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Abstract—Anomaly detection in industrial processes is crucial 

for general process monitoring and process health assessment. 

Deep Neural Networks (DNNs) based anomaly detection has 

received increased attention in recent work. Albeit their high 

accuracy, the black-box nature of DNNs is a drawback in practical 

deployment. Especially in industrial anomaly detection systems, 

explanations of DNN detected anomalies are crucial. This paper 

presents a framework for DNN based anomaly detection which 

provides explanations of detected anomalies. The framework 

answers the following questions during online processing: 1) “why 

is it an anomaly?” and 2) “what is the confidence?” Further, the 

framework can be used offline to evaluate the “knowledge” of the 

trained DNN. The framework reduces the opaqueness of the DNN 

based anomaly detector and thus improves human operators’ 

trust in the algorithm. This paper implements the first steps  of the 

presented framework on the benchmark KDD-NSL dataset for 

Denial of Service (DoS) attack detection. Offline DNN 

explanations showed that the DNN was detecting DoS attacks 

based on features indicating destination of connection, frequency 

and amount of data transferred while showing an accuracy 

around 97%.  
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I. INTRODUCTION 

Modern industrial processes are continuously growing in 
complexity, structure and degree of automation [1]. With this 
increasing complexity, reliability and security of systems are a 
concern and thus continuous monitoring of the systems is 
essential [1]. In system monitoring, identifying anomalous 
behavior in data is crucial [2]. This process, named anomaly 
detection and novelty detection has many forms such as network 
intrusion detection, fault detection and condition monitoring [2]. 
As a result, research on anomaly detection methodologies have 
been a popular topic in the last few decades.  

One of the major approaches is model-based techniques [3]–
[5]. However, the drawback of model based techniques is that 
they require a priori knowledge and the mathematical 
knowledge of the system. Therefore, data-driven process 
monitoring techniques are attractive alternatives as they require 
minimal a priori knowledge about the system [1]. In data driven 
techniques, traditionally, “shallow” Artificial Neural Networks 
(ANNs) and Support Vector Machines (SVM) have been very 
popular in anomaly detection applications [6], [7]. ANNs have 
been successfully used in anomaly detection in many 
applications such as intrusion detection [8]–[10] and hardware 
component fault detection [11]. SVMs, especially one-class 
SVMs have been a very popular approach in many anomaly 

detection approaches [12]–[14]. Further, methods such as 
Random Forests have been successfully applied to anomaly 
detection [15].  

In recent years, Deep learning or Deep Neural Networks 
(DNNs) gained immense popularity [16]–[18]. DNNs learn 
features with multiple layers of abstraction and thus are capable 
of modeling complex patterns [19], [20]. Therefore, naturally 
DNNs based anomaly detection methodologies have received 
increased attention in the last few years. Methods such as 
Restricted Boltzmann Machines, Autoencoders, Long Short 
Term Memories, Deep Multi-Layer Perceptrons and 
Convolutional Neural Networks have been proposed in the 
literature [21]–[29]. Despite their impressive accuracies, DNNs 
are still used as black boxes due to their opaque highly non-
linear structure [30]. This poses a limitation in practical 
applications, especially in mission critical systems where it is 
important to have insight about DNN predictions. It is important 
to verify whether DNN’s high accuracy is due to the correct 
reasons or by exploiting special artifacts in the dataset [31]. 
Further, these mission critical systems largely employ humans-
in-the-loop for controls and monitoring and when machine 
learning based decision support systems are deployed, the 
human trust on the machine learning models is extremely 
crucial.  

This paper presents a framework for explainable DNN based 
anomaly detection. The presented framework provides 
explanations of the DNN based anomaly detector. In the 
proposed framework, when the DNN detects an anomalous 
event, in addition to the prediction, the system provides the user 
with the following: 1) The confidence of the prediction, 2) A 
textual description of the detected anomaly and 3) the factors 
which was relevant in making the prediction. This framework 
enables the user to get justifications of the DNN decisions in 
addition to the decision itself, i.e. the user gets to see whether 
the DNN is “doing the right thing for the right reasons”. During 
online processing, when an anomaly is detected, the user can 
obtain a justification from the DNN which answers the questions 
“why is it an anomaly?” and “how certain are you that it’s an 
anomaly?” Further, a domain expert can use the framework 
offline to evaluate DNNs “knowledge” and make decisions 
about deployment. In addition to the framework, this paper 
presents an initial implementation of the framework. The offline 
knowledge evaluation is discussed in the implementation. 

