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Abstract—Cyber-Physical Systems (CPSs) have become ubiqui-
tous in recent years and has become the core of modern critical
infrastructure and industrial applications. Therefore, ensuring
security is a prime concern. Due to the success of Deep Learning
(DL) in a multitude of domains, development of DL based CPS
security applications have received increased interest in the past
few years. Developing generalized models is critical since the
models have to perform well under threats that they havent
trained on. However, despite the broad body of work on using
DL for ensuring the security of CPSs, to our best knowledge
very little work exists where the focus is on the generalization
capabilities of these DL applications. In this paper, we intend
to provide a concise survey of the regularization methods for
DL algorithms used in security-related applications in CPSs and
thus could be used to improve the generalization capability of DL
based cyber-physical system based security applications. Further,
we provide a brief insight into the current challenges and future
directions as well.

Index Terms—Generalization, Deep Neural networks, Regular-
ization, Cyber-Physical Systems, Cyber Security

I. INTRODUCTION

Cyber-Physical Systems (CPSs) have become a common
component found in critical infrastructure due to their enor-
mous impact and economic benefits [1]. The increasing depen-
dency of critical infrastructure on cyber-based technologies
have made them vulnerable to cyber-attacks such as inter-
ception, replacement and removal of information from the
communication channels [2] [3] [4]. Therefore, the security
of CPSs has become a critical concern. Deep Leaning (DL)
has gained significant attention within past years as it has
improved the state-of-art performance of many applications,
including security-related applications in critical structures,
such as intrusion detection, malware detection, access control,
anomaly detection, and classifications [1].

Deep learning (DL) was introduced in the late 20th century
which was originated from the study of Artificial Neural
Networks(ANNs). Deep Neural Networks(DNN) consists of
a set of stacked models (layers) that learn a series of hid-
den representations hierarchically. Higher level representations
contain amplified aspects of input samples which are useful
for discrimination and suppress of irrelevant features. Deep
leaning models have improved the state-of-the-art performance
in many tasks including speech recognition, object detection,
natural language processing and pattern recognition [5] [6].

Figure 1 illustrates the overall idea of CPS and the use
of DL for CPSs. It shows examples of existing CPSs, what
kind of features can be extracted from such systems, possible
DL models and advantages of using DL. Further, the data
collected from CPSs is typically high dimensional. DL models
are specifically designed to deal with high-dimensional data.
Other characteristics of CPSs include, continues growth of
data, data drift and exposure to new system threats. Therefore,
it is essential to build DL based security models which
are adaptable and extendable with the data drift, continuous
discovery of new system threats and vulnerabilities [7]. This
concept of ”Generalization” is one major problem for building
security-based applications in CPSs because developed ma-
chine learning models for one scenario is nearly impossible to
use in another situation even in the same context. Therefore, it
is an essence to focus on generalization of DL models which
used in such applications.

Generalization capability is a fundamental problem in de-
signing any kind of artificial neural network [8] [9]. In real-
world settings, the performance of ANN mostly depend on its
generalization capability which measures the performance of
ANN on the actual problem, i.e. the ability of ANN to handle
unseen data [10] [11].

In this paper, we present a brief survey on the generalization
of deep learning in the context of security of cyber-physical
systems. The goal of the paper is to give an idea to the reader
about DL methods that can be used in the CPSs, importance
of generalization of DL methods in the context of security of
CPSs and common regularization techniques on them.

The rest of the paper is organized as follows: Section II
discusses DL techniques that have been successfully used in
the field of cyber-security/CPSs. Section III provides a brief
review of generalization. Section IV discusses regularization
methods which have proven increase the generalization of DL
methods which are discussed in section II. Section V reviews
the most recent challenges in the field whereas Section VI
discusses the conclusion and future directions.

II. DEEP LEARNING MODELS IN CYBER-SECURITY/
CYBER-PHYSICAL SYSTEMS

In this section, we talk about the related work where deep
learning has been applied in CPSs cyber-security. First, we in-
troduce deep leaning and discusses deep learning methods that
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Fig. 1: Application of DL for CPSs

have been successfully applied in security-related applications
in the context of Cyber-Physical systems.

