Serotonin Transporter (5-HTTLPR) Genotype and Amygdala Activation: A Meta-Analysis

Marcus R. Munafò, Sarah M. Brown, and Ahmad R. Hariri

Background: We evaluated the magnitude of the reported associations between amygdala activation and the serotonin transporter gene linked polymorphic region (5-HTTLPR) and the likely effect size of this relationship.

Methods: We used meta-analytic techniques to combine data from existing published and unpublished studies. We also tested for possible publication bias and explored possible moderating influences on any association, such as sample ancestry.

Results: Our results provide support for the association of the 5-HTTLPR polymorphism and amygdala activation and suggest that this locus may account for up to 10% of phenotypic variance. Although we did not observe evidence for potential publication bias in our main analysis, this was due in part to efforts to obtain unpublished data pertinent to this meta-analysis, and when three unpublished data sets were excluded we did observe evidence of such bias. We also observed evidence that the first published study may provide an overestimate of the true effect size, which is consistent with findings from genetic association studies of other phenotypes.

Conclusions: Although our analysis provides support for the association of the 5-HTTLPR polymorphism and amygdala activation, it also suggests that most studies to date are nevertheless lacking in statistical power. Increasing the sample sizes of future imaging genetics studies will allow a more accurate characterization of any true effect size and afford adequate power to examine the impact of multiple polymorphisms that likely work in concert to affect gene function and, in turn, bias neural processes mediating dispositional traits such as temperament and personality.

Key Words: 5-HTTLPR, amygdala, fMRI, meta-analysis, serotonin transporter gene

Individual differences in trait negative affect are important predictors of vulnerability for a spectrum of health-related disorders including depression, anxiety, and cardiovascular disease (1,2). As such, identifying biological variables contributing to the emergence of such interindividual variability holds great potential for elucidating both the etiology and pathophysiology of these disorders. Moreover, certain biological variables may offer clinical utility by serving as predictive markers of increased disease risk. Converging evidence from rodent and nonhuman primate as well as extensive human research has implicated variability in serotonin (5-HT) neurotransmission as a key predictor of individual differences in multiple, overlapping behavioral constructs related to trait negative affect (3). Research employing pharmacologic challenge of the 5-HT system (via specific receptor agonism/antagonism or general reuptake blockade), for example, has indicated that these manipulations can modulate peripheral stress responses and subjective negative affect (4). These and other findings have subsequently spurred intensive efforts to identify genetic polymorphisms in 5-HT subsystems, which ultimately control the regulation of 5-HT neurotransmission as a function of both homeostatic drive and environmental feedback, that predict trait negative affect, as well as differentiate relative risk for disease.

Of particular importance in these efforts has been the 5-HT transporter (5-HTT), which is responsible for the active clearance of synaptic 5-HT and thus regulation of presynaptic and postsynaptic 5-HT receptor stimulation. In 1996, Lesch and colleagues (5,6) identified a relatively common functional promoter polymorphism in the human 5-HTT gene (SLC6A4). The so-called 5-HTT gene linked polymorphic region, or 5-HTTLPR, is typically defined by two variable nucleotide tandem repeat elements, a short (S) allele comprising 14 copies of a 20-23 base pair repeat unit and a long (L) allele comprising 16 copies. Although initial in vitro and in vivo assays revealed relatively diminished 5-HTT density associated with the S allele, recent work has indicated that more complex mechanisms (e.g., regional up- and down-regulation of specific 5-HT receptors) and not altered 5-HTT density may mediate the long-term impact of the 5-HTTLPR on 5-HT neurotransmission (7). Regardless of the underlying mechanisms of action, a modest association has been reported between the 5-HTTLPR S allele and relatively increased trait negative affect (8–11). Moreover, the 5-HTTLPR S allele has been associated with relatively increased risk for depression in the context of environmental adversity (12–15), a relationship that may be mediated by increased neuroticism (16), a psychometrically robust index of trait negative affect.

