impose the identification at γ = 0 by modifying the prior
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density of β

π(β|σ2, γ) = N(β|0, σ2M−1
0 (γ)),

where, assuming prior independence between β1 and δ, M0 is defined as

M0(γ) =





M0,11 0

0 M0,22/exp(γ)



 .

As γ gets closer to zero, the prior variance falls, increasing precision around δ = 0. The choice of

δ = 0 is consistent with the linear hypothesis, which can be formulated as either δ = 0 or γ = 0.

When γ is positive, prior precision about δ = 0 decreases as variance rises, so more weight is given

to the information in the sample. We keep the natural conjugate prior of σ2 without modifications.

We do not modify the prior for the threshold parameter τ . When γ is large, the smooth

transition function is close to the step transition function. Thus, we prefer to limit the prior to

the region where the number of observations per regime is greater than the number of regressors

to avoid the TAR identification problem.

The prior for the smoothness parameter, γ, cannot be ‘non-informative’ or flat. As γ → ∞

the smooth transition function becomes a step transition with a strictly positive likelihood. This

means that the marginal likelihood function of γ is not integrable. To avoid the integration problem,

Bauwens, Lubrano, and Richard [83] use the truncated Cauchy density

π(γ) ∝ (1 + γ2)−1I[0,∞)(γ).

3.2 Estimation

Inference in the STAR model follows the TAR methodology, taking into account the additional

parameter γ, and the new definitions of M0(γ) and xt(τ, γ).

In particular, the likelihood function of model (2a) is

f(β, σ2, τ, γ|y) ∝ σ−T exp

{

−
1

2σ2

∑

(yt − x′
t(τ, γ)β)2

}

, (4a)
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the posterior density is

p(β, σ2, τ, γ|y) = π(β|σ2)π(σ2)π(τ)π(γ)f(β, σ2, τ, γ|y), (5a)

and the joint posterior density of τ and γ is proportional to the inverse of the integrating constant

of the Student t-density t(β|β(τ, γ), s(τ, γ), M(τ, γ), ν) times the prior densities for c and γ

p(τ, γ|y) ∝ |s(τ, γ)|−(T−k)/2|M(τ, γ)|−1/2π(τ)π(γ), (7a)

where

M(τ, γ) = M0(γ) +
∑

xt(τ, γ)′xt(τ, γ),

β(τ, γ) = M(τ, γ)−1(
∑

xt(τ, γ)yt + M0(γ)β0),

s(τ, γ) = s0 + β′
0M0(γ)β0 +

∑

y2
t − β′(τ, γ)M(τ, γ)β(τ, γ),

ν = ν0 + T.

This function is bivariate and can be integrated numerically with respect to τ and γ. Then, as in

the TAR model, we use numerical integration to obtain marginal densities and moments for β and

σ2.

Compared to the TAR model, β1 and β2 cannot be interpreted as regression coefficients in

regime 1 and regime 2. Smooth transition implies that the effect of change in xt on yt is a weighted

average of two regimes with weights changing from one observation to the other.

3.3 Testing for Linearity and Model Selection

The STAR model becomes linear when either δ = 0 or γ = 0. The test for H0 : δ = 0 is equivalent

to the test in the TAR model. The quadratic transformation of δ

ξ(δ|τ, γ, y) = (δ − δ(τ, γ))′M22.1(τ, γ)(δ − δ(τ, γ))
T − k

k2s(τ, γ)
, (8a)
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where M22.1(τ, γ) = M22(τ, γ) − M21(τ, γ)M−1
11 (τ, γ)M12(τ, γ), has a Fisher distribution. We can

find the posterior ‘p-value’ of the Bayesian F-test numerically as

Pr(ξ(δ) > ξ(δ = 0)|y) =

∫ ∫

F (ξ(δ = 0|y), k2, T − k)p(τ, γ|y)dτdγ. (9a)

The null hypothesis is accepted, for example, if (ξ(δ) > ξ(δ = 0)|y) is larger then 5%.