Deep learning (DL) has gained high-focus in data science
as they have enhanced performance in many applications [12].
DL algorithms consist of hierarchical architectures with many
layers where higher level features are defined in terms of lower
level features. They have the capability of extracting features
and abstractions from underline data [13]. Many researchers
have experimentally shown that these architectures are capable
of yielding outstanding results in many applications including
CPS security [12] [14].

Figure 2 presents important features that characterize the
deep NNs and shallow NNs. Typically, Shallow architectures
refer to models with only very few (usually one) hidden
layer whereas deep architectures are composed of several
hidden layers [5]. DL methods are capable of representing
more abstract representations of data due to the multi-level
architecture. In many practical applications, DL models have
shown better generalization capability compared to shallow
ANNSs. However, the relative simplicity of shallow ANNs
translates on a better understanding of shallow architectures
compared to DL models.

Few major areas where DL has been successfully applied in
CPSs for security related purposes are anomaly detection [15],
malware detection and threat hunting [16] [17], vulnerability
detection [18], intrusion detection [19], prevention of black-
outs, attacks and destructions [20] in cyber-physical systems.
In this work, we focus on investigating frequently used deep
learning techniques that have been applied in the above areas.

o Deep Feed Forward Neural Networks:
These are often called Multilayer Perceptrons (MLPs) as
they are made with combining many layers of perceptrons
(another type of shallow machine learning algorithms)
into a deeper structure. These models are called ’feed for-

ward’ because there are no feedback connections where
the output of the network is fed back to the network.
MLPs have been successfully applied in many areas
including cyber-security tasks such as malware detection
[21], intrusion detection [22] and access control systems
[23].

Convolutional Neural Network (CNNs):

CNNs are special kind of neural network for processing
data with grid-like topology such as images and videos
[24]. It combines three architectural ideas: local receptive
fields, shared weights, and spatial subsampling to ensure
some degree of shift and distortion invariance [25]. In
cyber-security, it has been used for tasks like intrusion
detection, classification and detection of malware variants
[26] [27].

Long Short-Term Memory:

Long Short-Term Memory (LSTM) is a type of Recurrent
Neural Network (RNN) proposed to solve the problem
of vanishing and exploding gradient problem of conven-
tional RNNs [23]. In cyber-security LSTMs have been
used for tasks like classification and detection of malware
variants [26] and anomaly detection [28] [27].
Restricted Boltzmann Machines (RBMs):

An RBM consist of two-layered undirected graphical
models [29]. They are a stochastic model used to learn
the underlying probability distribution of the dataset.
They are used in many applications including image
and speech recognition, dimensionality reduction, clas-
sification, feature learning, topic modeling and cyber-
security. In cyber-security, it has been used for tasks like
intrusion detection [30] , malicious code detection [31]
and anomaly detection [28].

Deep Belief Networks (DBNs):

DBNs consist of a series of unsupervised multi-layered
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RBM networks (stacked RBMs) and a supervised back-
propagation network [30] [31]. DBNs are more effective
compared to other ANNs specially with unlabeled data
[29]. They have been successfully used in many areas
including image classification, speech recognition and
information retrieval, natural language processing and
cyber-security. In cyber-security, DBNs have been used
for tasks like malicious code detection [31], intrusion
detection [30] and anomaly detection [28].

« Autoencoders: Autoencoder structure is divided into two
parts: encoder and decoder. The encoder converts the
input data into an abstract representation which is then
reconstructed using the decoder. They are widely used
for the purpose of dimensionality reduction. In cyber-
security, it has been used for tasks like malicious code
detection [31], detection of malware variants [26] and
anomaly detection [28].

ITII. GENERALIZATION

Since this paper focus on the generalization of DL tech-
niques, it is essential to get a brief idea about what is the
generalization, how to measure the generalization capability
of a neural network and what are the existing categories of
generalization technique. This section briefly discusses each
of the above topics.

