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Adrenergic pharmacology and cognition: Focus on the prefrontal cortex
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Abstract

Norepinephrine (NE) has widespread projections throughout the brain, and thus, is ideally positioned to orchestrate neural functions based on
arousal state. For example, NE can increase “signal/noise” ratio in the processing of sensory stimuli, and can enhance long-term memory
consolidation in the amygdala and hippocampus through actions at α-1 and β adrenoceptors. Over the last 20 years, NE has also been shown to
play a powerful role in regulating the working memory and attention functions of the prefrontal cortex (PFC). Moderate levels of NE released
under control conditions strengthen prefrontal cortical functions via actions at post-synaptic α-2A adrenoceptors with high affinity for NE, while
high levels of NE release during stress impair PFC cortical functions via α-1 and possibly β-1 receptors with lower affinity for NE. Thus, levels of
NE determine whether prefrontal cortical or posterior cortical systems control our behavior and thought. Understanding these receptor mechanisms
has led to new intelligent treatments for neuropsychiatric disorders associated with PFC dysfunction.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction: functions of the
prefrontal cortex and their relevance to mental illness

The cognitive functions of the prefrontal cortex (PFC) are
arguably the most advanced in our cognitive repertoire, and
likely the most vulnerable to disruption. PFC circuits have the
unique ability to represent information that is no longer in the
environment — even in the face of distraction and to use this
“representational knowledge” to guide behavior, thought and
affect. This process is often referred to as “working memory”.
Working memory is thought to arise from networks of PFC
emory. (A) A neuron with spatially tun
sentation of PFC networks of pyramida
gage in recurrent excitation to maintain
ons activated by networks firing to non
95.
pyramidal cells with shared properties engaged in recurrent
excitation. These networks are thought maintain task relevant
information during the delay period when stimuli are no longer
present in the environment (Goldman-Rakic, 1995; see Fig. 1).
During this period that follows cue presentation, prefrontal
neurons show increased firing rate in association with a specific
location in the visual field where the cue was presented (i.e., 90°
vs. 45°; Fig. 1). The ability of PFC neuronal networks to keep
task-relevant information “online” in the form of delay-related
firing is thought to represent the physiological basis of working
memory. These firing patterns are tuned by GABAergic inputs
ed persistent activity during the delay period of a spatial working memory task.
l cells that represent the cellular basis of working memory. Networks with shared
information (increase in firing rate) during the delay period in the absence of
preferred directions enhance spatial tuning by inhibiting firing to nonpreferred



Fig. 2. NE released in the PFC activates different intracellular signaling pathways
through distinct adrenoceptors with varying affinities for NE. PFC cognitive
function is enhanced by moderate levels of NE engaging post-synaptic α2A
receptors with high affinity for NE, while high levels of NE impair PFC cognitive
function by engagingα1 andβ1 receptors with lower affinity for NE.AC, adenylyl
cyclase; LC, locus coeruleus; PLC, phospholipase C; IP3, inositol 1,4,5-
triphosphate; DAG, diacylglycerol.
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and by proper catecholamine modulation (Rao et al., 2000;
Constantinidis et al., 2002). Optimal PFC network firing allows
the regulation of attentional focus, the inhibition of inappropri-
ate motor responses, and planning for the future.

Deficits in PFC function are evident in most neuropsychiatric
disorders (indeed, the term “psychiatric” may be synonymous
with PFC dysfunction), and they are amongst the most pro-
minent cognitive problems with normal aging (Nielsen-Bohl-
man&Knight, 1995; Schacter et al., 1996; Albert, 1997; Chao&
Knight, 1997). Even in young, so-called “normal” individuals,
PFC cognitive abilities fluctuate, eroding when we are fatigued
or when we are exposed to uncontrollable stress. Even mild
uncontrollable stressors have been shown to impair PFC
working memory functions in both humans and animals (re-
viewed in Arnsten, 2000a). Furthermore, stress can precipitate or
exacerbate many neuropsychiatric disorders. For example, stress
has been linked to the onset of schizophrenic symptoms (Breier
et al., 1991; Dohrenwend et al., 1995) and to the precipitation of
manic episodes in patients with bipolar disorder (Hammen &
Gitlin, 1997). Chronic uncontrollable stress is used as a model of
depression, and even an acute, traumatic stress can induce post-
traumatic stress disorder (PTSD), a syndrome associated with
overactive amygdala and impaired PFC function (Bremner,
2002). Thus, it is critical that we understand how the PFC is
modulated and howmodulation changes with age and with stress.
Many neurotransmitters (glutamate, GABA) and neuromodula-
tors (e.g., dopamine [DA], serotonin, acetylcholine) contribute to
PFC cognitive functioning in critical ways (reviewed in Arnsten
& Robbins, 2002). This review focuses on the mechanisms by
which norepinephrine (NE) influences PFC functions, as the field
has achieved a surprising consistency, and is directly relevant to
the treatment of neuropsychiatric disorders.

2. Background on norepinephrine

The noradrenergic neurons arise from the locus coeruleus
(LC) within the brainstem and their terminals project to many
different brain regions, including the PFC (Arikuni & Ban,
1978; Gerfen & Clavier, 1979; Morrison et al., 1979; Morrison
et al., 1982; Porrino & Goldman-Rakic, 1982). There is a
reciprocal relationship between the PFC and the LC, as the PFC
provides one of the few higher cortical inputs back to the LC
neurons (Arnsten & Goldman-Rakic, 1984; Sara & Herve-
Minvielle, 1995; Jodo et al., 1998). Within the monkey PFC,
noradrenergic fibers target both deep and superficial layers of
the cortex (Lewis & Morrison, 1989). NE released by these
fibers interacts with 3 families of adrenergic receptors: the α1,
the α2 and the β receptors (1–3).

