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Abstract—Deep Neural Networks (DNNs) have limited ability
to explain their acquired knowledge or decision rationale. As a
result, end-users perceive DNNs as black-boxes and are hesitant
to fully adopt them in safety-critical applications. Therefore,
developing explainable DNNs has become a prime interest in
neural network research. This paper presents a methodology
for linguistically explaining the knowledge a DNN classifier has
acquired in training. The main objective is to help users under-
stand what the DNN has learned about each class. The presented
methodology is fuzzy logic based and involves end-users of the
system in the explanation process, enabling users to customize the
explanations to match their requirements. This paper presents
the explanation methodology, metrics of explanation quality,
validation steps, and a discussion of advantages and limitations.
The explanation methodology was implemented on a benchmark
classification problem. Experimental results demonstrated the
method’s capability to explain the DNN-knowledge and validated
the quality metrics.

Index Terms—Explainable Artificial Intelligence, Interpretable
Neural Networks, Explainable Neural Networks, Deep Neural
Networks, Linguistic Summarization, Fuzzy Logic

I. INTRODUCTION

Deep Neural Networks (DNNs) have shown unprecedented
performance in a multitude of domains [1], [2]. Despite the
impressive performance, there is a lack of trust in DNN
systems among end-users [3], [4]. As a result, there is a
reluctance to fully adopt DNNs in safety-critical domains such
as medical diagnoses [4].

It is recognized that the principal reason behind the lack of
trust is the inability of DNNs to explain their decisions and
thus being perceived as black-boxes [4], [3], [5]. Therefore,
there is no insight whether the accuracy of the DNN is
achieved with a concrete rationale or due to artifacts in data
[6], [7]. Therefore, an essential step to build trust between
humans and DNN systems is to break open the said black
box. The users understanding how the DNN system comes to
its conclusions is essential in achieving the goal of trustworthy
Artificial Intelligence (AI). This desired quality of explaining
the decision-making process of DNNs is named ‘explainabil-
ity’ of DNNs [8].

In the last few years, there have been several attempts
to address the issue of explainability in DNN/AI systems.
The existing research approaches can be can be categorized
into two groups: 1) altering the learning algorithms to learn
explainable features, and 2) using additional methods with

the standard learning algorithm to explain existing DNN
algorithms. Furthermore, in the second approach, two types of
explanations can be generated: 1) explanations of individual
classification decisions, 2) explanations of the overall knowl-
edge of the DNN.

In 2016, Defense Advanced Research Projects Academy
(DARPA) spawned a program named Explainable Artificial
Intelligence (XAI) [8]. XAI’s goal is to develop a suite of
algorithms that combine the learning performance of DNNs
and the explainability of models such as decision trees. In
studies that focused on methodologies for explaining existing
DNNs, explaining individual prediction through visualization
has been the focus [9], [10], [11], [12], [6], [4]. However,
humans are more inclined to justify things verbally [13].
Hence, textual explanations would resonate more with humans
than visualizations. Hendricks et al. presented a methodology
for generating textual explanations for image classifications
using a combination of DNN algorithms [14]. However, the
generated explanation couldn’t guarantee that the classification
used the features described in the explanation [15]. Therefore,
to the best of our knowledge, there is a gap in existing research
for generating textual explanations of the overall behavior of
a DNN.

The main contribution of this paper is a methodology for
linguistically explaining the overall knowledge of a DNN clas-
sifier, without altering its learning algorithm. The presented
framework can be used with any DNN classifier and the goal
is to help a user to understand what the DNN has learned about
each class it’s trained to classify. In this paper, these classes
are referred to as DNN concepts. Derived explanations answer
the question ”is it (DNN) doing the right thing for the right
reasons?”, whereas accuracy scores answer the question, ”is
it doing the right thing?”. This paper elaborates the expla-
nation methodology, implements the method on a benchmark
classification problem and discusses methods for validating
explanations. Furthermore, this paper presents a discussion
of the advantages, limitations and possible extensions of the
method.