The test for H0 : γ = 0 can be conducted using the 95% highest posterior density interval

(HPDI), defined as the smallest interval with 95% probability of γ to be in the interval

max
h

PDI(h) =

{

γ|

∫

p(τ, γ)π(τ)dτ ≥ h

}

,

s.t. Pr(PDI(h)) ≥ 0.95.

The null hypothesis is accepted, for example, if γ = 0 is inside the 95% HPDI.

As in the TAR model, linearity tests and model selection can be conducted using posterior

odds. In the STAR model, the marginal likelihood for model i is given by

f(y|mi) =

∫ ∫

Γ(ν(τi,γi|mi)
2 )s

ν0
2

0

Γ(ν0
2 )π

T
2

s(τi, γi|mi)
−

ν(τi,γi|mi)

2

(

|M0|

|M(τi, γi|mi)|

) 1
2

π(τi|mi)π(γi|mi)dτidγi,

(10a)

which can be calculated numerically. The model with the highest marginal likelihood is preferred.

4 Markov-Switching Model

Unlike the threshold models, where the regime transition depends on a time index or on lagged

values of yt, the Markov-switching autoregressive model relies on a random variable, st. A Markov-

switching regression was introduced in econometrics by Goldfeld and Quandt [36] and was extended

to the Markov-switching autoregressive model by Hamilton [40].

As in the threshold models, we limit our baseline MAR model to two regimes that differ only

in mean. The variance of the error term is constant. The number of lags p is determined by the
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model choice. The two-regime MAR model becomes

(yt − µst) =

p
∑

i=1

φi(yt−i − µst−i
) + ǫt, (11)

µst = µ0 if st = 0 (first regime),

µst = µ0 + µ1 if st = 1 (second regime),

where µst = µ0 + stµ1. An unobserved discreet random variable st takes only integer values of 0

or 1. The transition probability Pr(st = j|st−1 = i) = pij that state i will be followed by state j

depends only on st−1, the first order Markov-switching process, with transition probability matrix

P =





p11 p21

p12 p22



 .

Since we have only two possible regimes and pi1 + pi2 = 1, we estimate only two free parameters,

the probabilities of remaining in the same regime p11 and p22. We also assume that, conditional

on previous history of states s = (s1, ..., sT )′, the transition probabilities are independent of other

parameters and the data.

In general, we do not have a clear association between regimes and the state indicator. This

introduces an identification problem when we change regime identifiers, 0 and 1, and accordingly

change µ∗
0 = µ0 + µ1 and µ∗

1 = −µ1. For example, if st = 0 during recessions, then the long run

average during recessions is µ0 and the long-run average during expansions is µ0 +µ1. On the other

hand, if st = 0 during expansions, then the long-run average during expansions is µ∗
0 = µ0 +µ1 and

the long-run average during recessions is µ∗
0 − µ1 or µ∗

1 = −µ1.

The second identification problem occurs in the MAR model when µ1 = 0; the model becomes

linear. In this case, the conditional mean E(yt|st = 0) = E(yt|st = 1) = µ0 is independent of the

state realizations, s, and transition probability matrix, P . Neither s nor P are identified.

The baseline model can be extended in several directions. The Markov-switching component

can be modified by increasing the number of regimes as in Calvet and Fisher [9] and Sims and Zha

[69] or by increasing the order of the Markov-switching process so that st depends on st−1, ..., st−r.

Both changes can be incorporated by increasing the number of states in the baseline model, as in

Hamilton [88].
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Diebold, Lee, and Weinbach [20], Filardo [30], and Peria [58] relax the assumption of time

invariant Markov-switching by making the transition probabilities depend on lagged values of yt. In

most applications, however, relatively few transitions between regimes makes it difficult to estimate

the transition probabilities and restricts model choice to two or three regimes with time-invariant

probabilities.

The error term can be modified by introducing regime-switching for the variance of the error

term as in Hamilton and Susmel [42], and Cai [8]; by relaxing the assumption of Gaussian density

for the error term as in Dueker [23]; or by specifying a general Markov-switching moving average

structure for the error term as in Billio, Monfort, and Robert [7].

