
Improving User Trust on Deep Neural Networks

based Intrusion Detection Systems

Kasun Amarasinghe, Milos Manic

Virginia Commonwealth University, Richmond, Virginia, USA

amarasinghek@vcu.edu, misko@ieee.org

Abstract—Deep Neural Networks based intrusion detection

systems (DNN-IDS) have proven to be effective. However, in

domains like critical infrastructure security, user trust on the

DNN-IDS is imperative and high accuracy isn’t sufficient. The

black-box nature of DNNs hinders transparency of the DNN-IDS,

which is necessary for building trust. The main objective of this

work is to improve user trust by improving transparency of the

DNN-IDS by making it more communicative. This paper presents

a methodology to generate offline and online feedback to the user

on the decision making process of the DNN-IDS. Offline, the user

is reported the input features that are most relevant in detecting

each type of intrusion by the trained DNN-IDS. Online, for each

detection, the user is reported the inputs features that contributed

most to the detection. The presented method was implemented on

the KDD-NSL dataset with a multi-layer perceptron (MLP) based

DNN-IDS. Binary and multi-class classification was carried out on

the dataset. Further, several DNN-IDS architectures with

different depth were tested to study the factors that drive

classification. It was observed that despite showing very similar

accuracy results, the factors that drove the decisions were

different across architectures. This evidences that the qualitative

analysis that is enabled through reporting relevant input features

is important for the user to make a more informed decision in

choosing a DNN-IDS. This online and offline feedback leads to

improving the transparency of the DNN-IDS and helps build trust

prior to and during deployment.

Keywords— Intrusion Detection, Deep Learning; Deep Neural

Networks; Explainable AI; Layer wise Relevance Propagation;

Anomaly Detection;

I. INTRODUCTION

Modern industrial systems including critical infrastructure
systems are heavily reliant on connectivity and the ability to
seamlessly connect physical and computing resources [1], [2].
In addition, with the advent of Internet-of-Things (IoT) there has
been an explosive growth in connectivity among our day-to-day
household items ranging from smartphones to thermostats and
kitchen appliances [3], [4]. While these technologies enhance
what we can accomplish at our fingertips and increase the
efficiency of industrial systems and critical infrastructure, they
exposes all these systems to various types of cyber threats.
Malicious cyber-attacks on these systems, if successful, could
lead to catastrophic events. Therefore, ensuring the securing the
cyber networks is a prime concern in the modern world.

Intrusion Detection Systems (IDS) have become essential
components in cyber networks. The role of an IDS is to detect
unauthorized use, misuse and abuse of the computer network by
insiders or outsiders [5]. Machine Learning (ML) based IDS
systems based algorithms such as Support Vector Machines and
decision trees have been popular in the literature [4], [6]. In the

recent past, Deep Neural Networks have revolutionized a
multitude of fields in the recent years and has provided state-of-
the-art performances in fields such as computer vision and
natural language processing [7], [8]. Due to its deep structure,
DNN algorithms have the capability to learn complex patterns
in data with multiple layers of abstraction [9], making them ideal
candidates to learn complex patterns that exist in network traffic
data. As a result, DNN based IDS (DNN-IDS) algorithms have
received increased attention in recent work. A range of DNN
algorithms, including but not limited to Feed Forward Neural
Networks [10], Autoencoders [11], [12], [4], probabilistic
models such as Restricted Boltzmann Machines (RBM) and
Deep belief Networks (DBNs) [13], [14], [15] and recurrent
neural networks such as LSTMs [16] have been used
successfully in DNN-IDS. For a survey on DNN-IDS
methodologies, readers are referred to [17].