Although positive associations between the 5-HTTLPR S allele and increased trait negative affect or risk for depression have not been consistently demonstrated across studies (17–19), recent data from the emerging field of imaging genetics (20,21) has provided apparently consistent evidence for a link between the 5-HTTLPR S allele and relatively heightened amygdala activation to emotional stimuli relative to neutral stimuli, a key neural process underlying the generation of behavioral and physiologic arousal to environmental threat. Since the original demonstration of this relationship (22) using functional magnetic resonance imaging (fMRI) in 2002, several studies have reported a link between increased amygdala activation and the 5-HTTLPR S allele using a variety of neuroimaging technologies (i.e., fMRI, positron emission tomography [PET], perfusion MRI), provocative stimuli (e.g., emotional facial expressions, pictures and words) and subject populations (e.g., controls as well as patients with social phobia, panic disorder, and major depression). The
collective results of these studies suggest that relatively height-
ened amygdala activation to environmental threat may mediate
the association between the 5-HTTLPR S allele and increased trait
negative affect, as well as risk for mood and anxiety disorders,
especially in response to chronic or severe stress. Recent evi-
dence of traitlike stability for individual differences in amygdala
activation measured with fMRI over both short (2- and 8-week)
and long (> 1 year) intervals (23,24) further underscores the
possible and potentially unique role of the amygdala in mediat-
ing effects of the 5-HTTLPR on enduring aspects of temperament
and personality.

A perennial difficulty in the field of psychiatric genetics is
nonreplication of initially promising findings, in part due to the
small magnitude of single gene effects on complex behavioural
phenotypes (25). Although endophenotype measures, such as
amygdala activation, may offer larger effect sizes, this assumption
requires further exploration, and the small sample sizes typical of
studies of this kind raise the possibility of Type I error (26). Even
in the case of associations that have been replicated with reasonable robustness, there is evidence that the first published
study often suggests an effect size that in time proves to be an
overestimate of the true effect size (27). Publication bias, in
which findings that fail to achieve statistical significance or that
are in the opposite direction to that which is predicted are less
likely to be published, may also undermine the integrity of
published data (28). Meta-analysis is an increasingly common
method for addressing these issues, allowing an assessment of
the overall strength of evidence for association and formal testing
for evidence of publication bias (25), as well as the exploratory
investigation of possible sources of between-study heterogeneity
such as moderation by measurement instrument (29).

In light of these findings and their potential to inform
neurogenetic pathways for disease risk, we were motivated to
evaluate formally the reported associations between amygdala
activation and the 5-HTTLPR S allele and the likely magnitude of
this relationship using meta-analytic techniques. We also tested
for possible publication bias, and explored possible moderating
influences on any association, such as sample ancestry.

Methods and Materials

Selection of Studies for Inclusion

Genetic association studies of the 5-HTTLPR polymorphism
and amygdala activation were included. Studies reporting data
on either single-sex or both male and female participants of any
ethnic origin drawn from both healthy and psychiatric popula-
tions were included. The principal outcome measure was the
standardized mean difference in amygdala activation between
short (SS and SL, combined) versus long (LL) genotype groups.

Search Strategy

The search was performed on two databases: PubMed and
PsycINFO. These databases were searched from the first date
available in each database up to 30 April 2007, using the search
terms “amygdala,” “serotonin transporter,” “5-HT,” “5-HTTLPR,”
and “genet* or genot*.” After articles had been collected, bibli-
ographies were then hand-searched for additional references. In
addition, researchers active in the field were contacted directly to
ascertain whether there were relevant unpublished data that
could contribute to the meta-analysis.

The abstracts of studies identified by these search strategies
were then examined with reference to the inclusion and exclu-
sion criteria. Duplications were deleted, and the whole text of
each reference was then checked to establish further whether the
study met the study inclusion criteria. Studies that reported
previously published data were excluded.

Data Extraction

For each study, the following data were extracted indepen-
dently by two authors (M.R.M. and S.M.B.) using standard forms:
1) author(s) and year of publication; 2) methods (country of
origin, dominant ancestry of sample, sample size, measure of
amygdala activation, Hardy-Weinberg equilibrium); and 3) data
(mean and standard deviation of amygdala activity in short and
long genotype groups, number of participants, mean age and
male/female ratio). Genotype frequencies were used to calculate
whether these deviated significantly from Hardy-Weinberg equi-
librium in cases in which this was not reported in the original
article. Ancestry was coded as European, East Asian, or Other
(which included cases in which ancestry was stated as mixed or
not stated). Discrepancies were resolved by mutual consent.

Analysis of Data

Data were analyzed using the Comprehensive Meta-Analysis
(v.2) statistical software package. A p value of .050 was retained
throughout.

Data were initially analyzed within a fixed effects framework,
and standardized mean differences (d) pooled using inverse
variance methods to generate a summary d and 95% confidence
interval (CI). A fixed-effects framework assumes that the effect of
genotype is constant across studies, and between-study variation
is considered to be due to chance or random variation. The
assumption was checked using a chi-square test of goodness of
fit for homogeneity. The significance of the pooled d was
determined using a Z test.