Finally, the univariate Markov-switching model can be extended to a multivariate model.

Diebold and Rudebusch [21] propose a model where a number of time series are driven by a com-

mon unobserved Markov-switching variable, the dynamic factor model. The dynamic factor model

captures the fact that many economic series show similar changes in dynamic behavior during re-

cessions. Krolzig [91] provides a detailed exposition of how the baseline model can be extended to

the Markov-switching vector autoregressive model.

The applications of the MAR model include models of business cycles, interest rates, financial

crises, portfolio diversification, options pricing, and changes in government policy. Hamilton [40],

Filardo [30], Diebold and Rudebusch [21], Kim and Nelson [45], Kim and Piger [46], and Hamilton

[41] find statistically significant evidence that expansionary and contractionary phases of the U.S.

business cycle are distinct. Hamilton [39], Cai [8], Garcia and Perron [32], Gray [38], Dueker [23],

Smith [71], Hamilton [41], and Dai, Singleton, and Yang [16] describe dramatic changes in interest

rate volatility associated with the OPEC oil shocks, the changes in the Federal Reserve operating

procedures in 1979-1982, and the stock market crash of October 1987. Ang and Bekaert [3] show a

similar increase in volatility in Germany during the reunification period. Jeanne and Masson [43]

use the MAR model to describe the crisis of the European Monetary System in 1992-1993; Cerra

and Saxena [11] find permanent losses in output after the Asian crisis. Ang and Bekaert [2] report

that the correlation between international equity returns is higher during bear markets relative to

bull markets. Radchenko [64] shows that gasoline prices respond faster to a permanent oil price

change compared to a transitory change. Finally, Sims and Zha [69] document abrupt changes of

shocks to U.S. monetary policy, and Davig and Leeper [18] document the regime changes in fiscal
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policy.

4.1 Prior

As in the threshold models, the natural conjugate priors facilitate considerably the integration of

the posterior density. Conditional on st, µ0, and µ1, the MAR model is linear

yt(st) = x′
t(st)φ̃ + ǫt, (12)

where yt(st) = yt − µst , x′
t(st) = (yt−1 − µst−1 , ..., yt−p − µst−p), and φ̃ = (φ1, ..., φp)

′. For the

regression coefficient φ̃ and the variance of the error term σ2, the natural conjugate prior is given

by

π(φ̃|σ2) = N(φ̃|φ̃0, σ
2M−1

0,φ)IA(φ̃),

π(σ2) = IG2(σ
2|ν0, s0),

where A is a region where the roots of polynomial 1− φ1L− ...− φpL
p = 0 lie outside the complex

unit circle. This restriction imposes stationarity on yt(st).

Conditional on st and φ̃, the MAR model is also linear

yt(φ̃) = x′
t(φ̃)µ̃ + ǫt, (13)

where yt(φ̃) = yt −
∑p

i=1 φiyt−p, x′
t(φ̃) = (1, st −

∑p
i=1 φist−p), and µ̃ = (µ0, µ1)

′. The natural

conjugate prior for µ̃ is

π(µ̃) = N(µ̃|µ̃0, M
−1
0,µ)I(0,∞)(µ1),

where the indicator function imposes an identification constraint. In particular, we constrain the

mean of the second regime to be greater than the mean of the first regime and in this way fix the

order of regimes. We also impose that µ1 6= 0.

Finally, Kim and Nelson [45] show that the natural conjugate prior for the vector of transition

probabilities p̃ = (p11, p22)
′ is

π(p̃) = B(p11|α1, β1)B(p22|α2, β2),
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where B(.) denotes the density of Beta distribution defined on the interval [0, 1].

4.2 Estimation

In the Bayesian approach, we add realizations of the vector of states to the model parameters:

θ = (µ0, µ1, φ1, ..., φp, σ, p11, p22, s1, ..., sT )′. Analytical or numerical integration of the posterior

density p(θ|y), where θ is p + 5 + T × 1, may be difficult.