NE has highest affinity for the α2 receptors, which consist of
3 subtypes: the α2A, the α2B and the α2C. The α2A, and to a
lesser extent the α2C, are found presynaptically on NE cells and
terminals, while all 3 subtypes are found post-synaptically
(MacDonald et al., 1997). The α2A receptor is the most com-
mon subtype found in the PFC; however, there are low levels of
α2C receptors as well (Aoki et al., 1994; Aoki et al., 1998a).
Binding studies suggest that α2 receptors are most concentrated
in superficial layers in primate PFC (Goldman-Rakic et al.,
1990), although electron microscopic (EM) analyses also see
receptors in deep layers. These studies have found α2A recep-
tors, among other cellular locations, over post-synaptic densities
on dendritic spines in the primate PFC (Aoki et al., 1994; Aoki
et al., 1998a). α2 receptors are generally coupled to Gi proteins
(Duman & Nestler, 1995; Ramos et al., 2006), which can reduce
intracellular cyclic adenosine monophosphate (cAMP) produc-
tion by inhibiting some adenylyl cyclase isoforms (Fig. 2).

NE has lower affinity for α1 adrenergic receptors, of which
there are 3 subtypes: theα1A, theαB, and theα1D (Hieble et al.,
1995). The α1A and α1D are most prominent in rodent PFC
(Pieribone et al., 1994; Day et al., 1997). Receptor binding
studies of primate PFC have shown that α1 receptors are
concentrated in superficial layers (Goldman-Rakic et al., 1990),
similar to α2 receptors. However, in contrast to the α2 subtype,
the subcellular localization of these receptors is not yet known.
α1 Receptor stimulation has been found to enhance excitatory
processes in many brain regions, particularly in the somatosen-
sory cortex (Waterhouse et al., 1981;Mouradian et al., 1991).α1
receptors are generally coupled to Gq proteins, and can thus
activate phospholipase C and phosphotidyl inositol intracellular
signaling, resulting in activation of protein kinase C (PKC) and
the release of intracellular calcium via inositol 1,4,5-triphosphate
(Duman & Nestler, 1995; Birnbaum et al., 2004; see Fig. 2).

Finally, NE has lowest affinity for β adrenergic receptors.
There are 3 subtypes of β receptors, β1 (localized in heart), β2
(localized in lung), and β3 (localized in stomach), and all are
found in the central nervous system as well (Insel, 1993). These
subtypes are differentially expressed in various regions of the
brain, with β1 receptors in higher concentrations in the adult rat
cortex compared to the other receptor subtypes (Rainbow et al.,
1984; Nicholas et al., 1993; Summers et al., 1995). β receptors
are densest in the intermediate layers of the PFC (Goldman-
Rakic et al., 1990), where thalamic inputs are concentrated.
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Moreover, these receptors have been identified in high concen-
tration in the monkey PFC (Goldman-Rakic et al., 1990; Aoki
et al., 1998b). EM studies of monkey PFC have localized β2
receptors on dendritic spines (presumably of PFC pyramidal
neurons) and on GABAergic interneurons (Aoki et al., 1998b).
Electrophysiological studies of somatosensory cortex have
shown that β receptors can potentiate GABAergic processes
(Waterhouse et al., 1980). As GABA has a key influence on
tuning of PFC neuronal response (Rao et al., 2000; Con-
stantinidis et al., 2002), similar effects in PFC would be of great
interest. Finally, many β receptors are found on glia, where they
have multiple actions including reducing the uptake of gluta-
mate (Hansson & Ronnback, 1991) and regulating glucose
availability (Fillenz & Lowry, 1998; Fillenz et al., 1999). In
general, β receptors are coupled via Gs to adenylyl cyclase,
increasing cAMP signaling (Ordway et al., 1987; Duman &
Nestler, 1995; Ferry et al., 1999a; Zhang et al., 2005; see Fig. 2).

3. Activity patterns of the locus coeruleus

LC neurons fire in accordance to arousal state, and the
attentional interest of the animal (Foote et al., 1980). LC cells
are silent during REM sleep and increase their firing rate with
increasing state of arousal. During alert waking, LC cells are in
a so-called “phasic” state, with low levels of spontaneous firing
and bursts of firing to stimuli that are of interest to the animal
(Rajkowski et al., 1998; Aston-Jones et al., 1999). In contrast,
when animals are stressed or anxious the cells enter a “tonic”
state with very high levels of spontaneous activity and less
phasic activity to stimuli (ibid). The interaction between arousal
state and information processing was observed in monkeys
performing a continuous performance task where they had to
distinguish the correct target stimuli and ignore distracting
stimuli (ibid). When the monkey was alert and attentive, LC
cells were in a “phasic” state, and fired to the targets but not the
distractors. In contrast, when the animal was either drowsy or
stressed it made errors, and the LC cells responded to the
distractors with less response to the targets. It is tempting to
speculate that the PFC regulates appropriate LC responding
during the phasic, alert state, as it would be one of the few brain
regions that contacts the LC with higher order information. The
importance of NE and LC firing to attention regulation has been
appreciated for a long time. Depletion of forebrain NE in rats
leads to distractibility and attentional deficits in a variety of
paradigms (Carli et al., 1983; Cole & Robbins, 1992).