Where there was evidence of a significant association between
5-HTTLPR genotype and amygdala activation in the presence
of significant between-study heterogeneity, a random effects
framework was employed, with ds pooled using DerSimonian and Laird
methods. A random effects framework assumes that between-study
variation is due to both chance or random variation and an
individual study effect. Random effects models are more conserva-
tive than fixed effects models and generate a wider confidence
interval. The significance of the pooled d was determined using a Z
test.

Analyses stratified by sample ancestry, measure of amygdala
activation, and deviation from Hardy-Weinberg Equilibrium were
conducted to assess potential moderating effects of these vari-
ables. In addition, the effect size estimate of the first published
study was compared with the pooled effect size of the remaining
studies using a Z test, and a meta-regression of individual study
effect size against year of publication conducted, because there is
evidence for a substantially greater estimate of effect size in the
first published study (27). Funnel plots were created to assess
potential ascertainment bias (as might be caused by publication
bias) by plotting individual study effect size against the standard
error of the effect size. Ascertainment bias was also assessed
using Egger’s test (30).

Results

Description of Studies

Fourteen studies published between 2002 and 2007 (22,31–
43) and three unpublished data sets (MB Stein, personal com-
munication, August 20, 2006; S. Surguladze, personal communi-
cation, April 17, 2007; SE Taylor, personal communication, March
22, 2007) were identified by the search strategy and met the

www.sobp.org/journal
inclusion criteria. The characteristics of these studies are described in Table 1.

Fifteen studies reported data on samples of predominantly European ancestry, and two reported data on a sample of Other ancestry (34; SE Taylor, personal communication, March 22, 2007). One study reported 5-HTTLPR genotype frequencies that deviated significantly from Hardy-Weinberg equilibrium (43). Thirteen studies used fMRI methods to assess amygdala activation, whereas one used PET (38) and two used perfusion MR (43) methods (grouped as Other). One study (38) did not report data in a format that enabled inclusion in the meta-analysis, and two studies reported data that were reported either partially or in their entirety elsewhere (41,42), so that a total of 14 studies contributed to the final analysis. The majority of studies reported data on right hemisphere amygdala activation only, and four provided a figure for both hemispheres without summary statistics (33,35,36,42), of which two reported summary statistics for global amygdala activation only (36,42). Only one study (40) provided summary statistics for left and right hemisphere amygdala activation separately.

Meta-Analysis

When all studies \((k = 14)\) were included, there was evidence of a significant association between 5-HTTLPR genotype and amygdala activation \((Z = 6.09, p < .001, d = .65, 95\% CI .42 – .83)\). There was evidence of significant between-study heterogeneity \((\chi^2[13] = 57.04, p < .001)\), but when the analysis was rerun within a random-effects framework, the evidence for association remained statistically significant \((Z = 3.15, p = .002, d = .71, 95\% CI .27 – 1.15)\). These results are presented graphically in Figure 1.

