Comment on “Photoreflectance study in the E_1 and $E_1 + \Delta_1$ transition regions of CdTe” [J. Appl. Phys. 87, 7360 (2000)]

Martin Muñoza and Fred H. Pollakb

aPhysics Department and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210

bMax-Planck-Institut für Festkörperforschung, Heisenberg Strasse 1, D-70569 Stuttgart 80, Germany

(Received 1 September 2000; accepted for publication 22 November 2000)

[Kaneta and Adachi1 have recently presented a photoreflectance (PR) study of CdTe in the region of the “E_1” and “$E_1 + \Delta_1$” transitions as a function of temperature in the range of 77–300 K. As is acknowledged in the article these optical features are primarily excitonic in nature; the PR line shape fits are relevant to excitonic features, i.e., the exponent n_j in Eq. (6) is taken to be 2.

The fact that the E_1 and $E_1 + \Delta_1$ optical transitions in diamond and zincblende semiconductors are mainly excitonic has been known for more than 30 years.2 Therefore, as pointed out in Ref. 3 (an article that has been largely ignored) the energies of these features are not the critical point (CP) energies, as discussed in Ref. 1 and listed in Table I. These structures actually correspond to the CP energies minus the binding energy (R_1) of the related two-dimensional exciton, i.e., $E_1 - R_1$ and $(E_1 + \Delta_1) - R_1$. Reference 3 and the work of Wei et al.4 have shown that R_1 in CdTe is quite substantial, i.e., about 150 meV.

As pointed out in a number of recent articles by the Brooklyn College group4–9 the so-called E_1 and $E_1 + \Delta_1$ optical transitions in these materials should actually be labeled $E_1 - R_1$ and $(E_1 + \Delta_1) - R_1$, respectively.

The work of M.M. and F.H.P. was supported by the New York State Science and Technology foundation through its Centers for Advanced Technology program.

2See, for example, P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Heidelberg, 1996), and references therein.

aElectronic mail: mmunoz@its.brooklyn.cuny.edu

bElectronic mail: fhpbc@cunyvm.cuny.edu