4. The effects of
norepinephrine on prefrontal cortex function

4.1. Catecholamine depletion of the
prefrontal cortex dramatically impairs function

The pioneering study of Brozoski and colleagues was the
first to demonstrate that catecholamines play a critical role in
the modulation of the spatial working memory functions of
the PFC (Brozoski et al., 1979). DA and NE depletion in the
PFC was produced by infusion of the catecholamine neurotox-
in, 6-hydroxy-DA (6-OHDA), into the dorsolateral PFC of
monkeys. Animals with large catecholamine depletion of the
PFC were as impaired similar to those with PFC ablations,
highlighting the critical role of catecholamine modulatory
influences. The effect of catecholamine depletion was specific
to the cognitive functions of the PFC, since animals were not
impaired on performance of a non-PFC task, visual pattern
discrimination. Although the Brozoski study focused on the
importance of DA to PFC function, as monkeys with large NE
depletion and small DA depletion did not show deficits, it is
now appreciated that both catecholamines are important to PFC
function. Hence, it is likely that both must be substantially
depleted to produce marked impairment in chronic studies. The
Brozoski study has been replicated in rats with 6-OHDA lesions
of the medial PFC (Simon, 1981) and in marmosets with 6-
OHDA lesions to the dorsolateral PFC (Roberts et al., 1994;
Collins et al., 1998). More recently, studies in marmosets have
shown that 6-OHDA lesions of the dorsolateral PFC impair the
ability to acquire an attentional set, a related function of this
brain region (Crofts et al., 2001).

Spatial working memory deficits with preserved visual
discrimination function have also been observed with global
catecholamine depletion. For example, systemic, chronic reser-
pine treatment depletes monoamines and impairs spatial
working memory performance without altering visual discrim-
ination performance in young adult monkeys (Cai et al., 1993).
Furthermore, aged monkeys and rats with naturally occurring
catecholamine depletion exhibit prominent spatial working
memory deficits and generally spared performance on discrim-
ination tasks (Bartus et al., 1978; Luine et al., 1990). In both
young (Sahakian et al., 1985) and aged (Luine et al., 1990) rats,
cognitive performance correlates with levels of PFC catecho-
lamines. Pharmacological studies in aged animals and young,
depleted animals indicate that PFC working memory function
can be restored by administering compounds that mimic NE
actions at α2 adrenergic receptors (Arnsten & Goldman-Rakic,
1985; Cai et al., 1993).

4.2. α2 improves PFC function

4.2.1. α2 agonists restore PFC
functions in catecholamine-depleted
animals: evidence for post-synaptic actions

Studies in rodents, monkeys and humans have all shown that
NE has an important beneficial influence on spatial working
memory performance through its actions at α2 adrenergic re-
ceptors. Young monkeys with working memory impairment
induced by local PFC (Arnsten & Goldman-Rakic, 1985) or
global (Cai et al., 1993) catecholamine depletion are greatly
improved by systemic treatment with α2 agonists such as
clonidine and guanfacine. The beneficial effects of α2 agonists
have also been observed in aged monkeys (Arnsten & Goldman-
Rakic, 1985; Arnsten et al., 1988; Rama et al., 1996) and aged rats
(Carlson et al., 1992; Ramos et al., 2006) with naturally occurring
catecholamine loss. α2 agonists also improve working memory
performance in intact, young monkeys but at higher doses than
those needed to improve aged or depleted animals (Franowicz &
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Arnsten, 1998). Improvements with α2 agonists can be reversed
withα2 but notα1, antagonists, andα2 antagonists by themselves
impair PFC function, consistent with an α2 receptor mechanism
(Arnsten&Goldman-Rakic, 1985).α2 agonists have been shown
to improveworkingmemory for both visuo-spatial (Arnsten et al.,
1988) and visuo-feature (Jackson & Buccafusco, 1991) cues,
suggesting enhancement of both dorsolateral and ventrolateral
PFC function.

Most studies of NE modulation of PFC function have used
workingmemory tasks but a few animal studies have shown effects
on PFC tasks that challenge attention regulation and behavioral
inhibition. For example, α2 agonists are particularly effective at
enhancingworkingmemory during distracting conditions (Jackson
& Buccafusco, 1991; Arnsten & Contant, 1992), a finding
consistent with earlier studies showing that forebrain NE depletion
increases distractibility (Carli et al., 1983). Clonidine and
guanfacine have been shown to improve attentional regulation,
behavioral inhibition and planning in humans as well (see below).
A recent study by Chamberlain et al. suggested that NE is more
sensitive in modulating lateral compared to orbital PFC function
(Chamberlain et al., 2006). In this study, atomoxetine, a NE
reuptake blocker, enhanced response inhibition but had no
significant effect on a probabilistic learning task dependent on
the orbital PFC, a region regulated more by serotonin (Clark et al.,
2005; Chamberlain et al., 2006). The latter study may help explain
why higher doses of guanfacine are required to improve
performance of an object reversal task associated with orbital
PFC function (Steere & Arnsten, 1997).

4.2.2. α2 agonists improve via the A-subtype
The greater the loss of NE, the lower the dose of α2 agonist

needed to improve PFC performance (Franowicz & Arnsten,
1999), a pattern consistent with drug actions at supersensitive,
post-synaptic receptors. Pharmacological profiles further indi-
cate that the α2A receptor subtype may be the most critical for
cognitive enhancement (see Arnsten et al., 1996, for review).
For example, the α2A selective agonist, guanfacine, is the most
effective compound in enhancing working memory without side
effects (Arnsten et al., 1988; Rama et al., 1996). Guanfacine is
about 10 times weaker than clonidine in inhibiting firing of the
NE cell bodies in the LC or in decreasing NE release (Engberg
& Eriksson, 1991) but is 10–100 times more potent in
improving working memory in aged monkeys (Arnsten et al.,
1988). Studies in genetically altered mice emphasize the
importance of the α2A receptor subtype, as mice with a
mutation of the α2A subtype no longer show beneficial effects
on working memory after guanfacine treatment (Franowicz
et al., 1998), while knockout of the α2C subtype has no effect
on the response to another alpha-2 adrenergic agonist,
dexmedetomidine (Tanila et al., 1999). Although knockout of
the α2C receptor had no effect on working memory, it does
seem to be related to the modulation of other NE-associated
behaviors. Interestingly, knockout of the α2C subtype dimin-
ished the response to stress in classic tests of depression (i.e.,
forced swim test), suggesting that α2C receptor blockade may
be useful for treating stress-related psychiatric disorders such as
depression (Sallinen et al., 1999).
4.2.3. α2 adrenergic agonists improve prefrontal
cortex, but not nonprefrontal cortex, cognitive functions

