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Abstract— Visual data mining facilitates the involvement of 

domain experts in the data mining processes. The effectiveness of 

visual data mining is especially dominant when paired with 

unsupervised methods due to the abundance of unlabeled data. 

Deep Self-Organizing Maps (DSOMs) are unsupervised learning 

architectures capable of high level feature abstraction. In this 

paper, we analyze the effectiveness of using DSOMs for visual data 

mining. DSOM’s visual data mining capability was evaluated 

using the following visual data explorations methodologies: 1) U-

Matrix, 2) hit maps and 3) data histograms. In comparison with 

traditional single layered SOM architectures, experimental results 

showed that DSOMs produced more accurate visual 

representations of the underlying data distributions. Therefore, 

DSOM is a viable method for generating easily understandable 

visual representations of high-dimensional complex datasets. 

These visual representations can be powerful tools in the real 

world, leading to better understanding of systems and thus 

enabling the design of better algorithms for control and 

monitoring. 
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I. INTRODUCTION 

Data mining methodologies have become almost 
indispensable with the increase of amount and complexity in 
data in almost every domain [1], [2]. Data mining is an 
interactive process which requires intuition and human 
knowledge coupled with modern machine learning techniques 
[3]. Visual data mining (VDM) is the process of exploration, 
interaction, and reasoning with abstract data in human 
perceivable way [2]. Thus, it allows humans to incorporate 
human intelligence in the data mining process, and it has been 
shown that human involvement increase the effectiveness of 
data mining processes [2].  

Pattern recognition is an important aspect of data mining in 
a multitude of areas [4]–[11]. Supervised pattern recognition 
(SPR) approaches albeit high performance, require labeled 
data[9], [12]. Unlabeled data is abundant in real world 
applications and obtaining sufficient amount of labeled data can 
be costly [3],[12],[13]. Therefore, SPR poses challenges in 
cases where there is a lack of available labeled data.  Due to that 
unsupervised and semi-supervised learning based pattern 
recognition methods are becoming common [10], [11], [13]. In 
these methods, they use expertise of domain experts in order to 
improve the effectiveness of data mining and to validate the 
learning processes.  

Self-Organizing Maps (SOMs) are unsupervised learning 
algorithms which have the capability of mapping a high-
dimensional data distribution onto a low-dimensional grid 
while preserving the most important topological and metric 

relationships of the input data [14], [15],[16]. These mappings 
can be used to visualize these high dimensional data while 
preserving their topological structure. Since SOMs have the 
capability of adjusting the network for representing the 
topological properties of input data, it has been widely used in 
visual data mining as a dimensionality reduction and feature 
extraction tool [2], [17], [18]. SOM has the ability of 
visualization of multi-dimensional data in a human perceivable 
way [14], [15],[16]. SOMs have better capability of revealing 
the overlapping structure in clusters compared to other 
traditional cluster analysis techniques [14] [15]. SOMs have 
successfully used in many areas including speech recognition, 
robotics, process control and telecommunication [6]–[9], [5].  

Deep Self-Organizing Maps were proposed in literature to 
add the high level feature abstraction capability to single 
layered SOMs. [19] [20]. In order to overcome this limitation, 
Liu et al [20] proposed the Deep SOM (DSOM), an architecture 
composed  of multiple layers, similar to a Deep Neural Network 
(DNN), . Their work suggested adding multiple sequential 
layers of SOMs and “sampling” layers. The sampling layer 
combined multiple SOMs form the preceding layer into a single 
map. Even though DSOM solves the high-level feature 
abstraction limitation, DSOM architecture proposed by Liu et 
al. is computationally expensive [21]. In our previous work, we 
proposed a parallelizable DSOM architecture to alleviate the 
performance bottle neck while preserving the high level feature 
abstraction capabilities [21]. In [21], we showed that growing 
the network in width by adding parallel SOM layers feeding 
into the same sampling layer, as opposed to growing in depth 
improved computational time while retaining classification 
accuracy and feature abstraction capability. In this paper, by the 
acronym “DSOM” we refer to the parallelizable DSOM 
architecture we presented in [21].  

In this paper, we evaluate the effectiveness of DSOM for 
visual data mining capabilities. The analysis is carried out using 
widely used visual data exploration methods such as U-matrix, 
hit maps and data histograms. These visualizations are 
qualitatively compared to the same visualizations generated by 
single layer SOM (referred to as SOM hereafter).  

The rest of the paper is organized as follows. Section II 
provides brief overview of the SOM learning algorithm; 
Section III overviews the DSOM architecture we proposed in 
[21] and DSOM based visual data mining; Section IV presents 
and discusses the experimental results, and finally, section V 
concludes the paper. 