The rest of the paper is organized as follows. Section II 
elaborates on the concept of interpretability/ explainability of 
DNNs. Section III presents the framework we propose and 
outlines the methodology of the initial implementation of the 



 

framework, Section IV presents the details about the 
experiments conducted and their results, and finally Section V 
concludes the paper.  

II. EXPLAINABLE DEEP NEURAL NETWORKS 

This section elaborates on the concepts of explainability and 
interpretability of DNNs and overviews the existing consensus 
on the taxonomy.  

Gunning identifies an explainable machine learning system 
as one that answers the following questions. 1) “Why did it do 
that?” 2) “Why didn’t it do something else?” 3) “When does it 
succeed?” 4) “When does it fail?” 5) “When can it be trusted?” 
and 6) “how can an error be corrected?” [32]. Improving 
interpretability of Deep Neural Networks remain to be an open 
research area. The terms interpretability and explainability are 
used interchangeably in the domain and Lipton pointed out that 
a formal definition on what an interpretable DNN is needed [33]. 
The only formal definition of interpretability and explainability 
is provided in [31]. Montanvon et al. propose a distinction 
between the terms “explanation” and “interpretation” in the 
context of DNNs. Since it is out of the scope of this paper, we 
will be using the words interchangeably and in the context of 
this paper, “interpretation” or “explanation” would infer 
shedding light into the DNNs predictions. Despite the lack of a 
formal definition, DNN interpretability can be categorized into 
two broad categories,: 1) model transparency and 2) model 
functionality [33], [34].  

Transparency of the model refers to understanding what the 
network has learned and the reasons behind the concepts it has 
learned. Transparency can be viewed in three parameters: 1) 
decomposability, 2) simulatability and 3) algorithmic 
transparency[34]. Decomposability is whether there is an 
intuitive explanation for the model parameters. Algorithmic 
transparency relates to the ability to explain the inner workings 
of the learning algorithm. Simulatability refers to the ability of a 
human using the input data together with the model to reproduce 
every calculation that’s necessary to make the prediction, 
allowing a human to understand the changes in the model 

parameters during the training process. Given the complexity of 
DNNs, achieving these three components is not a trivial task. 
Further, it is assumed that the simulatability is very low in DNNs 
and hence most of the research is focused on improving 
decomposability and algorithmic transparency [34].  

Model functionality explanations can be used to explain 
predictions by the model. This facet of interpretable DNNs is 
also called post-hoc explanation generation [33]. Post-hoc 
explanation generation entails understanding a pre trained 
model, i.e. the trained model is available and methods attempt 
to gain a functional understanding of the trained model [31]. 
Post-hoc explanations can be generated in four different ways. 
First method is to provide textual justifications of the DNN 
predictions. This involves providing a semantically meaningful 
description of the model’s output and the reasons behind the 
output. Therefore, it requires a combination of models. Second 
method is to provide justifications through different 
visualizations of parameters. Third, local explanations are used 
to gain insight on the model’s behavior. For instance, in DNN’s 
the gradient of the output with respect to the inputs can be used 
to identify the local changes that are influenced by the input 
vector [35]. The focus of this paper is on post-hoc explanations 
for DNN based anomaly detection algorithms.  

III. EXPLAINABLE DEEP NEURAL NETWORKS BASED ANOMALY 

DETECTION 

This section presents a framework for DNN based anomaly 
detection and explanation of DNN based decisions. When using 
DNNs for process monitoring in mission critical systems such 
as critical infrastructure security, interpretability is almost as 
important as the prediction accuracy. Therefore, the deployed 
DNN models should be able to provide explanations of their 
predictions. In this paper, we present a framework for 
explainable DNNs for process monitoring. Figure 1 shows the 
presented framework.  

The focus of presented framework is on generating post-hoc 
explanations for the DNN predictions. Therefore, in addition to 
the DNN prediction the following outputs are generated to 

 

 
Figure 1: The Presented framework for Explainable DNN based Anomaly detection. The decision maker is the human operator. The operator gets the DNN 

predictions and the justifications.  