Table 1. Characteristics of Included Studies

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Year</th>
<th>Short</th>
<th>SD</th>
<th>n</th>
<th>M</th>
<th>SD</th>
<th>n</th>
<th>Ancestry</th>
<th>Age</th>
<th>M/F</th>
<th>HWE</th>
<th>Method</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hariri (22)</td>
<td>2002</td>
<td>.28</td>
<td>.08</td>
<td>14</td>
<td>.03</td>
<td>.05</td>
<td>14</td>
<td>European</td>
<td>31.2</td>
<td>29</td>
<td>Y</td>
<td>fmRI</td>
<td></td>
</tr>
<tr>
<td>Furmark (38)</td>
<td>2004</td>
<td>Data Not Available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>European</td>
<td>53</td>
<td>n/a</td>
<td>PET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heinz (40)</td>
<td>2004</td>
<td>.05</td>
<td>.08</td>
<td>20</td>
<td>.00</td>
<td>.09</td>
<td>9</td>
<td>European</td>
<td>40.0</td>
<td>100</td>
<td>Y</td>
<td>fmRI</td>
<td>Negative-neutral</td>
</tr>
<tr>
<td>Bertolino (31)</td>
<td>2005</td>
<td>.09</td>
<td>.24</td>
<td>18</td>
<td>.04</td>
<td>.29</td>
<td>10</td>
<td>European</td>
<td>33.5</td>
<td>36</td>
<td>Y</td>
<td>fmRI</td>
<td></td>
</tr>
<tr>
<td>Canli (33)</td>
<td>2005</td>
<td>.12</td>
<td>.30</td>
<td>28</td>
<td>.02</td>
<td>.12</td>
<td>13</td>
<td>European</td>
<td>46</td>
<td>n/a</td>
<td>Y</td>
<td>fmRI</td>
<td>Negative-neutral</td>
</tr>
<tr>
<td>Hariri (39)</td>
<td>2005</td>
<td>.16</td>
<td>.17</td>
<td>65</td>
<td>.03</td>
<td>.30</td>
<td>27</td>
<td>European</td>
<td>30.7</td>
<td>49</td>
<td>Y</td>
<td>fmRI</td>
<td></td>
</tr>
<tr>
<td>Brown (32)</td>
<td>2006</td>
<td>1.38</td>
<td>1.07</td>
<td>34</td>
<td>.74</td>
<td>.86</td>
<td>21</td>
<td>European</td>
<td>45.1</td>
<td>40</td>
<td>Y</td>
<td>fmRI</td>
<td></td>
</tr>
<tr>
<td>Canli (34)</td>
<td>2006</td>
<td>54.10</td>
<td>18.10</td>
<td>13</td>
<td>29.50</td>
<td>14.50</td>
<td>8</td>
<td>Other</td>
<td>30.4</td>
<td>67</td>
<td>n/a</td>
<td>Perfusion MR</td>
<td></td>
</tr>
<tr>
<td>Dannlowski (36)</td>
<td>2006</td>
<td>.19</td>
<td>.29</td>
<td>18</td>
<td>-.15</td>
<td>.55</td>
<td>9</td>
<td>European</td>
<td>36.7</td>
<td>26</td>
<td>Y</td>
<td>fmRI</td>
<td>Negative-neutral</td>
</tr>
<tr>
<td>Domshcke (37)</td>
<td>2006</td>
<td>.09</td>
<td>.35</td>
<td>13</td>
<td>-.29</td>
<td>.42</td>
<td>7</td>
<td>European</td>
<td>36.8</td>
<td>40</td>
<td>Y</td>
<td>fmRI</td>
<td></td>
</tr>
<tr>
<td>Heinz (41)</td>
<td>2006</td>
<td>Data reported in Heinz 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>European</td>
<td>40.0</td>
<td>100</td>
<td>Y</td>
<td>fmRI</td>
<td></td>
</tr>
<tr>
<td>Dannlowski (35)</td>
<td>2007</td>
<td>.12</td>
<td>.32</td>
<td>44</td>
<td>-.03</td>
<td>.53</td>
<td>12</td>
<td>European</td>
<td>37.7</td>
<td>41</td>
<td>Y</td>
<td>fmRI</td>
<td>Negative-neutral</td>
</tr>
<tr>
<td>Smolka (42)</td>
<td>2007</td>
<td>Data partially reported in Heinz 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>European</td>
<td>41.2</td>
<td>100</td>
<td>Y</td>
<td>fmRI</td>
<td></td>
</tr>
<tr>
<td>Rao (43)</td>
<td>2007</td>
<td>58.90</td>
<td>8.30</td>
<td>13</td>
<td>51.50</td>
<td>8.30</td>
<td>13</td>
<td>European</td>
<td>20.3</td>
<td>50</td>
<td>N</td>
<td>Perfusion MR</td>
<td></td>
</tr>
<tr>
<td>Stein (unpub.)</td>
<td>Unpub.</td>
<td>.19</td>
<td>.21</td>
<td>15</td>
<td>-.06</td>
<td>.19</td>
<td>3</td>
<td>European</td>
<td>48.1</td>
<td>20</td>
<td>n/a</td>
<td>fmRI</td>
<td></td>
</tr>
<tr>
<td>Surguladze (unpub.)</td>
<td>Unpub.</td>
<td>.10</td>
<td>.03</td>
<td>22</td>
<td>.09</td>
<td>.03</td>
<td>7</td>
<td>European</td>
<td>37.1</td>
<td>59</td>
<td>Y</td>
<td>fmRI</td>
<td>Fear</td>
</tr>
<tr>
<td>Taylor (unpub.)</td>
<td>Unpub.</td>
<td>.31</td>
<td>1.07</td>
<td>22</td>
<td>2.39</td>
<td>1.22</td>
<td>7</td>
<td>European</td>
<td>20.9</td>
<td>n/a</td>
<td>Y</td>
<td>fmRI</td>
<td></td>
</tr>
</tbody>
</table>

F, female; fmRI, functional magnetic resonance imaging; M, male; n, no; PET, positron emission tomography; unpub, unpublished; Y, yes.

