
Improving User Trust on Deep Neural Networks 

based Intrusion Detection Systems 
 

Kasun Amarasinghe, Milos Manic 

Virginia Commonwealth University, Richmond, Virginia, USA 

amarasinghek@vcu.edu, misko@ieee.org 

 
Abstract—Deep Neural Networks based intrusion detection 

systems (DNN-IDS) have proven to be effective. However, in 

domains like critical infrastructure security, user trust on the 

DNN-IDS is imperative and high accuracy isn’t sufficient. The 

black-box nature of DNNs hinders transparency of the DNN-IDS, 

which is necessary for building trust. The main objective of this 

work is to improve user trust by improving transparency of the 

DNN-IDS by making it more communicative. This paper presents 

a methodology to generate offline and online feedback to the user 

on the decision making process of the DNN-IDS. Offline, the user 

is reported the input features that are most relevant in detecting 

each type of intrusion by the trained DNN-IDS. Online, for each 

detection, the user is reported the inputs features that contributed 

most to the detection. The presented method was implemented on 

the KDD-NSL dataset with a multi-layer perceptron (MLP) based 

DNN-IDS. Binary and multi-class classification was carried out on 

the dataset. Further, several DNN-IDS architectures with 

different depth were tested to study the factors that drive 

classification. It was observed that despite showing very similar 

accuracy results, the factors that drove the decisions were 

different across architectures. This evidences that the qualitative 

analysis that is enabled through reporting relevant input features 

is important for the user to make a more informed decision in 

choosing a DNN-IDS. This online and offline feedback leads to 

improving the transparency of the DNN-IDS and helps build trust 

prior to and during deployment.  

Keywords— Intrusion Detection, Deep Learning; Deep Neural 

Networks; Explainable AI; Layer wise Relevance Propagation; 

Anomaly Detection;  

I. INTRODUCTION 

Modern industrial systems including critical infrastructure 
systems are heavily reliant on connectivity and the ability to 
seamlessly connect physical and computing resources [1], [2]. 
In addition, with the advent of Internet-of-Things (IoT) there has 
been an explosive growth in connectivity among our day-to-day 
household items ranging from smartphones to thermostats and 
kitchen appliances [3], [4]. While these technologies enhance 
what we can accomplish at our fingertips and increase the 
efficiency of industrial systems and critical infrastructure, they 
exposes all these systems to various types of cyber threats. 
Malicious cyber-attacks on these systems, if successful, could 
lead to catastrophic events. Therefore, ensuring the securing the 
cyber networks is a prime concern in the modern world.  

Intrusion Detection Systems (IDS) have become essential 
components in cyber networks. The role of an IDS is to detect 
unauthorized use, misuse and abuse of the computer network by 
insiders or outsiders [5]. Machine Learning (ML) based IDS 
systems based algorithms such as Support Vector Machines and 
decision trees have been popular in the literature [4], [6]. In the 

recent past, Deep Neural Networks have revolutionized a 
multitude of fields in the recent years and has provided state-of-
the-art performances in fields such as computer vision and 
natural language processing [7], [8]. Due to its deep structure, 
DNN algorithms have the capability to learn complex patterns 
in data with multiple layers of abstraction [9], making them ideal 
candidates to learn complex patterns that exist in network traffic 
data. As a result, DNN based IDS (DNN-IDS) algorithms have 
received increased attention in recent work. A range of DNN 
algorithms, including but not limited to Feed Forward Neural 
Networks [10], Autoencoders [11], [12], [4], probabilistic 
models such as Restricted Boltzmann Machines (RBM) and 
Deep belief Networks (DBNs) [13], [14], [15] and recurrent 
neural networks such as LSTMs [16] have been used 
successfully in DNN-IDS. For a survey on DNN-IDS 
methodologies, readers are referred to [17].  