 

improve the user’s trust on the DNN prediction: 1) relevance of 
input features for the DNN prediction, 2) the confidence of 
estimation, and 3) textual justification. Therefore the user has 
the capability of validating the DNNs decisions. For instance, 
when an anomaly is detected, the framework will provide the 
user 1) the confidence the DNN has on the estimation (a 
probability score or a fuzzy membership grade), 2) input feature 
relevance scores, indicating what input features “drove” the 
DNNs decision and 3) textual description of the anomaly (can 
be a preset description of the anomaly type, or an IF-THEN type 
linguistic summary). Further a textual summary can be given to 
the user summarizing all the aspects: e.g. DoS Attack WITH high 
confidence BECAUSE “connections to same host in last 2 
seconds” is high.  

In this paper, the first steps of the framework implementation 
is presented. A feed forward DNN is used to identify anomalies 
in a data stream and input feature relevance is calculated for 
classification decisions. In order to validate the “knowledge” of 
the DNN, the relevance scores for each class is extracted. It has 
to be noted that in a practical scenario, this process is carried out 
offline, i.e. prior to deployment of the DNN. First, the DNN 
based anomaly detection method is presented. Then, the input 
feature relevance calculation is presented.  

A. Deep Neural Networks based Anomaly Detection 

In this paper, anomaly detection is carried out using a 
supervised DNN, i.e. the DNN is trained with labeled data.  

An input record can be considered as 𝑋 ∈ ℝ𝑑, where each 
input patter X is composed of a set of input features: 𝑋 = {𝑥𝑑} 
where d denotes the dth feature in the dataset. In addition to the 
input features, each X is associated w 
ith its label Y. Therefore, the function of the DNN is a 
classification function where the mapping learned by the DNN 

can be expressed as 𝑓: ℝ𝑑 → ℝ+.  

The DNN consists of an input layer, an output layer and a 
multiple hidden layers of neurons. Each hidden layer neuron is 
activated as:  

𝑎𝑗
(𝑙+1)

= 𝑔(∑ 𝑎𝑖
(𝑙)

𝑤𝑖𝑗
(𝑙,𝑙+1)

+ 𝑏𝑗
(𝑙+1)

𝑖

) (1) 

where, 𝑎(𝑙) is the activation of the lth layer,  𝑤𝑖𝑗
(𝑙,𝑙+1)

 is the weight 

of the connection between ith neuron in layer l and jth neuron in 

layer l+1 and  𝑏𝑗
(𝑙+1)

 is the bias of the jth neuron in layer l+1. 

Rectified Linear Unit (ReLu) neurons are used in the hidden 
layers, i.e. 𝑔(∙) can be expressed as:  

𝑔(𝑥) = max (0, 𝑥) (2) 

The output layer is a softmax layer to obtain the probability 
distribution across the classes. Therefore, for each class the 
probability is calculated using the softmax function as follows: 

𝑃(𝑌 = 𝑦𝑖|𝑋) =
𝑒𝑎𝑖

∑ 𝑒𝑎𝑗
𝑗

 (3) 

where the input values (𝑎𝑖) are calculated using eq.(1) with 
𝑔(∙) being a linear pass through function. The cross entropy loss 
is minimized in the training of the DNN. The optimization 

process is carried out with a gradient based optimizer together 
with error back propagation. 

B. Calculation of Input Feature Contributions to DNN 

Predictions  

The focus of this work is generating post-hoc explanations 
for the DNN. In this paper, the explanations of the DNN is 
provided in terms of input feature relevance scores that indicate 
the contribution each input feature made to the detected 
anomaly. This results in a quantitative measure as to how much 
influence a certain feature had in the DNN’s predictions, which 
helps the user understand what input features contributed to 
decisions that the DNN made. In this paper, the input feature 
relevance is calculated by decomposing the composite function 
of the DNN using a method named Layer-wise Relevance 
Propagation (LRP). It has to be noted that this section assumes 
that the DNN architecture takes the form described in the 
subsection above.  

Layer-wiser relevance propagation (LRP) was introduced by 
Bach et al. as an approach for understanding the contribution of 
each pixel to image classification decisions made by the DNN 
[36]. LRP in its general form assumes that the classification 
algorithm can be decomposed into several layers of 
computation. The first layer is considered as the inputs and the 
last layer is the real-valued prediction of the classifier. It is 
assumed that each dimension of each layer has a relevance score 

(𝑅𝑑
(𝑙)

) where d is the dimension and the l is the layer. The idea is 

to find the relevance scores for the layer l when the relevance 
scores for layer (l+1) is available. The decomposition is carried 
out so that the following rule of the conservation holds.  