The typical goal of a machine learning system is to
minimize non-computable expected risk by minimizing the
computable empirical risk with the aim of obtaining low
generalization gap [32]. The difference between empirical
risk and expected risk is known as generalization gap. The
generalization gap explains the dependency of a trained model
on the unseen training dataset. There are several performance
measurements have been proposed in the literature to measure
the generalization capability of a neural network [33]. These
measurements have the ability to control the generalization
error. These are the primary candidate measurements that have
been proposed in the recent literature:

o Model Complexity: This measure handles the generaliza-
tion gap by decoupling the model function from training
data by considering the worst-case generalization gap in
the hypothesis space and by considering different quan-
tities to characterize the set of model functions (such as
Rademacher complexity and Vapnik-Chervonenkis (VC)
dimension) [32] [33]

« Stability: This measurement deals with the dependence of
the model function on the training dataset by considering
the stability of the algorithm on different datasets. It
measures the change of model output with respect to the
change of data points in training dataset [32] [33] [34].

o Robustness: This measure avoids the dependence of the
model on the training data, by considering the robustness
of the algorithm for all possible datasets i.e, it measures
the variation of the amount of loss w.r.t the input space
[32] [35].

IV. REGULARIZATION

Many strategies have been proposed in the field of machine
learning to achieve better generalization. These strategies
collectively refer to the term “regularization”. Regularization
is any modification which we make to the algorithm so that it
reduces the generalization error, not the training error [24].

Regularization can be categorized into two categories: Im-
plicit and explicit. It has to be noticed that this categorization
is subjective [36] [33]. Both control the effective capacity of
the network with the purpose of reducing the overfitting. Most
recent definitions of them are [36]:

o Explicit Regularization: Regularization methods which
are not structural parts of the network architecture, the
algorithms or the data and typically can be added or
removed easily. Examples: Weight decay, Dropout, Data
Augmentation, Stochastic depth [36].

« Implicit Regularization: These regularization methods use
characteristics of the network architecture, the learning
algorithm or the data in order to control the effec-
tive capacity of a neural network Examples: Stochastic
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Gradient Descent Algorithm, Convolution layers, Batch
Normalization. [36]

Table I shows frequently used deep learning techniques for
cyber-security and CPSs applications with their commonly
used regularization methods. It has to be noticed that these reg-
ularization methods are not limited to one DL technique. Some
regularization methods prefer some DL techniques based on
their architecture and complementary advantages.

TABLE I: Deep Learning Techniques and Their Commonly
used Regularization Methods

Deep Learning Technique | Regularization Methods

LSTM-RNN

e Drop Out ¢ Mixed-Norm Regularization
e Weight Sharing e DropConnect o L2
regularizer ® Zoneout

CNN

e Drop Out e Weight Decay e Pooling
e Drop Connect @ Data Augmentation

RBM

e L2 Regularization e Weight Decay
e Sparsity Regularization

DBN

e Drop Oute L1 Regularization e Sparsity
Regularization

AE

e Weight Decay e Drop Out e Sparsity
Regularization e Max-Pooling e Data
Augmentation e On-line Gradient Decent

DFFNN

o Weight Decay e Dropout e Bayesian
Regularization e  Data Augmentation
e Principal CA e Sparse Regularization

Table I shows that the most commonly used regularization
methods are Dropout and Weight decay for the presented
Deep Learning techniques. Regularization methods that are
presented in Table I are discussed below:

o Weight decay / L2 regularization:

Weight decay is a explicit regularization method which
has the ability to constrain a network, thus capable of
decreasing the complexity of a neural network [37]. It
limits the growth of the weight, preventing the weights
growing into too large values unless it is really necessary.
Dropout:

In [38], researcher have proposed this regularization
method in order to address two major issues of large neu-
ral networks. They are: avoiding over-fitting and provide
a way to combine many different neural network architec-
tures efficiently. Dropout technique randomly drop units,
i.e. temporarily removing them from the network with
their incoming and outgoing connections during training
process. This regularization method has proven to reduce
over-fitting and to give major improvement over other

regularization methods such as weight decay and data
augmentation [38].