II. UNSUPERVISED LEARNING ALGORITHM OF SELF 

ORGANIZING MAPS 

This section briefly reviews the traditional SOM 
architecture by T. Kohenen [22].The Self Organizing Map 



  

algorithm was introduced in 1981 by T. Kohenen [22]. It uses 
winner-take-all competitive leaning method.  

A typical SOM network consists of a topological grid of 
neurons which are arranged in 1D or 2D lattice. Each neuron 
maintains a weight vector W= {w1, w2, …., wm} of m dimension, 
where m is the dimension of input feature vector. Input pattern 
can be represented as X = {x1, x2, …., xm}. Figure 1 illustrates 
the structure of 2D SOM architecture. The learning process of 
the SOM network can be described as follows,  

Step 1: Randomly initialize all the weight vectors of the 
SOM network. 

Step 2: Randomly select an input pattern X from the 
training data set. 

Step 3: Find the Best Matching Unit (BMU) for the selected 
input X by calculating the Euclidian distance between X and 
weight vectors of the neurons in the neuron lattice. BMU can 
be calculated as,  
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Here, N is the number of neurons in the SOM. 

Step 4: The weights in the neighborhood neurons (j) of 
BMU neuron (winning neuron j*) can be calculated as follows,  
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where, Nj* defines the neighbourhood region of j*, and  (t) is 

the learning rate at epoch t. The learning rate is decayed through 

the epochs as follows: 
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where, 0.49 is a constant which found experimentally [20]. 

Neighbourhood calculation performs using the following 

equation, 
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Where 
t

  corresponds to the radius of the neighbourhood. It 

has to be noted that the neighborhood is decayed along with the 

epochs. 

 
Step 5: Repeat step 2-4 until a specified convergence 

criteria has been reached. 

Classification on the last SOM layer can be performed using 
the sample hits of each neuron. Proposed unsupervised 
classifier implementation is discussed later in the paper.  

III. DEEP SELF ORGANIZING MAP BASED VISUAL DATA MINING  

This section discusses DSOM architecture and the DSOM 
based visual data exploration techniques for visual data mining. 

As mentioned, DSOMs have proven to be capable of high 
level feature abstraction. Therefore, we hypothesize that the 
output from DSOMs will provide better visualizations that 
reflect the relationships that exist in input data when compared 
to the SOM. These visualizations can help domain experts/users 
extract knowledge from the data such as available patterns, input 
correlations and pattern distributions. This can lead to better 
understanding of complex systems and thus result in better data-
driven and expert knowledge driven prediction, monitoring and 
control systems.  

A. Deep Self Organizing Maps 

The main idea behind the DSOM merges the concepts of 
unsupervised learning from SOMs and high level feature 
abstraction Convolution Neural Networks (CNNs). In CNNs, 
each unit in a layer receives inputs from a set of units located in 
a small neighborhood of its preceding layer [23], [24]. CNNs 
possess the idea of local receptive fields which are capable of 
extracting basic features such as edges, endpoints and corners. 
These extracted features are combined in the subsequent layers 
to obtain higher level features. This layers structure is 
incorporated in the DSOMs such that SOMs in higher-level 
layers are able to learn more abstract information than the SOM 
layer in its preceding layer. DSOMs are primarily used for image 
data. 

In DSOMs, input patterns (images) are divided into small 
patches and each patch is processed using a separate SOM, i.e. 
in a SOM layer each patch is processed using separate SOMs at 
parallel. The wining neuron indexes of all SOMs that processed 
the patches are then organized into a single 2D grid in the next 
layer (sampling layer). In the parallelizable DSOM presented in 
[21], more than one SOM layer in used parallel (see Figure II). 
These parallel layers can have different map sizes 
accomplishing two major goals: 1) improve the computational 
efficiency of DSOMs and 2) improve the generalization 
capability. Computational efficiency is increased by increasing 
the number of operations that can be carried out in parallel to 
improve computational efficiency. Generalization capability is 
increased by supporting learning features of different resolution 
though different map sizes. This process of SOM and sampling 
layers are repeated until the last layer. The final layer is a single 
SOM which takes the preceding sampling layer as the input.  

Use of multiple maps in parallel results in a lesser number 

of serial SOMs in PD-SOM architecture. Computations of 

 

Figure 1: 2D Self Organizing Map Architecture 



  

parallel SOM layers are performed in parallel, and thus results 

in less computation time compared to the initial DSOM in [20]. 