Although α2 agonists improve the performance of tasks that
challenge the PFC, they often have little beneficial effect under
conditions that do not challenge the PFC. For example, these
drugs have no effect or impair the spatial reference memory
functions of the hippocampus (Sirviö et al., 1991), the visual
feature discrimination memory functions of the inferior
temporal cortex (Arnsten & Goldman-Rakic, 1985; Steere &
Arnsten, 1997), the visual feature recognition memory func-
tions of the perirhinal cortex (Arnsten & Goldman-Rakic,
1990), and the covert visual–spatial attention shifting functions
of the parietal cortex (Witte & Marrocco, 1997). Thus, the
beneficial effects of α2 agonists are relatively specific to PFC
functions.

4.2.4. Evidence for actions in the prefrontal cortex
A number of studies in rodents and monkeys demonstrate

that α2 compounds act directly in the PFC to alter working
memory function. As with systemic injection, direct infusion of
α2 antagonists, but not α1 or β antagonists, into the dorsolateral
PFC produces a delay-related impairment in spatial working
memory (Li & Mei, 1994), demonstrating that endogenous NE
stimulation of α2 receptors in the PFC is critical to working
memory performance. Infusions of the α2 antagonist, yohim-
bine, into dorsolateral PFC also impaired impulse control (Ma
et al., 2003) and induced locomotor hyperactivity (Ma et al.,
2005), thus producing a profile of behavioral disinhibition.
Conversely, intra-PFC infusion of α2 agonists improved
working memory performance in either young (Mao et al.,
1999) or aged monkeys (Arnsten, 1997), or aged rats (Tanila
et al., 1996; Ramos et al., 2006).

Imaging studies in monkeys are also consistent with α2
adrenergic mechanisms enhancing PFC function. We have
observed increased regional cerebral blood flow (rCBF) in the
dorsolateral PFC of monkeys treated with guanfacine prior to
performing a spatial working memory task (Avery et al., 2000).
Guanfacine improved working memory performance and
increased rCBF in the PFC surrounding the principal sulcus,
the same region essential for spatial working memory function
(Goldman & Rosvold, 1970). In contrast, guanfacine had no
effect on rCBF in the auditory association cortex (superior
temporal cortex), a region not involved in task performance
(Avery et al., 2000). These results are consistent with imaging
studies in humans treated with guanfacine (see below).

4.2.5. Effects on prefrontal cortex neurons
Electrophysiological studies have observed parallel findings

at the cellular level. Iontophoresis of the α2 antagonist, yohim-
bine, reduced delay-related activity in PFC neurons of monkeys
performing spatial working memory tasks (Sawaguchi, 1998; Li
et al., 1999). Conversely, systemic clonidine administration en-
hances delay-related firing in PFC cells, and this effect is
reversed by iontophoretic application of yohimbine (Li et al.,
1999). Similar results have recently been observed with
guanfacine (Wang et al., in press). Clonidine and guanfacine
increase delay-related firing for the preferred direction but have
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little effect on firing for nonpreferred spatial directions, thus
enhancing spatial tuning during the delay period (ibid). Thus,
NE actions at α2A receptors in PFC have powerful effects on
delay-related firing, the presumed neuronal substrate of working
memory function (see Section 1). It is possible that the beneficial
effects of α2 receptor stimulation occur on dendritic spines, as
α2A receptors have been localized on the post-synaptic
membranes of spines in monkey PFC (Aoki et al., 1994;
Arnsten et al., 1996).

4.2.6. Second messenger actions
α2 adrenergic receptors are commonly coupled to Gi proteins

which inhibit adenylyl cyclase/cAMP pathways (Duman &
Nestler, 1995; see Fig. 2). As activation of the adenylyl cyclase/
cAMP pathway seems to impair PFC function (Taylor et al.,
1999; Ramos et al., 2003), inhibition of this intracellular
signaling pathway may contribute to the beneficial effects of α2
agonists on PFC cognitive function. Indeed, recent evidence
demonstrated that treatments that increase cAMP signaling
block guanfacine's beneficial effects in both aging rats and
monkeys (Ramos et al., 2006). For example, in rats, a dose of Sp-
cAMPS (a compound that mimics cAMP) that has no effect on
its own completely reversed guanfacine's enhancing effects.
Similar effects were observed in monkeys using rolipram, a drug
that inhibits the phosphodiesterases that normally catabolize
cAMP, thus leading to an increase in endogenous levels of
cAMP. The enhancing effects of guanfacine were significantly
reduced by coadministration of rolipram, using a low dose that
had no effect on task performance on its own (ibid). Thus,
guanfacine's beneficial effects on working mediated appear to
bemediated via inhibition of cAMP signaling in the PFC. Recent
electrophysiological studies in monkeys are consistent with this
hypothesis (Wang et al., in press).