Albert and Chib [4] developed inference methodology that overcomes the curse of dimension-

ality using Gibbs-sampling, a Markov chain Monte Carlo simulation method of integration. The

technique was further refined by Kim and Nelson [44]. Monte Carlo integration takes random draws

from the posterior density and, by averaging them, produces estimates of moments. In particular,

Gibbs-sampling allows us to generate many draws θ(g), g = 1, ..., G, from joint density of p(θ|y) us-

ing only conditional densities p(θi|θi6=j , y) either for all i or for blocks of parameters. The joint and

marginal distribution of θ(g) converge at an exponential rate to the joint and marginal distribution

of θ under fairly weak conditions. Casella and George [10], Gelfand and Smith [33], and Geweke

[34] provide the details.

To implement the Gibbs-sampling simulation, we have to describe the conditional posterior

distributions for all parameters or parameter blocks. It is convenient to separate parameters into

five blocks: the state vector s, the transition probabilities p̃, the regression coefficients φ̃ in the

conditional linear model (12), the regression coefficients µ̃ in the conditional linear model (13), and

the variance of the error term σ2.

The state vector s is a first-order Markov process, which implies that given st+1 all information,

for example st+2, ..., sT and yt+1, ..., yT , is irrelevant in describing st. Then the posterior density of

s conditional on other parameters becomes

p(s|p̃, φ̃, µ̃, σ2, y) = p(sT |p̃, φ̃, µ̃, σ2, y)
T−1
∏

t=1

p(st|st+1, p̃, φ̃, µ̃, σ2, yt), (14)

where yt = (y1, ..., yt)
′. The functional form of the posterior density suggests that we can generate

draw of the state vector recursively. First we generate the last element sT . Then, conditional on

sT , we generate sT−1. More generally, conditional on st+1, we generate st for t = T − 1, T − 2, ..., 1.

To generate the state vector, Kim and Nelson [44] use the output from Hamilton’s [40] filter.
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To facilitate exposition, we suppress the conditioning on parameters and consider first a model

without lags.

Hamilton’s filter starts from the observation that, before observing the data, the probability

of finding the state in regime j, Pr(s0 = j|y0), equals the unconditional probability, Pr(st = j),

which is proportional to the eigenvector of P associated with unitary eigenvalue.

Using transition probabilities and the probability of observing regime j conditional on observa-

tions obtained through date t, Pr(st = j|yt), we predict the next period regime

Pr(st+1 = j|yt) = Pr(st = 0|yt)p0j + Pr(st = 1|yt)p1j . (15)

Once yt+1 is observed, we update the prediction using Bayes rule

Pr(st+1 = j|yt+1) = Pr(st+1 = j|yt+1, y
t) =

f(yt+1|st+1 = j, yt)Pr(st+1 = j|yt)

f(yt+1|yt)
, (16)

where the numerator is the joint probability of observing yt+1 and st+1 = j, which is a product of

the probability of observing yt+1 given that state st+1 is in regime j (for example f(yt+1|st+1 =

0, yt) = N(µ0, σ
2)) and our prediction from equation (15). The denominator is the unconditional

density of observing yt+1, which is a sum of the numerator over all possible regimes

f(yt+1|y
t) =

∑

j

f(yt+1|st+1 = j, yt)Pr(st+1 = j|yt). (17)

Starting from Pr(s0 = j|y0), the filter iterates through equations (15) - (17) until we calculate

Pr(st = j|yt) for every t and j. As a by-product of the filter we obtain the likelihood function

f(φ̃, µ̃, p̃, σ2, s|y) =
∏

t

f(yt+1|y
t). (18)

For the AR(1) model, the filter should be adjusted. Given Pr(st = j|yt), we forecast the next

period regime and the previous period regime jointly, taking one summand in equation (15) at a

time

Pr(st+1 = j, st = i|yt) = pijPr(st = i|yt), (15a)
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for j = 0, 1 and i = 0, 1. After yt+1 is observed, we update our prediction to