The rest of the paper is organized as follows. Section II
elaborates the presented explanation methodology; Section III
presents the experimentation process; Section IV presents a
discussion of advantages and limitations; and finally, Section
V concludes the paper.
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Fig. 1. Proposed methodology/framework for explaining the knowledge of a DNN

II. EXPLAINING THE KNOWLEDGE OF A NEURAL
NETWORK

The goal of the derived explanations is to help users un-
derstand the knowledge the DNN has acquired from learning.
A description is generated for each DNN concept (concept
description). The concept descriptions contain input feature
behavior that drives the DNN toward that concept (See Figure
1)

The presented methodology requires access to the trained
DNN (weights and biases), and a test dataset. In this work, a
feed-forward neural network is used for simplicity. However,
any DNN classifier could be used. Further, we assume that
the DNN is already trained to achieve sufficient accuracy. The
presented method consists of three main steps: 1) calculating
the local relevance of input feature, 2) generating linguistic
descriptions, and 3) generating user feedback.

The method requires querying the DNN with a test dataset.
The presented method uses typical DNN inference with ReLU
activated hidden layers and a softmax-normalized output layer.
Other components are discussed in detail below.

A. Calculating Input Feature Local Relevance

In this work, local relevance of an input feature is defined
as a quantitative measure of its contribution to an individual
classification decision. Explanations are based on the input
features and their local relevance scores. Depending on the
DNN architecture, different methodologies can be used in this
step. Methods such as, sensitivity analysis [17], Deconvolution
[10], [11] or Layer-wise relevance propagation [6], [19], [20]
can be used to calculate the local relevance of input features.
In this work, Layer-wise relevance propagation (LRP) is used.

Bach et al. introduced LRP as an approach for understand-
ing pixel-wise contributions to image classification [6], [20].
LRP leverages the layered structure of a DNN. Each neuron of
each layer has a relevance score (R

(l)
d ) where d is the neuron

(dimension) and the l is the layer.
LRP method calculates relevance scores for layer l when

relevance scores for layer (l+ 1) are available. The relevance
scores are propagated backward through the layers from the
output layer to the input layer in a single backward pass.
Figure 2 depicts the process of propagating relevance scores
through the layers. Relevance scores are back-propagated in
messages, R(l,l+1)

i←j (from neuron j in l + 1 to neuron i in l).
The LRP method propagates the relevance scores such that the
total relevance is conserved through the layers.

f (x)
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Fig. 2. Propagating relevance scores through the layers of the DNN in LRP
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f(x) is the output (unnormalized probabilities in the DNN)
and R

(1)
d is the relevance score of the dth dimension of the

input layer. The relevance score of the ith neuron in layer l
can be expressed as:

R
(l,l+1)
i =

∑
j

R
(l,l+1)
i←j (3)

This relevance scores are distributed based on the ratio of
pre-activations as follows:

R
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a
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where, al is the activation of the lth layer, w(l,l+1)
ij is the

weight of the connection between ith neuron in layer l and jth

neuron in layer l + 1 and b
(l+1)
j is the bias of the jth neuron

in layer l + 1.
With the above propagation rule, the relevance score of each

input feature d;R
(l)
d for each test prediction is obtained. A

positive R(l)
d indicates that dimension d supports detection of

the concept and vice versa.

B. Generating Linguistic Descriptions

Linguistic description (LD) generation takes place after the
calculation of local relevance scores.

Depending on user requirements, different types of LDs
can be derived in this module. In this work, the focus is on



generating LDs that explain the relationship between input
feature values and their relevance to classification. Only the
input feature behaviors that support the detection of each
concept are considered.

Since LRP propagates the unnormalized probabilities of
the NN-ADS, the relevance scores are in different scales.
Therefore, in order to ensure consistency, relevance scores are
scaled to the same range prior to generating LDs. Further,
relevance scores can be positive, zero or negative. This work
only considers feature behavior that supports classification
decisions (positive relevance). The relevance scores are nor-
malized as follows. The normalized score is referred to as the
feature influence.

Id =

{
Rd∑
i R

(+)
i

, if Rd > 0

0 , otherwise
(5)

Where, Id is the local influence score of the dth input feature,
Rd is the local relevance, and R

(+)
i are the features with

positive relevance scores. Influence score can be viewed as the
relative positive relevance of the input feature, and it ensures
that the influence scores are scaled between 0 and 1.