Further, experimental results showed that the parallelizable 

DSOM architecture showed a considerable improvement in 

robustness to noisy data. The parallelizable DSOM architecture 

can be extended by adding more parallel layers to make it wider 

and by adding more SOM layers and sampling layers to make 

it deeper. In the interest of brevity, the complete training 

algorithm of DSOM is not presented in this paper. If interested, 

readers are directed to [21] for the detailed training process. 

DSOM was implemented as an unsupervised classifier. 

Unsupervised classifiers (clustering based classifiers) don’t 

require labeled data initially [11], [25].They require a set of 

training datapoints which can be clustered by a unsupervised 

learning based model. Once the clusters are generated, the 

domain expert can interpret these clusters using different 

knowledge discovery and data visualization methods and can 

assign a class for each cluster.  

B. DSOM based Visual Data Mining   

As mentioned before, data visualization and visual data 

exploration play important roles in knowledge discovery [18]. 

Domain experts and analysts need tools for generation of 

hypotheses about models and datasets. Therefore, VDM  plays 

a major role in knowledge discover by providing interactive 

data presentations and various visual displays for domain 

experts [18].   

SOMs are widely used in visual data mining as 

dimensionality reduction and feature extraction tools due to 

their capability of mapping high dimentional data into a low 

dimention space, i.e. They have the data projecton capability 

allowing visual inspection [2], [26]. Once data is mapped to low 

dimensional spaces, human experts can explore and interect 

with data which allows to incooparate human knowledge into 

data mining process. 

There are number of methods which have been proposed in 

the literature to explore information based on SOMs.  Most 

commonly used methods are U-matrix, P-matrix, clustering of 

model vectors, projecting model vectors into low dimensional 

spaces, hitmaps and data histograms [27] [26]. As an initial 

step, this paper focuses on three methods: U-matrix, hit map 

and data histograms. The visualization techniques are presented 

below.  

U-matrix: (Unified Distance Matrix) is one of the most widely 

used methods for visualizing the cluster structure of SOMs [28], 

[29]. It shows the distance between weight vectors of 

neighboring neurons (immediate neighbors) using color codes 

[30]. If distances between neighboring units are small, then they 

represents a cluster pattern with similar characteristics. If 

neighboring units are far apart, then these units are located on 

low dense input space with few patterns. They can be 

considered as separation between clusters.  

HitMaps: This shows how often a neuron is chosen as the 

BMU. Hit map information can be utilized in clustering the 

SOM by using zero-hit units to indicate cluster boarders [28] . 

Data Histograms: These represent how many data items are 

represented by a specific unit. This is also a slightly different 

representation of hitmap representation. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

This section discusses the experiments performed in the 
paper. First, the unsupervised classifier implementation is 
discussed. Then the experimental setup used for different test 
cases is presented. After that, the experiments carried out to test 
different architectures are presented. Finally, comparison of two 
model based on different visual data mining methods are 
presented and their importance for future data mining is 
discussed.  

 
Figure 2: Deep Self Organizing Map 



  

A. Implementation of Unsupervised Classifier 

In this paper, we implemented an unsupervised classifier 

using SOMs. In order to analyse the clustering capability we 

used a labeled dataset in this study. However, it has to be noted 

that the labels were not used in the training. After training was 

completed, a special type of neuron hitmap was generated using 

the idea of conventional neuron hitmap. This map was 

generated based on the number of times a specific neuron 

become BMU for a specific class. Figure 3 shows the special 

hit map that we generated. Each cell (nm,Classn) represent 

number of times the neuron ‘m’ became BMU for the class ‘n’. 

This type of a hitmap was generated  as opposed to 

conventional hitmap because it provides the user with a better 

understanding of the class distributions in the data.  

By looking at the special hit map and the U-matrix, a domain 
expert can assign a class for each neuron/cluster. For this 
experiment, since we had the labels available, we assigned a 
class for each neuron based on the maximum number of times a 
specific unit became the BMU for a specific class. When labels 
are available and when there are ties between classes, a domain 
expert will get involved to resolve the rites. In such cases, 
domain expert will assign classes to units based on the classes 
of neighboring neurons, by looking at the U-matrix. This method 
reduces the human workload for designing the classifier and at 
the same time, allows integrating human expertise in the 
classification process. 

After each neuron is assigned a class label, the train accuracy 
and test accuracy are calculated as performance measures. The 
robustness of the models were measured by introducing 
different salt and pepper noise levels to the MNIST dataset. Salt 
and pepper noise removal is one of the major topics in the field 
of image enhancement [31]. It is a type of impulse noise that 
occur in images. Further, it has been shown that such noise has 
a substantial effect on the performance of image processing 
applications in various industrial tasks such as face recognition 
[32].  