Despite the impressive accuracies displayed by DNNs,
DNNs are still used as black boxes. This is a major drawback in
practical applications with human involvement as it provides
little to no information about the reasoning behind a DNN
prediction. This is especially true in DNN-IDS since most of the
time, a human expert makes a higher level decision based on the
recommendations of the automated system. Therefore, the
user’s trust on the DNN-IDS is imperative and providing
justifications of the DNN-IDS predictions is as important as the
prediction itself. In order to overcome these limitations,
explaining DNNs has received increased attention in the recent
years but still remains to be an open research area. David
Gunning defines an explainable artificial intelligence system as
one that answers the following questions. 1) “Why did it do
that?” 2) “Why didn’t it do something else?” 3) “When does it
succeed?” 4) “When does it fail?” 5) “When can it be trusted?”
and 6) “how can an error be corrected?” [18]. DNN
explainability is categories into two broad categories,: 1) model
transparency and 2) model functionality [19], [20].
Understanding what the network has learned and the reasons
behind the concepts it has learned is model transparency [20].
Model functionality explanations, also known as post-hoc
explanations is used to explain predictions by the model [19].
The work of this paper is focused on generating post-hoc
explanations.

This paper presents a methodology for providing feedback
to the user about the predictions of the DNN-IDS before and
during deployment. The presented methodology provides
feedback in the form of input feature contributions to the DNN-
IDS predictions, i.e. the presented method presents the user with
the input features which drove the prediction of the DNN-IDS
toward an intrusion type. After training the DNN-IDS, prior to

deployment, the user is provided with the input features that are
highly relevant to each intrusion type. During deployment, the
user is able to see the driving factors of each individual
classification decision. We argue that this insight improves
transparency of the DNN-IDS and helps the user better
understand the rationale behind DNN-IDS decisions Further,
these feedback enables a user to qualitatively evaluate the DNN-
IDS. The factors help build users’ trust on the IDS.

The rest of the paper is organized as follows; Section II
presents the methodologies for DNN-IDS and user feedback
generation; Section III presents the experimental setup, results
and a discussion and finally Section IV concludes the paper.

II. DNN-IDS AND USER FEEDBACK GENERATION METHODS

This section presents the Deep Neural Networks based
Intrusion detection and the methodology for providing operator
feedback.

A. DNN-IDS

In this paper, the IDS implemented as a feed forward neural
network. The network is trained using supervised learning.

A cyber connection is considered as an input record (𝑋 ∈
ℝ𝑑). Each input record X is composed of a set of input features:
𝑋 = {𝑥𝑑}, where d denotes the dth feature in the dataset. Since
supervised learning is employed, each X is associated with its
label Y. In the DNN-IDS, Y indicates whether the cyber
connection belongs to an attack group (abnormal) or normal
communication. This can be binomial where the data it indicates
the presence or absence of an attack, or it can be multinomial
where the input record can be of a specific attack group.
Therefore, the DNN-IDS learns a classification function, where

the mapping can be expressed as 𝑓:ℝ𝑑 → ℝ+.

The DNN-IDS consists of an input layer, an output layer and
a multiple hidden layers. Each hidden neuron is activated as
follows:

𝑎𝑗
(𝑙+1)

= 𝑔(∑𝑎𝑖
(𝑙)
𝑤𝑖𝑗

(𝑙,𝑙+1)
+ 𝑏𝑗

(𝑙+1)

𝑖

) (1)

where, 𝑎(𝑙) is the activation of the lth layer, 𝑤𝑖𝑗
(𝑙,𝑙+1)

 is the weight

of the connection between ith neuron in layer l and jth neuron in

layer l+1 and 𝑏𝑗
(𝑙+1)

 is the bias of the jth neuron in layer l+1.

Rectified Linear Unit (ReLu) neurons are used in the hidden
layers, i.e. 𝑔(∙) can be expressed as:

𝑔(𝑥) = max(0, 𝑥) (2)

The output layer is a softmax layer to obtain the probability
distribution across the classes. Therefore, for each class the
probability is calculated using the softmax function as follows:

𝑃(𝑌 = 𝑦𝑖|𝑋) =
𝑒𝑎𝑖

∑ 𝑒𝑎𝑗𝑗

 (3)

where the input values (𝑎𝑖) are calculated using eq.(1) with
𝑔(∙) being a linear pass through function.