4.2.7. Clinical relevance
Recent studies with α2 agonists in healthy humans and

patients with PFC disorders have found surprising similarity to
basic studies in animals. Earlier studies had focused on
clonidine, a suboptimal drug due to its potent inhibition of
LC firing, prominent side effect profile, and high affinity for
imidazoline I1 receptors. Clonidine usually has mixed effects on
PFC functions in healthy young adults, presumably due to
competing pre- versus post-synaptic effects and dose limitations
from sedative and hypotensive side effects (Coull, 1994; Jakala
et al., 1999a). However, improvement with clonidine has been
observed in patient groups with PFC deficits and likely
alterations in PFC catecholamines. For example, clonidine
improved performance of memory recall and the Stroop
interference task in patients with Korsakoff's amnesia, and
was most effective in those with the greatest signs of NE loss
(Mair & McEntree, 1986). Clonidine has also been shown to
improve memory recall and performance of the Trails B
behavioral inhibition task in schizophrenic patients (Fields
et al., 1988). Clonidine improves spatial working memory in
Parkinson's patients with presumed catecholamine depletion in
the PFC (Riekkinen & Riekkinen, 1999a). One recent study has
shown that clonidine can even improve working memory in
patients with Alzheimer's Disease (Riekkinen & Riekkinen,
1999b), although previous studies have not shown benefit
(Mohr et al., 1989).

Imaging studies in humans generally support findings from
animal research. Studies using low doses of clonidine in normal
adults generally show a picture of impaired attention and
emerging sedation associated with imaging changes in thalamus
and parietal cortex (Coull et al., 1997). These findings are
consistent with an older study showing clonidine impaired
attentional orienting (Clark et al., 1987), a function dependent
on parietal lobe function (Posner et al., 1984). These findings
reinforce the notion that posterior cortex and most subcortical
structures are impaired by α2 receptor stimulation. However, a
different picture emerges when higher doses of clonidine are
given to patients with presumed NE loss, or when guanfacine is
used. For example, administration of higher doses of clonidine
to Korsakoff's patients increased rCBF in frontal lobe, and the
increased blood flow in the left PFC correlated with improved
verbal fluency performance (Moffoot et al., 1994). A more
sophisticated analysis also suggests that clonidine can have
important modulatory effects on higher cortical function.
Clonidine has also been shown to increase the effective
connectivity between the LC, parietal cortex and PFC during
an attentional task, while decreasing connectivity during rest
(Coull et al., 1999). More recently, guanfacine has been shown
to increase rCBF in the frontal lobe of healthy adults as
measured by PET imaging (Swartz et al., 2000). These studies
reinforce the idea that α2 receptor stimulation often impairs the
functioning of most brain regions, and that the PFC is excep-
tional in its beneficial influence from α2A receptor stimulation.

A superior profile has been observed with the more selective
α2A agonist, guanfacine. Guanfacine has been shown to im-
prove working memory, planning and paired associates learning
tasks in healthy young adults (Jakala et al., 1999a,b), although
this effect was not replicated in a study of younger, healthy
subjects (Muller et al., 2005). However, guanfacine has been
shown to be very effective in patients with PFC dysfunction.

Much research with α2 agonists has focused on patients with
attention-deficit hyperactivity disorder (ADHD), a disorder
with prominent PFC dysfunction. Early studies demonstrated
that clonidine can improve symptoms of ADHD (Hunt et al.,
1985), but serious hypotensive and sedative side effects have
limited its use. Current studies have turned to the more selective
α2A agonist, guanfacine. Guanfacine has been shown to be
effective in 3 open label trials (Chappell et al., 1995; Horrigan &
Barnhill, 1995; Hunt et al., 1995; Boon-yasidhi et al., 2005). In
addition, 2 placebo controlled trials have come to similar results
(trial in ADHD adults, guanfacine favorable to dexedrine,
Taylor & Russo, 2001; trial in ADHD children with tics,
guanfacine improved tics and ADHD symptoms, Scahill et al.,
2001). In addition to having therapeutic effects on standard
rating scales, guanfacine has been shown to improve perfor-
mance of PFC tasks such as the Stroop (Taylor & Russo, 2001,
guanfacine superior to dexedrine) and the Connors CPT which
assesses vigilance, working memory and behavioral inhibition
(Scahill et al., 2001). These published findings are consistent
with clinical reports that guanfacine reduces impulsivity (ibid),
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a sign of improved PFC function. Interestingly, susceptibility to
ADHD has been associated with a Taq IA polymorphism of
the DA beta hydroxylase (DBH) gene (Smith et al., 2003; Tang
et al., 2006). DBH catalyzes the conversion of DA to NE, and
this polymorphism results in lower DBH activity. Thus, patients
with ADHD may have less endogenous activation of α2 re-
ceptors and benefit from treatment with an α2 agonist such as
guanfacine.

Guanfacine may also be useful in treating PFC dysfunction
in other types of patients. It has been tested in patients with
schizophrenia (Friedman et al., 1999), and more recently in
subjects with schizotypal disorder where it normalized cog-
nitive performance on a Connors CPT (McClure et al., in
press). Guanfacine is also being tried in patients with mild
traumatic injury to the PFC (McAllister et al., 2004), and in
PTSD (Horrigan, 1996). Thus, this is a rare instance where
basic research has led to a treatment for neuropsychiatric
dysfunction.

4.3. α1 impairs prefrontal cortex function

4.3.1. High levels of norepinephrine impair
working memory function via α1 receptor stimulation

New evidence indicates that high concentrations of NE
impair PFC function through activation of α1 adrenergic
receptors. NE has higher affinity for α2A than α1 receptors
(α2A receptors, 56 nM, O'Rourke et al., 1994; α1 receptors,
330 nM, Mohell et al., 1983). Thus, it is likely that low levels of
NE (e.g., under basal or nonstress conditions) preferentially
engage α2 receptors and improve PFC function, while during
conditions of high NE release, α1 receptors would become
engaged and override the effects of α2 receptor stimulation. It is
well established that high levels of NE are released in the PFC
during stress exposure (e.g., Finlay et al., 1995; Goldstein et al.,
1996), and recent evidence suggests that these high NE levels
stimulate α1 receptors and impair PFC function (Birnbaum
et al., 1999). Thus, stress-induced cognitive deficits were
blocked by infusion of the α1 receptor antagonist, urapidil, into
the PFC prior to cognitive testing (Birnbaum et al., 1999).
Infusions of urapidil had no effect under nonstress conditions
(ibid), presumably due to little endogenous NE α1 receptor
stimulation during nonstressful conditions.