Pr(st+1 = j, st = i|yt+1) =
f(yt+1|st+1 = j, st = i, yt)Pr(st+1 = j, st = i|yt)

f(yt+1|yt)
, (16a)

where f(yt+1|st+1 = j, st = i, yt) is the density of observing yt+1 given that state st+1 is in regime

j and state st is in regime i (for example f(yt+1|st+1 = 0, st = 0, yt) = N(µ0 + φ1(yt − µ0), σ
2))

f(yt+1|y
t) =

∑

j

∑

i

f(yt+1|st+1 = j, st = i, yt)Pr(st+1 = j, st = i|yt). (17a)

Summing (16a) over i,

Pr(st+1 = j|yt+1) =
∑

i

Pr(st+1 = j, st = i|yt+1), (19)

finishes the iteration. Iterating through equations (15a) -(17a) and (19) we get Pr(st = j|yt) for

every t and j. The extension to a more general AR(p) model is similar.

The output of Hamilton’s filter gives only the first term in the product (14), which is sufficient

to generate sT . To generate the other states st conditional on yt and st+1, t = T − 1, T − 2, ..., 1,

we again use Bayes rule

Pr(st = j|st+1 = i, yt) =
pjiPr(st = j|yt)

∑

j pjiPr(st = j|yt)
, (20)

where Pr(st = j|yt) is the output from Hamilton’s filter. Since st is a discrete random variable

taking on values 0 and 1, we can generate it by drawing random numbers from uniform distribution

between 0 and 1, and comparing them to Pr(st = 1|st+1 = i, yt).

Conditional on other parameters in the model, the likelihood function of transition probabilities

reduces to a simple count nij of transitions from state i to state j

f(p̃|µ̃, φ̃, σ2, s, y) = pn11
11 (1 − p11)

n12pn22
22 (1 − p22)

n21 ,

which is the product of the independent beta distributions. The posterior distribution for the

transition probabilities conditional on the other parameters is a product of independent beta dis-
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tributions

p(p̃|φ̃, µ̃, σ2, s, y) = B(α1 + n11, β1 + n12)B(α2 + n22, β2 + n21).

To derive posterior distributions for φ̃, µ̃, and σ2 conditional on other parameters, we use

standard results for a linear model with the natural conjugate priors. The natural conjugate

priors are reviewed, for example, by Geweke [87], Koop [90], or Lancaster [92]. In particular, the

conditional distribution of the regression coefficients is Normal

p(φ̃|p̃, µ̃, σ2, s, y) = N(Σφ(σ−2M0,φφ̃0 + σ−2
∑

xt(s)
′yt(s)), Σφ)IA(φ̃),

p(µ̃|p̃, φ̃, σ2, s, y) = N(Σµ(M0,µµ̃0 + σ−2
∑

xt(φ̃)′yt(φ̃)), Σµ)I(0,∞)(µ1),

where Σφ =
(

σ−2M0,φ + σ−2
∑

xt(s)
′xt(s)

)−1
, Σµ =

(

M0,µ + σ−2
∑

xt(φ̃)′xt(φ̃)
)−1

. The condi-

tional distribution for the variance of error term is Inverted Gamma-2

p(σ2|p̃, φ̃, µ̃, s, y) = IG2

(

s0 +
∑

(yt(st) − x′
t(st)φ̃)2, ν0 + T

)

.

4.3 Testing for Linearity and Model Selection

Given our prior, the linear model is not nested in the MAR model. To test against a linear model,

we use the Bayes factor. We also use the Bayes factor to select the number of regimes and the

number of lags.

The Bayes factor is a ratio of marginal likelihoods of the alternative models. To find the

marginal likelihood, we need to integrate the product of the likelihood function and the prior

density with respect to all parameters. To avoid the curse of dimensionality, Chib [14] shows the

marginal likelihood can be computed from the output of the Gibbs sampler requiring only that

the integrating constants of the conditional posterior distributions be known. This requirement is

satisfied for the natural conjugate priors.

From the Bayes’s theorem it follows that the identity

f(y) =
f(y|θ)π(θ)

p(θ|y)
,
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holds for any θ. The complete functional form of the numerator is given by the product of the

likelihood (18) and the prior densities. Chib suggests evaluating the denominator, the posterior

density, at the posterior mode θ∗. Then the posterior density at the posterior mode can be written

as

p(θ∗|y) = p(µ̃∗|y) × p(φ̃∗|µ̃∗, y) × p(σ̃2∗|µ̃∗, φ̃∗, y) × p(p̃∗|y, µ∗, φ̃∗, σ2∗).