Sparsity Regularization

Classic Multilayer perceptron are composed by fully-
connected layers, often also referred as dense layers given
that every unit has an independent weighted connection
with all units in the next layer. In contrast to dense layers,
sparsity reefers to representations with most coefficients
being zero. Deep learning often is designed with the
objective of obtaining such sparse representations in its
hidden layers. The idea of sparsity regularization is based
on the assumption that the output of a model can be
learned by reduced number of variables. Sparsity can be
enforced using implicit regularization (e.g. using convo-
Iution layers) and explicit regularization (e.g. including
a loss that penalizes non-zero weights like in sparse
autoencoders) Dense connections often waste valuable
resources, often adding capacity that is used inefficiently
[39]. Enforcing sparsity is attractive given that it leads to
a reduction on computational and memory requirements.
Weight Sharing:

In this method, a single weight is shared among many
nodes in the neural network, i.e, groups of neuron nodes
share common set of weight values where each group
only processes only a local region of the input [40].
This technique implements receptive field in the network
which makes the neural network models which are shift
invariant which help with generalization capability of the
model. Since neuron nodes are sharing weights, the num-
ber of weights in the neural network model is less than the
total number of connections in the network. Therefore, it
reduces the capacity/complexity of the network resulting
better generalization [40].

DropConnect:

DropConnect is a recently introduced regularization
method for regularizing large fully connected layers
within neural networks. It has introduced as regularization
of dropout in order to prevent the co-adaptation of feature
detectors [41]. In DropConnect, randomly selected subset
of weights within the network to zero. Therefore it
introduces dynamic sparsity within the neural networks
which helps with generalization ability of the model. Re-
searchers has used this regularization technique on small
datasets and has found that performance is sometimes
better compared to dropout, but not always [42].
Pooling:



Pooling is an operation used in almost all the convo-
lution neural networks [24]. Pooling operations make
output representations approximately invariant to small
translations of the input image, i.e. translate the input
by a small amount, the values of most of the pooled
outputs do not change. It is performed by modifying the
output of a neural network layer by replacing the output
of a particular location in with a summery of the nearby
outputs [24].

« Data Augmentation:

One of the best ways to generalized model is by training
it on more data [24]. In case of limited data, new data can
be generated as fake data and add it to the training set
[24]. This technique is called Data Augmentation. It is a
regularization method which has shown the capability of
achieving higher or same performance without any other
explicit regularization techniques [24].

o Stochastic Gradient Decent (SGD): SGD is the most
common optimization algorithm used to minimizes the
objective function of a neural network [43]. SGD can
be considered an implicit regularization method for DL
models [44]. SGD methods often have these properties
[45]: guarantees of convergence to minimizers of strong-
convex functions [46] and to stationary points for non
convex functions [47], saddle point avoidance and robust-
ness to input data [48]. However, in [45], researchers have
pointed out some limitation of SGD. They are: requires
small batch sizes, sequential nature of the iteration and
limited capability for parallelization. But there are some
efforts that have proposed in literature to parallelize SAD
for deep leaning applications [49] [44] [50] [45].

o Adversarial Training:

In many cases, machine learning models are vulnerable
to adversarial example, i.e. malicious inputs designed to
fool the machine learning model [24] [51]. Adversarial
training is the process of explicitly training a neural
network on adversarial examples in order to make the
model more robust to attack or to reduce the test error on
clean input examples [24]. This idea have become popular
in the context of regularization because it can reduce the
error rate on the original test set via adversarial training
[24] [51] [52].

V. CURRENT CHALLENGES

In this section, we briefly discuss the current challenges of
machine learning community on choosing DL and regulariza-
tion techniques for CPSs.

Understandability: one of the major problems with current
DL approaches is lack of theoretical background [35]. Many
researchers rely on empirical studies to show the impressive
performance of DL methods without explaining why and
how they generalize well. Since current DL approaches are
not that transparent to users, their black-box behavior and
lack of theoretical background reduce the human trust on
DL approaches. Further, the lack of theoretical background
has made it difficult to determine DL architectures, their

hyper-parameters and proper regularization (generalization)
techniques on them.

Regularization: Selecting a regularization technique is not a
simple process when it comes to DL due to its lack of theoreti-
cal background [35]. For example, classic theories of machine
learning have suggested that when the number of parameters
are larger than the number of training samples, some form or
regularization is required to ensure good generalization [33].
But deep neural networks have shown good generalization
even with such over-parameterized settings [35].1.e, DL meth-
ods show good generalization even without any regularization
technique. This makes the problem of selecting DL method
or regularization method for a particular application is very
difficult. Figure 3 illustrates the current view and challenges
when applying DL for many applications.