After the softmax normalization, the cross entropy loss is
minimized in the training of the DNN-IDS. The optimization
process is carried out with a gradient based optimizer together
with error back propagation. Dropout method is used for
regularization of the DNN-IDS.

B. Calculating Input Feature Contributions

In this paper, the user feedback for the DNN-IDS is provided
in terms of input feature relevance scores that indicate the
contribution of each input feature to the detection of the
intrusion. This is quantitative measure as to how much influence
an input feature had in the prediction, which helps the user
understand what input features drove the prediction of the DNN-
IDS. The input feature relevance is calculated by decomposing
the composite function of the DNN using a method named
Layer-wise Relevance Propagation (LRP). It has to be noted that
this section assumes that the DNN-IDS takes the form described
in the subsection above.

Layer-wise relevance propagation (LRP) was introduced by
Bach et al. as an approach for understanding the contribution of
each pixel to image classification decisions made by the DNN
[21], [22]. LRP assumes that the classification algorithm can be
decomposed into several layers of computation. Inputs and the
classification probabilities in the output layer are considered the
first layer and the last layer, respectively. Each dimension of

each layer has a relevance score (𝑅𝑑
(𝑙)

) where d is the dimension

and the l is the layer. The goal is to find the relevance scores for
the layer l when the relevance scores for layer (l+1) is available.
Fig 1 depicts the high-level process of LRP.

The multilayered architecture of the DNN is leveraged by
propagating the relevance scores in a backward pass, i.e. the
relevance scores of a lower level is expressed as a function of
upper level relevance scores. Relevance scores are back-

propagated in “messages”, 𝑅𝑖←𝑗
(𝑙,𝑙+1)

 (from neuron j in l+1 to

neuron i in l) such that a relevance conservation property holds
as follows.

∑𝑅𝑖←𝑗
(𝑙,𝑙+1)

𝑖

= 𝑅𝑗
(𝑙+1)

 (5)

Similarly, the relevance score for ith neuron in the l layer can
be expressed as:

𝑅𝑖
(𝑙)

=∑𝑅𝑖←𝑗
(𝑙,𝑙+1)

𝑗

 (6)

Fig 1: Back-propagation of relevance scores through the layers of the

DNN using LRP method

This relevance scores are distributed based on the ratio of
pre-activations as follows:

𝑅𝑖←𝑗
(𝑙,𝑙+1)

= (
𝑎𝑖
(𝑙)
𝑤𝑖𝑗
(𝑙,𝑙+1)

∑ 𝑎𝑖
(𝑙)
𝑤𝑖𝑗

(𝑙,𝑙+1)
+ 𝑏𝑗

(𝑙+1)
𝑖

) ∙ 𝑅𝑗
(𝑙+1)

 (7)

The drawback of the above propagation rule is that relevance
scores become unboundedly large if the activations of the
neuron (the denominator) is small. To alleviate this problem, the
αβ method [21] is used as follows:

𝑅𝑖←𝑗
(𝑙,𝑙+1)

= (𝛼
𝑎𝑖𝑤𝑖𝑗

+

∑ 𝑎𝑖𝑤𝑖𝑗
+ + 𝑏𝑗

+
𝑖

+ 𝛽
𝑎𝑖𝑤𝑖𝑗

−

∑ 𝑎𝑖𝑤𝑖𝑗
− + 𝑏𝑗

−
𝑖

) ∙ 𝑅𝑗
(𝑙+1)

(8)

Where, 𝑎𝑖𝑤𝑖𝑗
+ and 𝑏𝑗

+are the positive portion of the activations

and the negative portion is indicated by a superscripted “-”.
Please note that the superscripted layer notations have been
stripped off to simplify the notation and still i and j are
considered to be indices associated with layers l and l+1
respectively. It has to be noted that the relevance decomposition
satisfies following rule of relevance conservation:

𝑓(𝑥) = ⋯ = ∑ 𝑅𝑑
(𝑙+1)

𝑑∈𝑙+1

=∑𝑅𝑑
(𝑙)

𝑑∈𝑙

= ⋯

=∑𝑅𝑑
(1)

𝑑

(4)

Where 𝑓(𝑥) is the output and 𝑅𝑑
(1)

 is the relevance score of the

dth
 dimension of the input layer.