Despite the impressive accuracies displayed by DNNs, 
DNNs are still used as black boxes. This is a major drawback in 
practical applications with human involvement as it provides 
little to no information about the reasoning behind a DNN 
prediction. This is especially true in DNN-IDS since most of the 
time, a human expert makes a higher level decision based on the 
recommendations of the automated system. Therefore, the 
user’s trust on the DNN-IDS is imperative and providing 
justifications of the DNN-IDS predictions is as important as the 
prediction itself. In order to overcome these limitations, 
explaining DNNs has received increased attention in the recent 
years but still remains to be an open research area. David 
Gunning defines an explainable artificial intelligence system as 
one that answers the following questions. 1) “Why did it do 
that?” 2) “Why didn’t it do something else?” 3) “When does it 
succeed?” 4) “When does it fail?” 5) “When can it be trusted?” 
and 6) “how can an error be corrected?” [18]. DNN 
explainability is categories into two broad categories,: 1) model 
transparency and 2) model functionality [19], [20]. 
Understanding what the network has learned and the reasons 
behind the concepts it has learned is model transparency [20]. 
Model functionality explanations, also known as post-hoc 
explanations is used to explain predictions by the model [19]. 
The work of this paper is focused on generating post-hoc 
explanations. 

This paper presents a methodology for providing feedback 
to the user about the predictions of the DNN-IDS before and 
during deployment. The presented methodology provides 
feedback in the form of input feature contributions to the DNN-
IDS predictions, i.e. the presented method presents the user with 
the input features which drove the prediction of the DNN-IDS 
toward an intrusion type. After training the DNN-IDS, prior to 



 

deployment, the user is provided with the input features that are 
highly relevant to each intrusion type. During deployment, the 
user is able to see the driving factors of each individual 
classification decision. We argue that this insight improves 
transparency of the DNN-IDS and helps the user better 
understand the rationale behind DNN-IDS decisions Further, 
these feedback enables a user to qualitatively evaluate the DNN-
IDS. The factors help build users’ trust on the IDS.  

The rest of the paper is organized as follows; Section II 
presents the methodologies for DNN-IDS and user feedback 
generation; Section III presents the experimental setup, results 
and a discussion and finally Section IV concludes the paper.  

II. DNN-IDS AND USER FEEDBACK GENERATION METHODS  

This section presents the Deep Neural Networks based 
Intrusion detection and the methodology for providing operator 
feedback.  

A. DNN-IDS 

In this paper, the IDS implemented as a feed forward neural 
network. The network is trained using supervised learning.  

A cyber connection is considered as an input record (𝑋 ∈
ℝ𝑑).  Each input record X is composed of a set of input features: 
𝑋 = {𝑥𝑑}, where d denotes the dth feature in the dataset. Since 
supervised learning is employed, each X is associated with its 
label Y. In the DNN-IDS, Y indicates whether the cyber 
connection belongs to an attack group (abnormal) or normal 
communication. This can be binomial where the data it indicates 
the presence or absence of an attack, or it can be multinomial 
where the input record can be of a specific attack group. 
Therefore, the DNN-IDS learns a classification function, where 

the mapping can be expressed as 𝑓:ℝ𝑑 → ℝ+.  

The DNN-IDS consists of an input layer, an output layer and 
a multiple hidden layers. Each hidden neuron is activated as 
follows:  

𝑎𝑗
(𝑙+1)

= 𝑔(∑𝑎𝑖
(𝑙)
𝑤𝑖𝑗

(𝑙,𝑙+1)
+ 𝑏𝑗

(𝑙+1)

𝑖

) (1) 

where, 𝑎(𝑙) is the activation of the lth layer,  𝑤𝑖𝑗
(𝑙,𝑙+1)

 is the weight 

of the connection between ith neuron in layer l and jth neuron in 

layer l+1 and  𝑏𝑗
(𝑙+1)

 is the bias of the jth neuron in layer l+1. 