Amygdala activation by 5-HTTLPR genotype (short: SS or SL; long: LL) is presented, with sample ancestry, mean age, male:female ratio (expressed as a percentage of males in the sample), whether the genotype frequencies reported were in approximate Hardy-Weinberg Equilibrium (HWE), and imaging method employed. In cases in which more than one behavioral contrast was used in a single study, the measure used in the meta-analysis is reported.

Figure 1. Meta-analysis of association studies of 5-HTTLPR genotype and amygdala activation. Meta-analysis indicates significant association between 5-HTTLPR genotype and amygdala activation \((p < .001)\). Bars represent individual study 95% confidence intervals, with a central block proportional to study size. The summary diamond bar represents the pooled effect size estimate and 95% confidence interval (CI).

www.sobp.org/journal
Sensitivity Analyses

When the first published study (22) was removed from the analysis (k = 13), there was evidence of a significant association between 5-HTTLPR genotype and amygdala activation (Z = 5.18, p < .001, d = .54, 95% CI .33–.74). There was evidence of significant between-study heterogeneity (χ² [12] = 31.61, p = .002), but when the analysis was rerun within a random-effects framework, the evidence for association remained statistically significant (Z = 3.00, p = .003, d = .53, 95% CI .18–.87).

The comparison of the effect size indicated by the first published study (d = 3.75) with the pooled effect size for subsequent studies (d = .54) indicated a significant difference within both a fixed-effects (p < .001) and a random-effects framework (p < .001). Meta-regression, excluding unpublished data sets, indicated a significant negative association between year of publication and individual study effect size (Z = −2.20, p = .028), with this trend reflecting a decrease in individual study effect size over time. These data are presented graphically in Figure 2.

The comparison of the pooled effect size for studies that used fMRI methods to assess amygdala activation (d = .57), compared with other methods (d = 1.12), did not indicate a significant difference (p = .10).

The removal of one study that reported 5-HTTLPR genotype frequencies that deviated significantly from Hardy-Weinberg equilibrium (43) did not alter these results substantially. Similarly, when two studies that recruited participants of multiple ancestries (34; SE Taylor, personal communication, March 22, 2007) were removed from the analysis, these results were not altered substantially.

Two studies (22; SE Taylor, personal communication, March 22, 2007) were clear outliers (see Figure 1), and when these studies were removed from the analysis (k = 12), there was evidence of a significant association between 5-HTTLPR genotype and amygdala activation (Z = 6.10, p < .001, d = .65, 95% CI .44–.86), with no evidence of significant between-study heterogeneity (χ² [11] = 7.01, p = .80).

Publication Bias

A visual inspection of a funnel plot of 1/SE against effect size estimate did not suggest evidence of ascertainment bias. Egger’s test (t(12) = .86, p = .41) also did not indicate the presence of such bias. Notably, when the three unpublished data sets were excluded from this analysis, there was evidence of publication bias (p = .030). This suggests potential bias in the currently available, published literature.

Laterality

Although only one study (40) reported summary statistics separately for left and right hemisphere amygdala activation, these data were available for an additional two studies (39,43). When these studies (k = 3) were included, there was evidence of a significant association between 5-HTTLPR genotype and amygdala activation in the left (Z = 1.98, p = .047, d = .36, 95% CI .00–.71) and right (Z = 3.71, p < .001, d = .68, 95% CI .32–1.03) hemispheres. Although the effect size estimate for left hemisphere amygdala activation was considerably smaller, this did not differ significantly from the estimate for right hemisphere amygdala activation (p = .21).

Discussion

Our results provide support for the association of the 5-HTTLPR polymorphism and amygdala activation and suggest that this locus may account for up to 10% of phenotypic variance. As such, they underscore the biological relevance of genetically driven variability in 5-HT function and its resultant modulation of neural circuits involved in the generation of complex emotional behaviors associated with risk for mood and anxiety disorders. Specifically, our results indicate that alterations in 5-HT signaling associated with the 5-HTTLPR appear to contribute significantly to variability of amygdala activation in response to a broad range of salient environmental stimuli. However, they also indicate that the direction of this association may be influenced by genetic background (i.e., ancestry) as the only study reporting greater amygdala activation in L allele homozygotes in comparison with S allele carriers was comprised largely of individuals of East Asian ancestry (SE Taylor, personal communication, March 22, 2007), although it should be noted that removal of studies of non-European ancestry did not alter our findings substantially. Interestingly, the opposite direction of this association from that observed in samples of European ancestry has been mirrored in some pharmacogenetic studies in which greater efficacy of selective serotonin reuptake inhibitors has been linked with the S allele in Asians (44,45), although the evidence for this is mixed (46). This highlights the potential importance of considering genetic background in association studies of single genetic polymorphisms.