When the relevance scores are propagated using the above
method across layers to the input layer, the relevance score of

each input feature d; 𝑅𝑑
(1)

 can be obtained. It has to be noted that

this calculation is done for each individual classification
decision of the DNN-IDS. Further, it has to be noted that the un-
normalized probabilities of the output layer are used for
propagating the relevance.

C. Providing offline and online feedback to the user

As mentioned, the relevance scores of each input is
calculated for each classification decision of the DNN-IDS.

In this work, offline feedback refers to providing user with
information about what the DNN-IDS has learnt. This process
takes place after training and prior to deployment of the DNN-
IDS. The goal of providing this feedback is to enable user to
qualitatively evaluate the DNN-IDS in addition to the
quantitative evaluations done through accuracy scores. This
analysis helps user see the concept the DNN-IDS has learnt
about intrusions in general and about each intrusion type. To
generate the offline feedback, a test dataset is. First, the test
dataset is processed through the DNN-IDS to generate
classification decisions. As mentioned in the above section, the
un-normalized probability scores are used as the output from the
DNN-IDS to generate the relevance scores. For offline
feedback, mean relevance of each input feature for each
intrusion type is reported to the user. With this information, the
user can determine which factors drive the detection a certain
intrusion type or intrusions in general. The mean relevance of
each input feature per attack type is calculated as follows:

𝑅𝑐
𝑑 =

1

𝑁𝑐

∑𝑅𝑥𝑘𝑑
(1)

𝑁𝑐

𝑘

 (10)

In this work, online feedback refers to providing the user
with information about each individual classification that
happens during the intrusion detection of a live data stream. In
this step, the offline validated DNN-IDS is deployed on the
network and is actively classifying the data stream. Therefore,
in online feedback generation, LRP generated input relevance
scores are presented for individual classification decisions.
Therefore, the user is presented with the prediction from the
DNN-IDS and the input features that drove the DNN-IDS to the
prediction. If an attack is detected, without just giving the user
the prediction, this system reports the inputs that indicate the
detection of the attack.

III. EXPERIMENTS

This section elaborates the experimentation procedure. First,
the dataset and the preprocessing details are presented. Then, the
two classification approaches – binary classification and multi-
class classification – are presented. Finally a discussion on the
results and the implications of the presented work is presented.

A. NSL-KDD Dataset and Preprocessing

The NSL-KDD dataset is an improved version of the KDD
Cup ‘99 dataset [23]. The data were captured during the DARPA
IDS evaluation program 1998 and was used in the Third
International Knowledge Discovery and Data Mining Tools
Competition. Tavallaee et al. created the NSL-KDD dataset by
making improvements such as removing redundant records
[23].

Each data record in the dataset is a TCP connection and they
fall under five classes: normal, denial-of-service (DoS), probing,
user-to-root (U2R), and root-to-local (R2L). The data
distribution in the train and test datasets can be seen in Fig 2. It
can be observed that the U2R and R2L classes are extremely
underrepresented in the dataset creating a data-imbalance
problem. Since solving a data imbalance problem is out of the
scope of this work, the data records from R2L and U2R classes
are not considered in this study.