4.3.2. Evidence for actions in the prefrontal cortex
The effects of stress on working memory performance can be

mimicked by infusion of an α1 adrenergic receptor agonist into
the PFC. Infusions of the α1 agonist, phenylephrine, into the
PFC in rats markedly impaired working memory performance
(Arnsten et al., 1999). This impairment was reversed by
coinfusion of the α1 receptor, antagonist, urapidil (ibid), con-
sistent with actions at α1 receptors. Similar effects have been
observed in monkeys, where infusions of phenylephrine into the
dorsolateral PFC produced a marked, delay-related impairment
in working memory performance (Mao et al., 1999). Infusions
were most effective in the caudal two-thirds of the principal
sulcal cortex (ibid), the cortical region most tightly associated
with spatial working memory performance in monkeys (Gold-
man & Rosvold, 1970). Thus, high levels of NE release in the
PFC may engage α1 receptors and impair PFC working mem-
ory function. Interestingly, most effective antipsychotic medi-
cations, including the new “atypical” neuroleptics, have potent
α1 blocking properties (Baldessarini et al., 1992). Although
most previous attention has focused on the sedating effects of
these α1 blocking properties, the current data suggest that α1
blockade may have therapeutic effects as well.

4.3.3. Effects on prefrontal cortex neurons
Iontophoresis of the α1 agonist, phenylephrine, onto PFC

neurons suppressed delay-related firing in monkeys performing
a spatial working memory task (Birnbaum et al., 2004). The
suppression in firing was most evident for the preferred direc-
tion, thus resulting in an erosion of spatial mnemonic tuning.
These results are the opposite of what was observed with α2
agonists, consistent with the behavioral findings.

4.3.4. Second messenger actions
α1 adrenergic receptors are commonly coupled to the

phosphotidyl inositol/PKC intracellular pathway via Gq pro-
teins (Duman & Nestler, 1995; see Fig. 2). Evidence to date
suggests that α1 receptor stimulation impairs PFC function
through activation of this second messenger pathway. For ex-
ample, both the α1 adrenergic agonist, phenylephrine, and
pharmacological stressor, FG7142 (increases catecholamine
release), can increase PKC enzymatic activity in the membrane
fraction of prefrontal cortical slices (Birnbaum et al., 2004). The
cognitive impairment induced by phenylephrine infusions into
the rat PFC can be completely reversed by pretreatment with a
dose of lithium known to suppress phosphotidyl inositol turn-
over (Arnsten et al., 1999). However, lithium can alter other
second messenger pathways. Therefore, more recent studies in
animals have focused on agents which selectively target mole-
cules in the phosphotidyl inositol/PKC cascade. For example,
intra-PFC infusion of the PKC inhibitors, chelerythrine or
NPC15437, blocked the detrimental effects of α1 agonists and/
or stress (Birnbaum et al., 1999). Similar results have been
reported by Dash and colleagues, whereby performance of an
aversive working memory task was improved by infusion of
PKC inhibitors into the rat PFC (Runyan et al., 2005). Systemic
administration of the PKC inhibitor, chelerythrine, also protects
working memory in monkeys (Birnbaum et al., 2004).
Interestingly, electrophysiological recordings showed that the
suppression of delay-related firing induced by iontophoresis of
phenylephrine was prevented by co-iontophoresis of cheler-
ythrine (ibid). These results are consistent with activation of the
phosphotidyl inositol/PKC pathway underlying α1 receptor-
mediated impairment of PFC cognitive function at a behavioral,
biochemical, and physiological level.

4.3.5. Clinical relevance
This basic research is highly relevant to PTSD and may also

have direct relevance to bipolar disorder and schizophrenia.
In humans as well as animals, traumatic stressors likely lead

to excessive NE release and α1 adrenergic receptor engage-
ment. The animal research suggests that high levels of α1
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receptor stimulation should weaken PFC inhibitory functions
(see above) and strengthen amygdala function (Ferry et al.,
1999b), the profile observed in PTSD. Thus it has been very
compelling that α1 receptor blockade with prazosin has been
shown to lessen symptoms of PTSD in patients with combat
(Raskind et al., 2000, 2003) or civilian (Taylor & Raskind,
2002; Taylor et al., 2006) PTSD. It has also been helpful in
treating elderly patients with longstanding PTSD (Peskind et al.,
2003). Together, these studies suggest that α1 receptor blockade
strengthens the inhibitory functions of the PFC function and
thus lessens intrusive thoughts and flashbacks that are cardinal
symptoms of this disorder.

The finding that excessive activation of PKC impairs PFC
function also has relevance to bipolar disorder and schizophre-
nia. Bipolar disorder is associated with excessive levels and
overactivity of PKC, and most effective treatments for mania
(e.g., lithium, valproic acid) reduce the activity of the
phosphotidyl inositol/PKC cascade (Manji & Lenox, 1999).
The antiestrogen, tamoxifen, has PKC-blocking properties at
high doses, and proof of concept studies suggest that this
compound can be helpful in bipolar disorder (Bebchuk et al.,
2000; Kulkarni et al., 2006). The successful use of atypical
antipsychotics is likely related to the α1 and 5HT2A-blocking
properties of these compounds, as both of these receptors
activate the PKC signaling pathway. Recent gene array and
genetic studies suggest that overactive PKC may also contribute
to schizophrenia. RGS4 is a molecule that inhibits PKC
signaling, and its levels are greatly reduced in the PFC of
patients with schizophrenia and may be genetically linked to
schizophrenia and bipolar disorder (Mirnics et al., 2001; Prasad
et al., 2005; Erdely et al., 2006; Lipska et al., 2006; Talkowski
et al., 2006). Thus, disinhibited PKC signaling may contribute
to these psychotic disorders, and may worsen during stress
exposure. It is hoped that more selective PKC inhibitors may
have more rapid and powerful effects in treating psychotic
disorders.