More generally, our results bolster the potential importance of in vivo neuroimaging assays of brain function in determining the relevance of specific genetic polymorphisms in the emergence of interindividual variability in circumscribed biobehavioral pathways. Notably, the method used to assess amygdala activation did not appear to modify this association. We also did not observe formal evidence for laterality effects on the association between 5-HTTLPR genotype and amygdala activation, although the pooled effect size was qualitatively greater for the right hemisphere than for the left. Unfortunately, this analysis was restricted to only three studies, of which only one explicitly reported results for left and right hemisphere amygdalae separately, so that this analysis lacked statistical power. Future studies should report data for both hemispheres to allow for laterality effects to be fully explored. Although such effects, if they exist, may be an artifact of the stimuli employed (e.g., visual), task processing demands (e.g., perceptual matching), or both, which requires further systematic investigation.

Although we did not observe evidence for potential publication bias in our main analysis, this was due in large part to efforts...
to obtain unpublished data pertinent to this meta-analysis. When three unpublished data sets were excluded from our analysis of potential publication bias, we did observe evidence of such bias. Egger's test is a formal test of the association between individual study effect sizes and their accuracy (i.e., size). The three unpublished studies were of small size and reported either no association or an association in an opposite direction to that originally reported. It is exactly such studies as these that are likely to be more difficult to publish, resulting in publication bias and possible distortion of the corpus of available data. Given that formal tests of publication bias lack statistical power and the relatively small number of data sets that contributed to our analysis, this emphasizes the importance of the publication of nonsignificant findings to avoid distorting the corpus of publicly available evidence.

We also observed evidence that the first published study may provide an overestimate of the true effect size, which is consistent with findings from genetic association studies of other phenotypes (27). As well as observing a reduced pooled effect size estimate when the first published study was removed, we observed a negative association between year of publication and individual study effect size. The latter observation suggests that our estimate of the true effect size may need to be revised further as more data become available. This reinforces the potential importance of meta-analysis as a means by which the true effect size of a genetic association with a given phenotype may be estimated with greater accuracy. On the basis of the pooled effect size estimate from our main analysis, any given study would require a sample of more than 70 participants (assuming equal numbers of short and long genotypes) to achieve 80% power to detect association with amygdala activation at an alpha level of .05. It is notable that only one of the studies (39) included in our analysis included a sample as large as this, suggesting that even in the context of genetic associations with neural phenotypes of relatively large effect sizes the majority of studies to date are underpowered. This suggests a need for investment in larger sample sizes to achieve more accurate estimates of the magnitude of the true effect.

The magnitude of any association may be further affected by additional occult polymorphisms within SLC6A4 (e.g., rs25531, VNTR-2), which have the potential to moderate the effects of the 5-HTTLPR on gene expression (47,48) and subsequent biological processes (including amygdala activation) potentially sensitive to alterations in serotonergic neurotransmission. Indeed, the effect of such polymorphisms on 5-HT availability has recently been confirmed using PET techniques with [11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile to measure serotonin transporter binding potential (49). Increasing the sample sizes of future imaging genetics studies, as well as allowing a more accurate estimation of the true effect size, will afford adequate power to examine the impact of multiple polymorphisms that likely work in concert to affect gene function and, in turn, bias neural processes mediating dispositional traits such as temperament and personality.

We are grateful for the generosity and courtesy of our colleagues who provided detailed information with regard to their imaging genetics data. In particular we thank Murray Stein, Martin Paulus, Shelley Taylor, Baldwin Way, and Simon Surguladze for access to their unpublished data, and Turban Canli, Hengyi Rao, Udo Dannlowski, Andreas Heinz, and Michael Smolka for details of their published data. This work was supported by National Institutes of Health Grant No. K01 MH072837 and a NARSAD (Mental Health Research Association) Young Investigator Award to ARH.

Financial Disclosure: Dr. Munafò, Ms. Brown, and Dr. Hariri have no conflicts of interest to declare.