The first term

p(µ̃∗|y) =

∫

p(µ̃∗|φ̃, σ2, p̃, s, y)p(φ̃, σ2, p̃, s|y)dφ̃ dσ2dp̃ ds,

can be estimated by averaging over the full conditional density

p̂(µ̃∗|y) = G−1
G

∑

g=1

p(µ̃∗|φ̃(g), σ2(g), p̃(g), s(g), y).

This estimate converges at an exponential rate to the true marginal distribution of µ̃.

In the the second term

p(φ̃|µ̃∗, y) =

∫

p(φ̃∗|µ̃∗, σ2, p̃, s, y)p(σ2, p̃, s|µ̃∗, y)dσ2dp̃ ds,

the complete conditional density of φ̃ cannot be averaged directly because the Gibbs sampler does

not provide draws conditional on µ̃∗. We generate necessary draws by additional G iterations of

the original Gibbs sampler, but instead of generating µ̃ we set it equal to µ̃∗. Then the estimate of

the second term

p̂(φ̃∗|µ̃∗, y) = G−1
2G
∑

g=G+1

p(φ̃∗|µ̃∗, σ2(g), p̃(g), s(g), y),

converges at an exponential rate to the true p(φ̃|µ̃∗, y). Similarly, by generating additional draws

from the Gibbs sampler we compute p̂(σ̃2∗|µ̃∗, φ̃∗, y) and p̂(p̃∗|y, µ∗, φ̃∗, σ2∗).

Substituting our estimate of posterior density into marginal likelihood results in

lnf(y) = lnf(y|θ∗)+ lnπ(θ∗)− lnp̂(µ̃∗|y)− lnp̂(φ̃∗|µ̃∗, y)− lnp̂(σ̃2∗|µ̃∗, φ̃∗, y)− lnp̂(p̃∗|y, µ∗, φ̃∗, σ2∗).

The model with the highest marginal likelihood is preferred.
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5 Future Directions

Given the large volume of evidence collected in the nonlinear time series, incorporating regime-

switching policies and disturbances into general equilibrium models may lead to a better under-

standing of monetary and fiscal policies.

Over the years, the time series literature has collected substantial statistical evidence that

output, unemployment, and interest rates in the U.S. exhibit different behavior in recessions and

expansions. Contrary to the real business cycle models in which short-run and long-run fluctuations

have the same origin, the statistical evidence suggests that the forces that cause output to rise may

be quite different from those that cause it to fall.

Also, many studies provide evidence that monetary and fiscal policies have changed substantially

throughout U.S. history. Taylor [72], Clarida, Gali, and Gertler [15], Romer and Romer [65], and

Lubik and Schorfheide [52] show that, since the mid-1980s, the Fed reacted more forcefully to

inflation. Favero and Monacelli [28] and Davig and Leeper [18] demonstrate that U.S. fiscal policy

has fluctuated frequently responding to wars, recessions, and more generally to the level of debt.

Sims and Zha [69], after extensive comparison of 17 regime-switching structural VAR models, report

that their best-fitting model requires nine regimes to incorporate the large shocks, for example,

generated by the OPEC oil embargo or the Vietnam War. They conclude that, “It is time to

abandon the idea that policy change is best modelled as a once-and-for-all, nonstochastic regime

switch” (p. 56).

The research by Davig and Leeper [17], [18], [19] and Farmer, Waggoner, and Zha [25], [26],

[27] show considerable promise in introducing nonlinear regime-switching components into dy-

namic stochastic general equilibrium models. For example, Davig and Leeper [18] estimate regime-

switching rules for monetary policy and tax policy and incorporate them into the otherwise standard

new-Keynesian model. Unlike expansionary fiscal policy in the fixed-regime model, fiscal expansion

in the regime-switching model increases inflation and output.
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