Fig 2: Data Distribution of the NSL-KDD Dataset

Each TCP connection record consist of 41 input features.
These features consist of basic features acquired from the TCP
connection, traffic features acquired from a window of two
seconds and content featured acquired from the application layer
data. In terms of data types, the 41 features contain 7 categorical
features (four of them binary) and 34 continuous features. The
categorical features pose a challenge in algorithms such as
DNNs. In this work, the binary features are unchanged. The
other three categorical features are converted to numerical
features by using a simple label encoding scheme. Label
encoding is used over one-hot encoding to preserve the number
of input features and to avoid making the data sparse. In order to
make sure that the features are considered in the same ranges,
the input features were standardized to a zero mean and unit
variance distribution.

B. Binary Classification Results

As mentioned, from the dataset, only the records belonging
to the classes normal, DoS and Probe were used in this paper.
For the binary classification, the focus was to train a DNN-IDS
to identify between normal and abnormal (intrusion) traffic.
Therefore, the both DoS and Probe were relabeled as intrusions
and a binary classification was performed between normal and
intrusion.

Different DNN-IDS models were built with different MLP
architectures. This was performed to mainly to observe whether
the factors that drive the intrusion detection changes with the
depth of the DNN. Table I shows accuracy levels that was
achieved by the different DNN-IDS models. Three MLP types
in terms of depth was tested. The presented results are the best
classification accuracies achieved for the particular depth. It has
to be noted that very deep architectures were not tested in this
study. All the models were able to achieve an overall test
accuracy level of ~97% and it was observed that intrusions were
detected at an accuracy of 97%.

LRP was implemented on the DNN-IDS to find the
contributing factors for detecting intrusions. It was observed that
the models allocated different importance levels to input
features depending on the model. Fig 3 shows the average input
feature relevance scores for data records classified as an
intrusion. It can be observed that the DNN-IDS with a single
layer paid the highest emphasis to “percentage of connection
that were rejected that was aimed at the same destination in the
last two seconds” (rerror_rate) and the “percentage of
connections to the same service out of the ones that were aimed
at the same destination in the last two seconds”
(same_srv_rate), while “percentage of connections that was
rejected with the same destination IP” (dst_host_rerror_rate)
received highest emphasis with two hidden layers and
dst_host_rerror_rate and same_srv_rate received highest
emphasis for the DNN-IDS with three hidden layers.

C. Multi-class Classification Results

In this experiment, the DNN-IDS is trained to distinguish
among three classes; normal, DoS and Probe. Similar to the two-
class test, different models in terms of depth was implemented.
Table II presents the test accuracies achieved for the different
models. It was noticed that the models achieved similar overall
test accuracies (~94%). Similarly, the DoS attack detection
accuracy was similar across models (~98%). It was noticed that
the probe attack detection suffered in accuracy. The highest
probe attack detection accuracy was noticed in the model with
three hidden layers (~75%).

Fig 4 shows the input feature relevance scores seen for
detection of DoS attacks. As with binary classification, it was
noticed that different input features received the highest
relevance in driving the decision of the different DNN-IDS
toward DoS. The model with single and three hidden layers
showed similar behavior with the same_srv_rate and
dst_host_rerror_rate receiving the highest relevance in DoS.
The model with two hidden layers showed the highest relevance
to dst_host_rerror_rate. The other input features that were
considered by the models with high relevance was rerror_rate,
count, and “protocol type used in the connection”
(protocol_type).

Fig 4 shows the input feature relevance scores in Probe
detection. It can be noticed that rerror_rate received the highest
emphasis with the single hidden layer MLP. Whereas, models
with two and three hidden layers gave the highest relevance to
“percentage of connections to different services with the same
destination IP” (dst_host_diff_srv_rate). Further, it was noticed
that all models gave some relevance to protocol_type, “whether
user is logged in” (logged_in), “percentage of connections
rejected with the same destination IP”
(dst_host_srv_rerror_rate), “percentage of connections to
different destinations with the same port as the current
connection port in the last two seconds” (srv_diff_host_rate), in
detecting Probe.