Selection:The efficient use and development of GPUs have
been increased the practicality of DL methods [36]. This has
led many researchers to focus on training broader and deeper
networks of larger capacity [53] [54] [36]. However, in [24],
researchers have pointed out that network with large capacity
reduce the practical usage of other explicit regularizations
such as dropout and weight decay take longer training time
[36]. Therefore researchers need to find the balance between
implementing deeper architectures and practical usage of reg-
ularization methods. In [24], researchers have pointed out that
there is no best machine learning algorithm or best form of
regularization for a specific task that needed to be solved.
Instead, it is essential to pick a form of regularization that
is well suited for a particular task such that it will result in
better generalization [24]. Therefore the selection of proper
DL methods and appropriate regularization method is crucial
to gain their optimal advantages.

Robustness: Deep learning models have been shown to
be extremely sensitive to adversarial samples: samples with
small perturbations that result in incorrect estimations with
high confidence [55]. This is an excellent example of how
the lack of understanding of DL models lead to unexpected
vulnerabilities.

VI. DISCUSSION AND FUTURE DIRECTIONS

This paper briefly discussed regularization techniques that
can be used to improve the generalization capabilities of
DL based security applications of Cyber-Physical Systems.
Attackers are becoming more smarter every day, making
new system attacks and finding new system vulnerabilities.
Therefore, the development of security related applications
which are generalized to new system threats is essential. If
we mention the conclusions of this paper lightly, in terms of
generalization techniques for CPSs, we can say that the most
popular DL techniques used in the domain of CPS security are
LSTMs, CNNs, RBMs, DBNs, AE and DFFNN, most popular
regularization techniques on them are dropout, weight decay
and sparse regularization. But as we discussed in section V,
selecting a regularization is not that straightforward.

Why deep learning for CPS: Deep Learning methods have
been specifically designed to handle large datasets with a large



number of features. DL provides a rich class of models that
can approximate any function. These attributes are desirable
when applying DL methods in cyber-physical for the follow-
ing reasons: 1) Data collected from CPSs is typically high
dimensional as data coming from a large number of physical
and cyber-sensors, 2) There is a constant growth of data due
to improvements and exposure to new vulnerabilities 3) The
models must be constantly updated with new data in order to
account for drifting of the system and new vector attacks.

Challenges: Despite the generalization of DL models The
lack of theoretical foundation in Deep Learning is one of
the causes for the poor understanding of their generalization
capabilities. Practitioners have to rely on trial and error without
a clear path to improve the performance of the model. This
is a huge issue when applying DL into critical systems such
as CPSs. Currently, collecting more data (data augmentation)
seems to be one of the promising approaches that guarantees
an improvement of model generalization [36]. This is a huge
drawback of using DL models in CPS given that collecting
data may be expensive or even not possible because of physical
constraints or safety concerns.

Future: In order to alleviate the challenges mentioned
above, improving understandability with the help of explain-
able Al [56] will be a fundamental step for the application
of DL models into CPS [57] [58]. The main problem with
current DL approaches is that they are not transparent to the
user, reducing the human trust on the system. The development
of explainable AI will help to increase the transparency of ML
models, eventually leading to an increase of generalization of
ML models as well as human trust on DL methods.

Adversarial machine learning has shown to provide valu-
able insights into the vulnerabilities of ML models. It can
be used to find vulnerabilities and week points of machine
learning applications so that they can be used to increase the
adaptability of the system for new cyber-physical data or new
attacks, i.e., capable of increasing the generalization of models
[24]. Explainable AI and adversarial ML provide tools that can
be used to understand why a particular model is not working
[59] [60]. This is an attractive approach for diagnosing and
debugging DL models, providing the practitioner with insights
on how to improve the generalization of the model.

Ultimately, a better theoretical background will be essential
to increase understanding of DL models and provide clear
guidelines to apply sound regularization methodologies for
critical systems such as CPSs.
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