B. Experimental Setup 

MNIST benchmark handwritten character recognition data 

set is used for the training and testing of two models. It contains 

images of hand written characters (0 to 9 digits) of 28X28 

pixels in size. The ratio of training to test data set was used as 

3:10. For this experiment, a significantly smaller training set of 

3000 images were used to reduce the classifier training time. 

The complete test set of 10000 images were used to test the 

accuracy of algorithms. Building an efficient classifier using a 

small training data will be advantageous in cases where there is 

only limited amount of training data to traing a supervised 

classifier and to for implementing classifiers which are time and 

cost efficient. The training data set was selected randomly while 

maintaining the balance class lables. 

C. Classification Accuracy: SOM  

As mentioned before, the map size was selected within 8-24 

range which is the maximum and minimum map size used for 

DSOM models. So, it allowed to perform a fair comparison 

between DSOM and SOM models. Table 1 presents the results 

obtained for SOM architecture.  

It was noticed that the increase the map size result in an 

increase of train accuracies. For the noise range 2-20, there 

were no much differences in test accuracy. There was a 

decrement in accuracy with the increase of noise for all the 

models. For higher noise levels (40-60) the decrement was 

drastic compared to lower noise levels. The highlighted result 

in the table was the maximum result obtained for SOM, out of 

all models under each accuracy criteria.  

D. Classification Accuracy: DSOM  

As discussed previously the parameters for the DSOM was 

selected based on our previously presented DSOM [21]. Table 

II presents the architecture details of DSOM. Map sizes were 

selected experimentally and the range was limited to 18x18 to 

24x24. It has to be noted that the map sizes were changed only 

in the first layer of the architecture. Last layer map size kept as 

constant (8*8) where unsupervised classification is performed. 

Table III presents the results obtained for DSOM architecture. 

Only the result of best for models within selected range was 

presented with relevant map sizes in parallel SOM layers.  

 
Figure 3: Generated hit map representation 

TABLE I: RESULTS OBTAINED FOR SOM ALGORITHM 

Model 
Layer 1 

MapSize 
Train Accuracy Test Accuracy 

Test Accuracy for Different Noise Levels [%] 

2 5 10 20 40 50 60 

1 8*8 61.98 61.864 61.908 62.03 62.02 62.066 58.348 52.596 25.742 

2 12*12 63.16 62.764 62.866 62.806 62.89 62.648 58.888 53.136 27.236 

3 16*16 65.59 64.638 64.782 64.738 64.654 64.398 59.548 52.64 26.416 

4 20*20 66.76 66.338 66.354 66.314 66.414 65.866 61.098 54.762 28.072 

5 24*24 69.36 68.57 68.638 68.576 68.712 68.130 63.136 55.574 26.072 

 

 TABLE II: THE ARCHITECTURE OF THE DSOM [20] 

Layer Nmap MapSize Patch(k) Stride 

Layer 1 100 - - 2 

Layer 2 1 8*8 5*5 1 

 



  

It can be observed that all DSOM models showed better 

train and test accuracies compared to SOM architecture. The 

different between train to test accuracy was around 2%. Similar 

to SOM architecture, there were no significant difference in test 

accuracies for the lower noise levels (between 2 to 20). Further, 

for higher noise levels, there was a huge accuracy decrement.  

The test accuracy difference between the best SOM model 

and the best DSOM model was more than 18%, which was a 

significant difference. This difference accounted for the better 

performance of DSOM architecture compared SOM.  

E. Visual Data Mining 

As discussed earlier, one major characteristics of SOMs is 
that they can be easily interpreted via various visualization 
techniques. This means that SOMs are very suitable for visual 
data mining. As mentioned, this paper uses the U-Matrix, 
hitmaps and data histograms for evaluating the VDM capability 
of the DSOMs. Since the classifications of all the DSOM models 
were performed on a 2D neuron map of size 8X8 (last SOM 

layer), the SOM model with 8X8 was selected for the 
comparison.  

Hit map: Hit map representation which shows how often a unit 

is chosen as a BMU. Figure 4 (a) and (b) represents the hit map 

observed for SOM and DSOM, respectively. Hit maps SOM 

and DSOM were mapped to the same scale for comparison 

purposes. It was observed that only a few units of the SOM were 

activated and most units showed 0 hit value, whereas in DSOM, 

all units showed a hit value greater than 0 (all units were active). 

When comparing the neuron hits, active SOM units showed 

very high neuron hits compared to DSOM. In Fig 4(b), it 

appears as if the DSOM neurons don not show a difference in 

operation. However, In Figure 4 (c), which represents an 

unscaled hit map of DSOM, it can be seen that some units show 

higher activity compared to the other units. 