D. Discussion

This generated feedback enables the users and domain
experts to qualitatively validate the DNN-IDS before and during
deployment. This gives the user the advantage of “peeking into”
the black box of the DNN-IDS. The user gets to see the factors
that cause the detection of an intrusion. A domain expert can
assess these factors and determine whether the DNN-IDS is
making decisions for the right reasons. This enables the users
and the other domain experts to qualitatively evaluate the DNN-
IDS in addition to the quantitative evaluation through accuracy
scores.

In the experiments, it was noticed that despite similar
accuracies, the different DNN-IDS made the decisions based on
different features. This evidences the importance of having the

TABLE I: TEST ACCURACY RESULTS – BINARY CLASSIFICATION

Model

(hidden layers)

Classification

Accuracy

(%)

Accuracy Individual Class

(%)

Intrusion Normal

One (100) 96.19 95.04 97.16

Two (100, 50) 97.33 97.12 97.52

Three (100, 50, 80) 96.73 95.80 97.52

TABLE II: TEST ACCURACY RESULTS – MULTICLASS CLASSIFICATION

Model

(hidden layers)

Classification

Accuracy

(%)

Accuracy Individual Class

(%)

DoS Probe Normal

One (50) 93.83 97.75 68.03 97.74

Two (50, 80) 94.09 98.41 69.22 97.72

Three (30, 80, 30) 94.83 98.76 74.34 97.62

qualitative analysis of the DNN-IDS. The qualitative analysis
can enable users to pick a model which makes decisions based
on the reasons that align with domain expert knowledge. The
combination of the qualitative and quantitative analysis leads to
a better understanding of the DNN-IDS and its decision making
process. Thus, it enables experts to use their experience to
evaluate and analyze the DNN-IDS. This leads to building users’
trust in the system.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a methodology for improving the users’
trust on DNN-IDS through generating user feedback on the
decision making process of the DNN-IDS. The goal was to
increase the transparency of the DNN-IDS which is necessary to
build user trust. In this work, the feedback was presented by
calculating the most relevant input features for predictions made
by the DNN-IDS. A supervised learning based DNN-IDS (based

on MLP) was considered. Two forms of feedback were
generated: 1) offline feedback (after training, prior to
deployment) and 2) online feedback (during deployment). In
offline feedback, the user was provided the most relevant input
features for each concept the DNN-IDS learned. This
information enables the user to evaluate whether the input
features that drive the decision of the DNN-IDS toward a certain
class (e.g. attack type) aligns with the domain experts’
knowledge. In online feedback, most relevant input features for
each individual prediction is provided to the user. Then, the user
can evaluate whether the prediction and the features driving the
prediction align using their domain knowledge. This system was
implemented on the KDD-NSL dataset for two intrusion types
(DoS and Probe). Several DNN-IDS architectures with different
depth were tested. It was observed that despite producing very
similar accuracies, different architectures gave prominence to
different features when identifying intrusions. Therefore, it can
be concluded that the generated feedback can assist the user add

Figure 3: Input Feature relevance scores for class “Intrusion” in binary classification. (a) One hidden layer, (b) Two hidden layers (c) Three hidden layers. It

can be noticed that although very similar, the priorities given to certain features change across models. The x-axis shows the abbreviated input feature names.

The highest relevant features are explained in the text.

another layer of evaluation (qualitative) in addition to the
quantitative evaluation through accuracy scores. The work
needs to improve on the following fronts: 1) generating effective
online feedback taking the speed of events into account, 2)
generating feedback in easily understandable ways (e.g. textual
descriptions).

REFERENCES

[1] R. Baheti and H. Gill, “Cyber-physical Systems.”

[2] W. Wolf, “Cyber-physical Systems,” Computer (Long. Beach. Calif).,

vol. 42, no. 3, pp. 88–89, Mar. 2009.

[3] M. D. Valdes Pena, J. J. Rodriguez-Andina, and M. Manic, “The Internet

of Things: The Role of Reconfigurable Platforms,” IEEE Ind. Electron.

Mag., vol. 11, no. 3, pp. 6–19, Sep. 2017.