In this work, the derivation of LDs makes use of Linguistic
Summarization (LS) techniques. LS techniques are used in
data mining to obtain succinct descriptions of databases [21],
[22], [23]. All the LDs derived in this work are based on type-
I fuzzy sets introduced by Zadeh [24]. The LDs take the form
of an IF-THEN type linguistic summary [25]. Given below, is
an example LD derived for a DNN classifying cars into two
classes: eco-friendly and gas-guzzler.

IF engine capacity IS high THEN influence IS high (6)

where engine capacity IS high portion represents the input
feature and its behavior, influence IS high represents the
level of influence, and low and high are type-I fuzzy sets for
the input feature behavior and influence respectively.

Since fuzzy inference is used in generating the LDs, the
calculated influence scores and input features are fuzzified
into a preset number of fuzzy sets. The number of fuzzy
sets, labels, and shapes can be changed for each dimension
and application/domain to make the generated LDs descriptive
and customized. These choices are entirely at users’ discretion
and the application requirements. Alternatively, data-driven
techniques can be used to determine the optimal configuration
of the fuzzy sets [26].Details on fuzzification of crisp influence
and feature values are omitted in this paper.

The quality of an LD is assessed using two measurements:
1) degree of truth (DT) and 2) degree of coverage (DC). These
metrics were proposed by Wu et. al for IF-THEN linguistic
summaries [27]. If an LD is of high quality, both these figures
should be high. Similarly to the fuzzy set configuration, the
acceptable levels of DT and DC are entirely at the users’
discretion.

DT is a measurement of accuracy. DT is calculated using
the fuzzy membership degrees of each data record to the
antecedent and consequent fuzzy sets. A high DT would imply

that the LD is accurately describing the DNN behavior. DT is
calculated as follows:

T =

∑Mc

m=1min(µSa(vm,a), µSc(vm,c))∑Mc

m=1 µSa(vm,a)
(7)

where, µSa(vm,a), is the degree of membership of the mth test
prediction to the antecedent fuzzy set (behavior of the input
feature) and µSc(vm,c) is the degree of membership of the
mth test prediction to the consequent fuzzy set (level of input
feature influence).

DC is a measure that indicates how good the LD is in terms
of generalization. DC is a non-linear mapping of the portion
of data which satisfies the LD. A high DC would imply good
generalization. For instance, a high DT and a low DC can
be an indication of LDs describing outliers. Therefore, both
quality measures are equally important. DC is calculated as
follows:

C = fc

(∑Mc

m=1 tm
Mc

)
(8)

where:

tm =

{
1, if min(µSa(vm,a), µSc(vm,c)) > 0

0, otherwise
(9)

The function fc is a sigmoid function, This maps the ratio of
data points that satisfy the LD to a value between 0 and 1.
The shape of the function can be fine-tuned to match the user
requirements.

C. Generating user feedback

The final explanation of the DNN is presented to the user in
the form of concept descriptions. Once the high-quality LDs
are derived, a concept description is generated for each DNN
concept.

Concept descriptions can take different semantic and syn-
tactic arrangements depending on the user requirements. For
example, in a classifier that classifies cars into two classes,
eco-friendly and gas-guzzlers, the concept description of a
”gas-guzzler” can be expressed as follows:

—The DNN considers large number-of-cylinders,
high engine-capacity, high seating-capacity, low
zero-to-sixty-time as evidence for detecting a gas-
guzzler

where, number-of-cylinders, engine-capacity, seating-capacity
and zero-to-sixty-time are input features. and the specific
behavior are extracted from the LDs with high DT and DC.

These concept descriptions help to uncover the input feature
behavior the DNN uses to identify a specific class/concept.
These input feature behaviors act as the rationale, which drives
the decisions of the DNN. Therefore, by inspecting all the
concept descriptions, users can infer the process of decision-
making in the DNN.
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Fig. 3. The fuzzy membership functions used to fuzzify feature influence
(top) and feature value (bottom)

III. EXPERIMENTS

In order to demonstrate the explanation methodology, a
benchmark intrusion detection dataset, NSL-KDD was used.
NSL-KDD is a popular dataset for testing network intrusion
detection systems [28]. The NSL-KDD contains network traf-
fic data of 41 features for five classes: 1) normal communica-
tion, 2) Denial-of-Service (DoS) attacks, 3) Probe attacks, 4)
Root-to-local attacks (R2L), and 5) User-to-local (U2R). For
brevity and simplicity, this study only considered classification
between normal communication and DoS attacks (128, 722
records).