Rectified Linear Unit (ReLu) neurons are used in the hidden 
layers, i.e. 𝑔(∙) can be expressed as:  

𝑔(𝑥) = max(0, 𝑥) (2) 

The output layer is a softmax layer to obtain the probability 
distribution across the classes. Therefore, for each class the 
probability is calculated using the softmax function as follows: 

𝑃(𝑌 = 𝑦𝑖|𝑋) =
𝑒𝑎𝑖

∑ 𝑒𝑎𝑗𝑗

 (3) 

where the input values (𝑎𝑖) are calculated using eq.(1) with 
𝑔(∙) being a linear pass through function.  

After the softmax normalization, the cross entropy loss is 
minimized in the training of the DNN-IDS. The optimization 
process is carried out with a gradient based optimizer together 
with error back propagation. Dropout method is used for 
regularization of the DNN-IDS. 

B. Calculating Input Feature Contributions 

In this paper, the user feedback for the DNN-IDS is provided 
in terms of input feature relevance scores that indicate the 
contribution of each input feature to the detection of the 
intrusion. This is quantitative measure as to how much influence 
an input feature had in the prediction, which helps the user 
understand what input features drove the prediction of the DNN-
IDS. The input feature relevance is calculated by decomposing 
the composite function of the DNN using a method named 
Layer-wise Relevance Propagation (LRP). It has to be noted that 
this section assumes that the DNN-IDS takes the form described 
in the subsection above.  

Layer-wise relevance propagation (LRP) was introduced by 
Bach et al. as an approach for understanding the contribution of 
each pixel to image classification decisions made by the DNN 
[21], [22]. LRP assumes that the classification algorithm can be 
decomposed into several layers of computation. Inputs and the 
classification probabilities in the output layer are considered the 
first layer and the last layer, respectively. Each dimension of 

each layer has a relevance score (𝑅𝑑
(𝑙)

) where d is the dimension 

and the l is the layer. The goal is to find the relevance scores for 
the layer l when the relevance scores for layer (l+1) is available. 
Fig 1 depicts the high-level process of LRP.  

The multilayered architecture of the DNN is leveraged by 
propagating the relevance scores in a backward pass, i.e. the 
relevance scores of a lower level is expressed as a function of 
upper level relevance scores. Relevance scores are back-

propagated in “messages”, 𝑅𝑖←𝑗
(𝑙,𝑙+1)

 (from neuron j in l+1 to 

neuron i in l) such that a relevance conservation property holds 
as follows.  

∑𝑅𝑖←𝑗
(𝑙,𝑙+1)

𝑖

= 𝑅𝑗
(𝑙+1)

 (5) 

Similarly, the relevance score for ith neuron in the l layer can 
be expressed as: 

𝑅𝑖
(𝑙)

=∑𝑅𝑖←𝑗
(𝑙,𝑙+1)

𝑗

 (6) 
 

Fig 1: Back-propagation of relevance scores through the layers of the 

DNN using LRP method 



 

This relevance scores are distributed based on the ratio of 
pre-activations as follows: 

𝑅𝑖←𝑗
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= (
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(𝑙)
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𝑖
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 (7) 

The drawback of the above propagation rule is that relevance 
scores become unboundedly large if the activations of the 
neuron (the denominator) is small. To alleviate this problem, the 
αβ method [21] is used as follows: 
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(8) 

Where, 𝑎𝑖𝑤𝑖𝑗
+ and 𝑏𝑗

+are the positive portion of the activations 

and the negative portion is indicated by a superscripted “-”. 
Please note that the superscripted layer notations have been 
stripped off to simplify the notation and still i and j are 
considered to be indices associated with layers l and l+1 
respectively. It has to be noted that the relevance decomposition 
satisfies following rule of relevance conservation:  

𝑓(𝑥) = ⋯ = ∑ 𝑅𝑑
(𝑙+1)

𝑑∈𝑙+1

=∑𝑅𝑑
(𝑙)

𝑑∈𝑙

= ⋯

=∑𝑅𝑑
(1)

𝑑

 
(4) 

Where 𝑓(𝑥) is the output and 𝑅𝑑
(1)

 is the relevance score of the 

dth
 dimension of the input layer.  