[4] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A Deep Learning

Approach to Network Intrusion Detection,” IEEE Trans. Emerg. Top.

Comput. Intell., vol. 2, no. 1, pp. 41–50, 2018.

[5] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, “Network intrusion

detection,” Network, IEEE, vol. 8, no. 3, pp. 26–41, 1994.

[6] B. Dong and X. Wang, “Comparison deep learning method to traditional
methods using for network intrusion detection,” in 2016 8th IEEE

International Conference on Communication Software and Networks

(ICCSN), 2016, pp. 581–585.

[7] S. Wang and J. Jiang, “Learning Natural Language Inference with

LSTM,” 2015.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification

with Deep Convolutional Neural Networks.” pp. 1097–1105, 2012.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, May 2015.

[10] O. Linda, T. Vollmer, and M. Manic, “Neural Network based Intrusion

Detection System for critical infrastructures,” in 2009 International Joint

Conference on Neural Networks, 2009, pp. 1827–1834.

[11] B. Zhang, Y. Yu, and J. Li, “Network Intrusion Detection Based on

Stacked Sparse Autoencoder and Binary Tree Ensemble Method,” 2018

IEEE Int. Conf. Commun. Work. (ICC Work., no. 61702046, pp. 1–6,

2018.

Figure 4: Input Feature relevance scores for “DoS” and “Probe” detection in three class classification. (a) One hidden layer, (b) Two hidden layers (c) Three

hidden layers. It can be noticed that although very similar, the priorities given to certain features change across models. Input feature abbreviations are given

in the x-axis

[12] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A Deep Learning Approach

for Network Intrusion Detection System,” Proc. 9th EAI Int. Conf. Bio-

inspired Inf. Commun. Technol. (formerly BIONETICS), 2016.

[13] M. Z. Alom and T. M. Taha, “Network intrusion detection for cyber
security using Deep Learning Approaches,” Proc. Int. Jt. Conf. Neural

Networks, vol. 2017–May, pp. 3830–3837, 2017.

[14] M. Z. Alom, V. Bontupalli, and T. M. Taha, “Intrusion detection using
deep belief networks,” 2015 Natl. Aerosp. Electron. Conf., pp. 339–344,

2015.

[15] M.-J. Kang and J.-W. Kang, “Intrusion Detection System Using Deep

Neural Network for In-Vehicle Network Security.”

[16] Y. Chuan-long, Z. Yue-fei, F. Jin-long, and H. Xin-zheng, “A Deep

Learning Approach for Intrusion Detection using Recurrent Neural

Networks,” IEEE Access, vol. 5, pp. 1–1, 2017.

[17] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey of

deep learning-based network anomaly detection,” Cluster Comput., pp.

1–13, Sep. 2017.

[18] D. Gunning, “Explainable Artificial Intelligence (XAI) Explainable AI

– What Are We Trying To Do ?,” Def. Adv. Res. Proj. Agency, pp. 1–18,

2017.

[19] Z. C. Lipton, “The Mythos of Model Interpretability,” Jun. 2016.

[20] S. Chakraborty et al., “Interpretability of Deep Learning Models: A
Survey of Results,” IEEE Smart World Congr. DAIS - Work. Distrib.

Anal. Infrastruct. Algorithms Multi-Organization Fed., 2017.

[21] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Müller, and W.
Samek, “On pixel-wise explanations for non-linear classifier decisions by

layer-wise relevance propagation,” PLoS One, vol. 10, no. 7, pp. 1–46,

2015.

[22] A. Binder, G. Montavon, S. Lapuschkin, K. R. Mï¿½ller, and W. Samek,

“Layer-wise relevance propagation for neural networks with local

renormalization layers,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9887 LNCS, pp. 63–

71, 2016.

[23] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed

analysis of the KDD CUP 99 data set,” IEEE Symp. Comput. Intell. Secur.

Def. Appl. CISDA 2009, no. Cisda, pp. 1–6, 2009.