4.4. β receptors

4.4.1. Opposing effects of β1 and β2
β adrenergic receptor stimulation has been known to play a

critical role in long-term memory consolidation in the amygdala
and hippocampus. For example, infusion of β adrenergic anta-
gonists into the amygdala impairs, whereas infusion of a
β adrenergic agonist improves memory consolidation (reviewed
in (Cahill & McGaugh, 1996). Similarly, β receptor stimulation
in the dentate gyrus can induce long-term potentiation (Lacaille
& Harley, 1985; Chaulk & Harley, 1998) and is involved in the
late phase of memory consolidation in the hippocampus (Roullet
& Sara, 1998; Sara et al., 1999). In contrast, previous studies had
observed no effect on the working memory functions of the PFC
when β1 and β2 receptors were blocked with the mixed β1/β2
antagonist, propanolol. For example, neither microinjection of
propanolol into the PFC (Li & Mei, 1994) nor systemic ad-
ministration of propanolol (Arnsten & Goldman-Rakic, 1985)
altered PFC function in monkeys. This lack of effect is sur-
prising as β receptors have been identified in high concentration
in the monkey PFC (Goldman-Rakic et al., 1990; Aoki et al.,
1998b). However, different results are obtained when selective
β adrenergic drugs are used that target specific receptor sub-
types. Indeed, a recent study showed that endogenous activation
of β1 receptors, as can occur with stress, impairs PFC cognitive
function (Ramos et al., 2005). In this study, infusion of the β1
adrenergic antagonist, betaxolol, improved working memory
performance in both rats and monkeys (ibid). The effect of
betaxolol seen in the latter study contrasts with the effects
described above in the amygdala where infusion of a β
adrenergic antagonist impairs memory consolidation.

In contrast, recent evidence from our laboratory suggests
that β2 receptors have beneficial effects on working memory.
Stimulation of β2 receptors with clenbuterol significantly, yet
modestly, enhances working memory function in aging animals
(Ramos et al., in press). The enhancement with clenbuterol is
similar to its effects in the amygdala and hippocampus. For
example, McGaugh and colleagues have demonstrated that β2
receptor stimulation within the amygdala immediately after
training enhances performance in an inhibitory avoidance task
(Introini-Collison et al., 1991; Ferry & McGaugh, 1999). Thus,
clenbuterol could be one of the few agents to produce global
cognitive improvement. β2 receptor stimulation could produce
generalized improvement by enhancing glucose availability
through influences on astrocytes.

Finally, the influence of β3 receptor stimulation on PFC
function has yet to be studied. There are high levels of β3
receptor mRNA in rat cortex (Summers et al., 1995), indicating
that this should be a direction for future research.

4.4.2. Second messenger actions
In contrast to α2 adrenergic receptors, β receptors can be

coupled to Gs which can lead to an increase in cAMP levels
(Fig. 2). Previous research has shown that increasing cAMP
levels impairs PFC function in both young and aged animals
(Taylor et al., 1999; Ramos et al., 2003). Thus, β1 receptors,
like DA D1 receptors, may impair PFC cognitive function via
this intracellular pathway during conditions of high catechol-
amine release (i.e., stress). Similar to β1 receptors, β2
receptors can also couple to Gs proteins. Indeed, activation of
β2 receptors in the cortex increases levels of cAMP (Ordway
et al., 1987). Moreover, this increase in cAMP is significantly
reduced by the β2 antagonist, ICI 118551 (ibid). Similarly, in
the amygdala, β2 receptors modulate memory storage by a
direct coupling to adenylyl cyclase and influencing cAMP
formation (Ferry et al., 1999a). A recent study by O'Donnell
and colleagues suggests that clenbuterol's antidepressant
effects are also via increased cAMP signaling in cortical
neurons (Zhang et al., 2005). Taken together, clenbuterol's
effects on working memory performance may be via
activation of this pathway. The fact that both β receptors
can couple to the same pathway but have opposite effects
suggests different sites of action. Future studies should
compare β1 versus β2 receptors' subcellular localization
within the PFC and examine whether or not activation of a
cAMP-dependent signaling mediates the effects of these
receptors in the PFC.
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4.4.3. Clinical relevance
β adrenergic receptor blockers such as propranolol are being

tested immediately post-trauma in the hopes of alleviating the
development of PTSD (Vaiva et al., 2003). Studies in animals
suggest that this drug treatment may prevent amygdala-induced
enhancement of the traumatic memories but may not strengthen
PFC inhibitory abilities. Specific blockade of the β1 receptor
subtype may provide a more powerful therapeutic effect be-
cause this strategy strengthens the PFC and could weaken
amygdala function. Thus, unlike propanolol, betaxolol may
prove useful in treating established PTSD as has been suggested
previously (Ramos et al., 2005).