When the relevance scores are propagated using the above 
method across layers to the input layer, the relevance score of 

each input feature d; 𝑅𝑑
(1)

 can be obtained. It has to be noted that 

this calculation is done for each individual classification 
decision of the DNN-IDS. Further, it has to be noted that the un-
normalized probabilities of the output layer are used for 
propagating the relevance.  

C. Providing offline and online feedback to the user 

As mentioned, the relevance scores of each input is 
calculated for each classification decision of the DNN-IDS.  

In this work, offline feedback refers to providing user with 
information about what the DNN-IDS has learnt. This process 
takes place after training and prior to deployment of the DNN-
IDS. The goal of providing this feedback is to enable user to 
qualitatively evaluate the DNN-IDS in addition to the 
quantitative evaluations done through accuracy scores. This 
analysis helps user see the concept the DNN-IDS has learnt 
about intrusions in general and about each intrusion type. To 
generate the offline feedback, a test dataset is. First, the test 
dataset is processed through the DNN-IDS to generate 
classification decisions. As mentioned in the above section, the 
un-normalized probability scores are used as the output from the 
DNN-IDS to generate the relevance scores. For offline 
feedback, mean relevance of each input feature for each 
intrusion type is reported to the user. With this information, the 
user can determine which factors drive the detection a certain 
intrusion type or intrusions in general. The mean relevance of 
each input feature per attack type is calculated as follows:  

𝑅𝑐
𝑑 =

1

𝑁𝑐

∑𝑅𝑥𝑘𝑑
(1)

𝑁𝑐

𝑘

 (10) 

In this work, online feedback refers to providing the user 
with information about each individual classification that 
happens during the intrusion detection of a live data stream. In 
this step, the offline validated DNN-IDS is deployed on the 
network and is actively classifying the data stream. Therefore, 
in online feedback generation, LRP generated input relevance 
scores are presented for individual classification decisions. 
Therefore, the user is presented with the prediction from the 
DNN-IDS and the input features that drove the DNN-IDS to the 
prediction. If an attack is detected, without just giving the user 
the prediction, this system reports the inputs that indicate the 
detection of the attack. 

III. EXPERIMENTS 

This section elaborates the experimentation procedure. First, 
the dataset and the preprocessing details are presented. Then, the 
two classification approaches – binary classification and multi-
class classification – are presented. Finally a discussion on the 
results and the implications of the presented work is presented.  

A. NSL-KDD Dataset and Preprocessing 

The NSL-KDD dataset is an improved version of the KDD 
Cup ‘99 dataset [23]. The data were captured during the DARPA 
IDS evaluation program 1998 and was used in the Third 
International Knowledge Discovery and Data Mining Tools 
Competition. Tavallaee et al. created the NSL-KDD dataset by 
making improvements such as removing redundant records  
[23].  

Each data record in the dataset is a TCP connection and they 
fall under five classes: normal, denial-of-service (DoS), probing, 
user-to-root (U2R), and root-to-local (R2L). The data 
distribution in the train and test datasets can be seen in Fig 2. It 
can be observed that the U2R and R2L classes are extremely 
underrepresented in the dataset creating a data-imbalance 
problem. Since solving a data imbalance problem is out of the 
scope of this work, the data records from R2L and U2R classes 
are not considered in this study.  