As mentioned, all the input features and influence scores
are fuzzified. In a real world application, these fuzzy set
configurations would be adapted to each dataset and each input
feature. In this work, the same fuzzy sets were used to fuzzify
all input features for simplicity. Similarly, the same fuzzy set
configuration was used fuzzify the influence levels of all input
features. The presented method is independent of the fuzzy
set configuration. Therefore, the fuzzy sets can be changed
without affecting the explanation methodology.

In this work, the antecedent and the consequent were
fuzzified into three fuzzy sets—low, medium and high—using
the fuzzy sets shown in Figure 3.

A. Experimental Results

The DNN classifier was able to classify the NSL-KDD data
with a test accuracy of 99.35%. It has to be noted that the
explanation methodology is only applied to DNNs which are
capable of achieving desired classification accuracy levels and
classification accuracies are reported for completeness.

Once the model with the highest classification accuracy
was selected, the explanation methodology was applied. For
the NSL-KDD dataset, the DNN was trained to learn two
concepts, Normal and DoS. Table I shows the LDs for the
DoS concept and Table II shows the LDs for ’normal’ concept.

TABLE I
LINGUISTIC DESCRIPTIONS OF ’DOS’ CONCEPT IN DNN TRAINED FOR

NSL-KDD DATASET

No. Linguistic Description DT DC
LD-01 IF dst host rerror rate IS high THEN influence IS high 0.99 1.0
LD-02 IF dst host serror rate IS high THEN influence IS high 0.80 1.0
LD-03 IF srv error rate IS high THEN influence IS med 0.71 1.0
LD-04 IF logged in IS low THEN influence IS low 0.99 1.0
LD-05 IF dst host srv serror rate IS high THEN influence IS low 0.99 1.0
LD-06 IF dst host srv serror rate IS high THEN influence IS low 0.99 1.0
LD-07 IF dst host same srv rate IS low THEN influence IS low 0.99 1.0
LD-08 IF dst host same src port rate IS low THEN influence IS low 0.99 1.0
LD-09 IF dst host srv serror rate IS high THEN influence IS low 0.99 1.0
LD-10 IF dst host count IS high THEN influence IS low 0.98 1.0

TABLE II
LINGUISTIC DESCRIPTIONS OF ’NORMAL’ CONCEPT IN DNN TRAINED

FOR NSL-KDD DATASET

No. Linguistic Description DT DC
LD-01 IF wrong fragment IS low THEN influence IS low 0.98 1.0
LD-02 IF srv rerror rate IS low THEN influence IS low 0.98 1.0
LD-03 IF dst host srv rerror rate IS low THEN influence IS low 0.98 1.0
LD-04 IF rerror rate IS low THEN influence IS low 0.97 1.0
LD-05 IF dst host rerror rate IS low THEN influence IS low 0.97 1.0
LD-06 IF logged in IS high THEN influence IS low 0.97 1.0
LD-07 IF hot IS low THEN influence IS low, truth 0.97 1.0
LD-08 IF srv error rate IS low THEN influence IS low 0.91 1.0
LD-09 IF src bytes IS low THEN influence IS low 0.91 1.0
LD-10 IF dst host count IS low THEN influence IS low 0.90 1.0

Only the LDs with a DT > 0.8 and DC > 0.9 were chosen in
this work. These thresholds can be adapted to different user
requirements.
’DoS’: It was observed that the DNN was influenced by factors
such as high error rates, not logged in connections, high speed
of communication, and connections being spread across differ-
ent services. Two feature behaviors were noted to be highly in-
fluential, high dst host rerror rate and dst host serror rate.
High srv error rate showed a medium level of influence and
several others with low influence. Therefore, using these LDs,
a concept description was generated for DoS. Users have
the flexibility to choose what levels of influence to use and
what DT and DC threshold to use for these descriptions. For
instance, the DoS description can be expressed as follows:

—The DNN considers, high values for
dst host rerror rate, dst host serror rate,
srv error rate, dst host srv serror rate,
dst host srv serror rate, dst host srv serror rate,
and dst host count and low values for
logged in, dst host same srv rate, and
dst host same src port rate, as evidence for
detecting a DoS attack.