Previous evidence suggests that the effects of clenbuterol
could result from β receptors' ability to enhance the breakdown
of glycogen and the export of glucose from astrocytes to
increase local cerebral blood flow (Fillenz et al., 1999). Since
glucose metabolism has been found to be decreased in the
frontal and temporal lobes of aged humans and monkeys (De
Santi et al., 1995; Eberling et al., 1997; Noda et al., 2002), the
effects of clenbuterol could be important for the elderly popu-
lation with prefrontal cortical deficits. Interestingly, age-related
memory impairment can be reversed by administration of glu-
cose or epinephrine, which binds preferentially to β receptors
(Korol & Gold, 1998). Thus, β2 receptor activation may be
particularly relevant in the aged population where reduced
glucose metabolism may be contributing to prefrontal cortical
deficits. However, to our knowledge, no study has examined the
effects of β2 receptors in human cognition and thus it is hard to
speculate as to clenbuterol's clinical efficacy. Despite the initial
positive findings with β adrenergic agonists in rats and
monkeys, it is still too early to have this basic research trans-
lated into the clinic.

5. Comparison with other brain
regions: why the qualitative differences?

The PFC successfully guides behavior under nonstressful
conditions when we feel in control. However, there is abundant
Fig. 3. Differential effects of the adrenergic system on peripheral versus central nervou
stress. NE is released by the sympathetic nervous system and throughout most of br
under conditions of danger by switching control of our behavior from a slow, “reflectiv
PFC may make us more vulnerable to neuropsychiatric illness.
evidence that the PFC goes “off-line” during stress. Our emerging
picture suggests that the PFC may be modulated differently than
other than brain regions, and that the neurochemical conditions
that are optimal for PFC are suboptimal for posterior cortical and
subcortical regions, and vice versa. NE seems to play an important
role in this “neurochemical switch” (reviewed in Arnsten, 2000a,
b). NE regulation of the PFC is “upside down and backwards”
from much of the rest of the brain. Thus, NE stimulation of α2
adrenergic receptors enhances PFC functions but impairs many
posterior cortical functions, while stimulation of α1 and/or β
receptors enhances posterior cortical functions but impairs or has
no effect on PFC function. As NE has higher affinity for α2 than
α1 or β receptors (see above), lower levels of NE release during
nonstressed conditions may preferentially engage α2 receptors
and facilitate PFC regulation of behavior, while high levels of NE
release during stress may engage α1 and β1 receptors, taking the
PFC “off-line” but providing areas such as the amygdala,
hippocampus, sensory/motor cortices and cerebellum with a
more optimal neurochemical environment. This may have
survival value, allowing more habitual or reflexive mechanisms
to control behavior during dangerous conditions (Fig. 3).
However, this differential neurochemical regulation may render
the PFC particularly vulnerable to dysfunction in our daily lives,
and in a wide variety of neuropsychiatric disorders, particularly
under conditions of repeated or uncontrollable stress. Finally, the
enhancement of amygdala or hippocampal function could be
important to improve the recollection of memories with strong
survival value and thus help to be better equipped for similar,
future experiences. However, as is the case of PTSD, over-
activation of these traumatic memories can have very deleterious
effects in our daily lives.

6. Noradrenergic biology: peripheral versus central effects

A parallel to this process can be observed in the peripheral
nervous system. Noradrenergic neurons contribute to the stress
response in the periphery via the sympathetic nervous system,
and epinephrine is released by the adrenal medulla. As can be
s systems. Epinephrine is released into blood by the adrenal gland in response to
ain. Turning off PFC control of behavior during stress may have survival value
e” region to more reflexive and instinctual brain areas. However, shutting off the
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seen in Fig. 3, increases in epinephrine or NE can increase heart
rate (via β1 receptors), enhance pulmonary function (via β2
receptors), and increase blood pressure (via α1 and β receptors)
to increase the amount of oxygenated blood being delivered to
striated muscle for the fight and flight response. At the same time,
NE and epinephrine reduce digestive function via β3 receptors,
as one can “stop digesting lunch in order to not become someone
else's lunch”. Thus, in the periphery, NE orchestrates physio-
logical functions to switch us from a nonstress to a stressful state.
A similar orchestration appears to occur in the central nervous
system, where the PFC is the thoughtful, “digestive” organ that is
strengthened by moderate levels of NE and shut off by stressful
levels of NE release, while the sensor-motor and affective regions
of brain are enhanced by higher levels of NE.

7. Conclusion

Understanding adrenergic pharmacology of PFC helps to
develop therapeutic agents for mental illness. Indeed, symptoms
such as poor concentration, impulsivity, working memory
impairment, and inappropriate behaviors are common in mental
illness and are thought to reflect PFC dysfunction. Further-
more, psychiatric disorders are influenced by stress, which, as
has described above, impairs PFC cognitive function. For
example, schizophrenia and affective disorder are often
exacerbated or precipitated by stress exposure (reviewed in
Mazure, 1995). The current review described how stress can
increase the release of catecholamines in both peripheral and
central nervous systems, with a focus on NE's effects on the
PFC via its different adrenergic receptor subtypes (α1, α2,
and β). α2 receptors regulate working memory in a beneficial
way during non-stressful moments, whereas α1 or β1 are
engaged during stress to impair prefrontal cortical function.
Moreover, many psychiatric disorders such as schizophrenia
(Baldessarini et al., 1992), anxiety disorders such as PTSD
(Krystal et al., 1996; Bremner et al., 1997; Southwick et al.,
1997a,b), bipolar disorder (Post et al., 1973; Schildkraut,
1974; Young et al., 1994) and dementia (Gottfries et al.,
1983; Lawlor et al., 1995; Elrod et al., 1997) are associated
with high levels of NE turnover. Currently, adrenergic
receptors, particularly the α1 and α2 receptor subtypes, are
targets for the treatment of PTSD and ADHD, respectively.
With further research, the β receptors may become part of the
treatment repertoire for diseases with PFC dysfunction. Hence,
greater understanding of the effects of NE on PFC function
will greatly benefit the field of neuropsychiatry and could lead
to better treatments for various mental illnesses.
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