 
Fig 2: Data Distribution of the NSL-KDD Dataset 

 



 

Each TCP connection record consist of 41 input features. 
These features consist of basic features acquired from the TCP 
connection, traffic features acquired from a window of two 
seconds and content featured acquired from the application layer 
data. In terms of data types, the 41 features contain 7 categorical 
features (four of them binary) and 34 continuous features. The 
categorical features pose a challenge in algorithms such as 
DNNs. In this work, the binary features are unchanged. The 
other three categorical features are converted to numerical 
features by using a simple label encoding scheme. Label 
encoding is used over one-hot encoding to preserve the number 
of input features and to avoid making the data sparse. In order to 
make sure that the features are considered in the same ranges, 
the input features were standardized to a zero mean and unit 
variance distribution.  

B. Binary Classification Results 

As mentioned, from the dataset, only the records belonging 
to the classes normal, DoS and Probe were used in this paper. 
For the binary classification, the focus was to train a DNN-IDS 
to identify between normal and abnormal (intrusion) traffic. 
Therefore, the both DoS and Probe were relabeled as intrusions 
and a binary classification was performed between normal and 
intrusion.  

Different DNN-IDS models were built with different MLP 
architectures. This was performed to mainly to observe whether 
the factors that drive the intrusion detection changes with the 
depth of the DNN. Table I shows accuracy levels that was 
achieved by the different DNN-IDS models. Three MLP types 
in terms of depth was tested. The presented results are the best 
classification accuracies achieved for the particular depth. It has 
to be noted that very deep architectures were not tested in this 
study. All the models were able to achieve an overall test 
accuracy level of ~97% and it was observed that intrusions were 
detected at an accuracy of 97%.  

LRP was implemented on the DNN-IDS to find the 
contributing factors for detecting intrusions. It was observed that 
the models allocated different importance levels to input 
features depending on the model. Fig 3 shows the average input 
feature relevance scores for data records classified as an 
intrusion. It can be observed that the DNN-IDS with a single 
layer paid the highest emphasis to “percentage of connection 
that were rejected that was aimed at the same destination in the 
last two seconds” (rerror_rate) and the “percentage of 
connections to the same service out of the ones that were aimed 
at the same destination in the last two seconds” 
(same_srv_rate), while “percentage of connections that was 
rejected with the same destination IP” (dst_host_rerror_rate) 
received highest emphasis with two hidden layers and 
dst_host_rerror_rate and same_srv_rate received highest 
emphasis for the DNN-IDS with three hidden layers.  

C. Multi-class Classification Results 

In this experiment, the DNN-IDS is trained to distinguish 
among three classes; normal, DoS and Probe. Similar to the two-
class test, different models in terms of depth was implemented. 
Table II presents the test accuracies achieved for the different 
models. It was noticed that the models achieved similar overall 
test accuracies (~94%). Similarly, the DoS attack detection 
accuracy was similar across models (~98%). It was noticed that 
the probe attack detection suffered in accuracy. The highest 
probe attack detection accuracy was noticed in the model with 
three hidden layers (~75%).  

Fig 4 shows the input feature relevance scores seen for 
detection of DoS attacks. As with binary classification, it was 
noticed that different input features received the highest 
relevance in driving the decision of the different DNN-IDS 
toward DoS. The model with single and three hidden layers 
showed similar behavior with the same_srv_rate and 
dst_host_rerror_rate receiving the highest relevance in DoS. 
The model with two hidden layers showed the highest relevance 
to dst_host_rerror_rate. The other input features that were 
considered by the models with high relevance was rerror_rate, 
count, and “protocol type used in the connection” 
(protocol_type).  

Fig 4 shows the input feature relevance scores in Probe 
detection. It can be noticed that rerror_rate received the highest 
emphasis with the single hidden layer MLP. Whereas, models 
with two and three hidden layers gave the highest relevance to  
“percentage of connections to different services with the same 
destination IP” (dst_host_diff_srv_rate). Further, it was noticed 
that all models gave some relevance to protocol_type, “whether 
user is logged in” (logged_in), “percentage of connections 
rejected with the same destination IP” 
(dst_host_srv_rerror_rate), “percentage of connections to 
different destinations with the same port as the current 
connection port in the last two seconds” (srv_diff_host_rate),  in 
detecting Probe.  