’Normal’: It was observed that there were no input feature
behaviors that stood out. Instead, a range of input features
influenced at a low level. This observation is agreeable with
the real world scenario as normal communications should be
detected by looking at the system as a whole. It was observed
that the DNN was influenced to detect normal communica-
tions by low error rates, correctly logged in status, and low
communication speeds. As with the DoS attacks, a concept
description can be generated for normal communication using
the LDs.
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B. Validating explanations

In addition to the quality measures that were proposed, it
is important to devise methods to validate the generated high
quality LDs.

As a simple method of validation, a visual inspection of
the influence (consequent) score against the feature value
(antecedent) was carried out. This was possible since the gen-
erated LDs were single-antecedent-single-consequent. Figures
4 and 5 show the influence scores against the feature value
for the ’DoS’ concept. The shaded region indicates the region
of interest for the LD being validated. It can be observed that
the influence scores followed the pattern indicated by the LD.

In addition to visually analyzing the LDs, the generality of
the LDs was tested by using different subsets of the test dataset
to generate the LDs and the distribution of DT values was
observed. Figure 6 shows a box-and-whisker plot of the DT
values distribution of LDs (top 5 LDs) for the DoS concept.
It was observed that the DT values remained consistent across
different test datasets, which indicated good generalization of
the LDs.

These analyses help users to filter the LDs generated from
the system even further and improve the explanation process.
Therefore, using these tests, the concept descriptions can be
more refined by using only the LDs that pass the validation
checks.

IV. DISCUSSION

This section discusses the advantages, limitations and how
the method can be adapted to complex real-world scenarios.

The primary advantage of the presented methodology is
the ability to understand the knowledge DNN has gained in
training. This is a substantial improvement of transparency
for black-box DNNs. The second advantage is the ability
to evaluate the DNN based on its decision rationale. This
is an additional layer of evaluation. Thirdly, the presented
methodology is customizable. Users have the ability to adapt
the explanations to the application/user requirements and can
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Fig. 6. Variability of DT for some LDs derived with different test datasets.

cater to users of different levels (E.g. Technicians vs Man-
agers). Additionally, the presented method involves the user
in the explanation process. Therefore, the method is more
transparent to the user.

The main limitation of the presented methodology is that it
cannot be applied if the position of the object of interest is not
consistent in the feature space. For instance, this methodology
cannot be applied directly to explain image classifiers at pixel-
level. In order to use this method in such a case, the features
will need to be in a higher order, so that the position of the
object of interest is consistent in the feature space. Therefore,
the presented method is not suitable for generating linguistic
explanations in domains such as computer vision.

In complex real-world scenarios, systems in question will
typically consist of very high dimensional data (E.g. sensor
readings from a thermo-chemical plant). In such cases, expla-
nations based on individual features can be incomprehensible.
As a solution, input features can be grouped into categories (or
a hierarchy of categories) as a preprocessing step. Then, the
explanations can be derived using the input feature categories
instead of using individual features. Further, the complexity of
the LDs can be increased for improved precision. For instance,
multi-antecedent explanations ( E.g. IF feature1 IS high AND



feature2 IS low THEN influence IS high) can be derived.

V. CONCLUSIONS

This paper presented a fuzzy logic based methodology for
explaining the overall knowledge of a trained DNN classifier.
The presented methodology can be used to derive linguistic
explanations of what a DNN classifier has learned about each
class during training. This paper elaborated the explanation
methodology, explanation quality metrics and validation meth-
ods. The presented method was implemented on a benchmark
classification problem (intrusion detection using NSL-KDD).
Experimental results showed that the validated explanations
improved transparency of the DNN classifier while providing
an additional evaluation layer. Further, results validated the
quality metrics. As future work, complex explanations and
additional validation methods will be explored.
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