As mentioned, Fig 3 presents the special hit map which we 

used for implementation of the unsupervised classifier. Using 

that we generated a new hit map representation where each unit 

represents the class label which it activated as BMU at the 

highest frequency (See Figure 5). It was observed that (8*8) 

SOM model doesn’t show proper clusters whereas DSOM hit 

map shows better clusters, where neighboring units act as one 

 
(a)  (b)  

 
(c)  

Figure 4: (a) Hit map Representations for SOM, (b) DSOM – scale 

representation (c) DSOM- Unscaled Representation 

 
(a)  (b) 

Figure 5: Class Label distribution (a) SOM, (b) DSOM 

 
(a)  (b) 

Figure 6: U-matrix representation (a) SOM, (b) DSOM 

  

 

TABLE III: RESULTS OBTAINED FOR DSOM ALGORITHM 

Model 

Layer1 
Train 

Accuracy 

Test 

Accuracy 

Test Accuracy for Different Noise Levels [%] 

Patch 

Scale1 

Patch 

Scale2 

Map 

Size 1 

Map 

Size 2 
2 5 10 20 40 50 60 

1 10 10 22*22 18*18 85.12 83.744 83.804 83.818 83.632 83.196 75.504 64.05 21.718 

2 10 10 22*22 16*16 85.68 83.82 83.68 83.772 83.656 82.92 75.028 61.712 20.724 

3 10 10 22*22 14*14 86.64 84.868 84.788 84.838 84.608 84.044 75.846 63.408 21.706 

4 10 10 22*22 24*24 85.72 83.802 83.872 83.79 83.624 83.336 75.616 63.224 20.612 

 

 



  

cluster to represent one class. The ‘-1’ value is assigned for 

neurons with 0 BMU hits.  

U-Matrix: Figure 6 (a) represents the U-matrix obtained for 

SOM architecture whereas Figure 6 (b) represents the U-matrix 

observed for DSOM architecture. It was observed that SOM U-

matrix doesn’t show any large clusters or cluster separations for 

both SOM and DSOM but for DSOM it showed some cluster 

separations. Large blue color area in the SOM U-matrix 

corresponds to the area with inactive units. Further analysis of 

the U-Matrix is needed to improve the visualization on this 

front. There are several methodologies proposed in literature on 

ways of calculating the U-Matrix. These methodologies will 

have to be explored. Furthermore, as alternatives of the u-

matrix, other weight vector visualization techniques such as t-

distributed Stochastic Neighbor Embedding (t-SNE) can be 

evaluated [33].  

Data histograms: Figures 6 and 7 represent the data 

histograms obtained for SOM and DSOM architectures 

respectively. Data histograms visualize which units are 

activated and how often it became BMU compared to other 

units in the map. It also represents the amount of each unit acted 

as the BMU for each class label. According to the data 

histogram of SOM, it was observed that all the activated units 

were activated for more than one class label. There were very 

few units which were activated for only a single class (See 

neuron number 51, for class label 0). Further, number of hits 

per unit was significantly higher for SOM units compared to 

DSOM units. According to the data histogram for DSOM, it can 

be seen that all the units have been activated to some degree. 

However, it can be seen that most of the neuron has been 

activated only for a specific class label. In the ones that has 

many class labels, one class label has dominated the others in 

terms of frequency.  

The better cluster separations observed in hit map and data 

histograms, make it easier for the domain expert to label the 

neuron and group the neurons based on classes. Hence, hit map 

and data histograms improve the visual data mining process.  

V. CONCLUSIONS  

This paper analyzed the effectiveness of using DSOMs for 
Visual Data Mining. The VDM capability was evaluated using 
visual data exploration methodologies implemented on the 
DSOM. Specifically, U-Matrix, neuron hit map and data 
histograms were used in this study. These visualizations 
generated by the DSOM were compared to the single layered 
SOM. The algorithms were tested on the MNIST dataset. In 
terms of classification accuracy, DSOM significantly out-
performed the SOM. In terms of visualizations for VDM, 
experimental results showed that DSOM based hit map and data 
histograms provided a better representation of the underlying 
data distribution than the SOM. Due to its high-level feature 
abstraction capabilities, DSOM is able produce visualizations 

 
Figure 7: Data Histogram for SOM  

 
Figure 8: Data Histogram for DSOM 



  

which accurately reflect the input data distributions. This 
enables a user to examine these visualizations and extract 
patterns, relationships and behavior that exist in data and glean 
a better understanding of systems. This understanding can lead 
to better predictive systems, better monitoring systems and 
improved control schemes. Therefore, based on experimental 
results, it can be concluded that DSOM is a viable method for 
visual data mining. 
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