D. Discussion 

This generated feedback enables the users and domain 
experts to qualitatively validate the DNN-IDS before and during 
deployment. This gives the user the advantage of “peeking into” 
the black box of the DNN-IDS. The user gets to see the factors 
that cause the detection of an intrusion. A domain expert can 
assess these factors and determine whether the DNN-IDS is 
making decisions for the right reasons. This enables the users 
and the other domain experts to qualitatively evaluate the DNN-
IDS in addition to the quantitative evaluation through accuracy 
scores.  

In the experiments, it was noticed that despite similar 
accuracies, the different DNN-IDS made the decisions based on 
different features. This evidences the importance of having the 

TABLE I: TEST ACCURACY RESULTS – BINARY CLASSIFICATION 

Model  

(hidden layers) 

Classification 

Accuracy 

(%) 

Accuracy Individual Class 

(%) 

Intrusion Normal 

One (100) 96.19 95.04 97.16 

Two (100, 50) 97.33 97.12 97.52 

Three (100, 50, 80) 96.73 95.80 97.52 

 

TABLE II: TEST ACCURACY RESULTS – MULTICLASS CLASSIFICATION 

Model  

(hidden layers) 

Classification 

Accuracy 

(%) 

Accuracy Individual Class  

(%) 

DoS Probe Normal 

One (50) 93.83 97.75 68.03 97.74 

Two (50, 80) 94.09 98.41 69.22 97.72 

Three (30, 80, 30) 94.83 98.76 74.34 97.62 

 



 

qualitative analysis of the DNN-IDS. The qualitative analysis 
can enable users to pick a model which makes decisions based 
on the reasons that align with domain expert knowledge. The 
combination of the qualitative and quantitative analysis leads to 
a better understanding of the DNN-IDS and its decision making 
process. Thus, it enables experts to use their experience to 
evaluate and analyze the DNN-IDS. This leads to building users’ 
trust in the system. 

IV. CONCLUSIONS AND FUTURE WORK 

This paper presented a methodology for improving the users’ 
trust on DNN-IDS through generating user feedback on the 
decision making process of the DNN-IDS. The goal was to 
increase the transparency of the DNN-IDS which is necessary to 
build user trust. In this work, the feedback was presented by 
calculating the most relevant input features for predictions made 
by the DNN-IDS. A supervised learning based DNN-IDS (based 

on MLP) was considered. Two forms of feedback were 
generated: 1) offline feedback (after training, prior to 
deployment) and 2) online feedback (during deployment). In 
offline feedback, the user was provided the most relevant input 
features for each concept the DNN-IDS learned. This 
information enables the user to evaluate whether the input 
features that drive the decision of the DNN-IDS toward a certain 
class (e.g. attack type) aligns with the domain experts’ 
knowledge. In online feedback, most relevant input features for 
each individual prediction is provided to the user. Then, the user 
can evaluate whether the prediction and the features driving the 
prediction align using their domain knowledge. This system was 
implemented on the KDD-NSL dataset for two intrusion types 
(DoS and Probe). Several DNN-IDS architectures with different 
depth were tested. It was observed that despite producing very 
similar accuracies, different architectures gave prominence to 
different features when identifying intrusions. Therefore, it can 
be concluded that the generated feedback can assist the user add 

 
Figure 3: Input Feature relevance scores for class “Intrusion” in binary classification. (a) One hidden layer, (b) Two hidden layers (c) Three hidden layers. It 

can be noticed that although very similar, the priorities given to certain features change across models. The x-axis shows the abbreviated input feature names. 

The highest relevant features are explained in the text.  



 

another layer of evaluation (qualitative) in addition to the 
quantitative evaluation through accuracy scores. The work 
needs to improve on the following fronts: 1) generating effective 
online feedback taking the speed of events into account, 2) 
generating feedback in easily understandable ways (e.g. textual 
descriptions). 
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