𝑓(𝑥) = ⋯ =  ∑ 𝑅𝑑
(𝑙+1)

𝑑∈𝑙+1

=  ∑ 𝑅𝑑
(𝑙)

𝑑∈𝑙

= ⋯

=  ∑ 𝑅𝑑
(1)

𝑑

 
(4) 

Where 𝑓(𝑥) is the output and 𝑅𝑑
(1)

 indicates the relevance score 

of the dth
 dimension of the input layer. 

In calculating these relevance scores, the multilayered 
architecture of the DNN can be leveraged and the relevance 
scores can be propagated in a backward pass, i.e. the relevance 
scores of a lower level can be expressed as a function of upper 
level relevance scores. The relevance scores are back-
propagated in “messages”, 𝑅𝑖←𝑗 (from neuron j in l+1 to neuron 

i in l) such that, the relevance conservation property holds as 
follows.  

∑ 𝑅𝑖←𝑗
(𝑙,𝑙+1)

𝑖

= 𝑅𝑗
(𝑙+1)

 (5) 

In the same way, the relevance score for ith neuron in the l 

layer can be expressed as: 

𝑅𝑖
(𝑙)

= ∑ 𝑅𝑖←𝑗
(𝑙,𝑙+1)

𝑗

 (6) 

This relevance score distribution can be done based on the 
ratio of pre-activations as follows: 



 

𝑅𝑖←𝑗
(𝑙,𝑙+1)

= (
𝑎𝑖

(𝑙)
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∑ 𝑎𝑖

(𝑙)
𝑤𝑖𝑗
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(𝑙+1)
𝑖
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(𝑙+1)

 (7) 

The major drawback of the above propagation rule is that if 
the activations of the neuron (the denominator) is small, the 
relevance scores can get unboundedly large. To bound the 
scores, the αβ method [36] is used. The αβ method can be 
expressed as follows: 

𝑅𝑖←𝑗
(𝑙,𝑙+1)

= (𝛼
𝑎𝑖𝑤𝑖𝑗

+

∑ 𝑎𝑖𝑤𝑖𝑗
+ + 𝑏𝑗

+
𝑖

+ 𝛽
𝑎𝑖𝑤𝑖𝑗

−

∑ 𝑎𝑖𝑤𝑖𝑗
− + 𝑏𝑗

−
𝑖

) ∙ 𝑅𝑗
(𝑙+1)

 

(8) 

Where, 𝑎𝑖𝑤𝑖𝑗
+ and 𝑏𝑗

+are the positive portion of the activations 

and the negative portion is indicated by “-”. Please note that the 
super scripted layer notations have been stripped off to simplify 
the notation and still i and j are considered to be indices 
associated with layers l and l+1 respectively. Therefore, when 
relevance scores are propagated across layers to the input layer, 

the relevance score of each input feature d; 𝑅𝑑
(1)

 can be obtained. 

For each DNN prediction, the relevance scores can be obtained.  

In this study, we use these relevance measures offline for 
providing insight to the user about the trained model. The mean 
relevance of each input feature for each anomaly class is 
reported to the user. These average relevance scores show the 
input features which drove the DNNs decision when the specific 
anomaly class was detected. The average relevance that each 
feature had per class is calculated as follows: 

𝑅𝑐
𝑑 =

1

𝑁𝑐

∑ 𝑅𝑥𝑘𝑑

(1)

𝑁𝑐

𝑘

 (9) 

Where 𝑅𝑐
𝑑 is the average relevance of the dth feature for class c, 

Nc. is the number of data points in the labeled data set belonging 

to class c, 𝑅𝑥𝑘𝑑

(1)
 is the relevance of the dth dimension of the kth 

data record.  

IV. EXPERIMENTS 

This section elaborates the experimental setup, and the 
results obtained from the experiments. First, the dataset used in 
the study is presented. Then, the experimental results are 
presented and discussed. 

A. NSL-KDD Dataset 

KDD Cup 1999 Dataset (KDD99) was used for the Third 
International Knowledge Discovery and Data Mining 
Competition [37]. The KDD dataset is a network intrusion 
detection dataset. The NSL-KDD dataset is a modified version 
of the benchmark KDD 99 dataset. The NSL-KDD was 
proposed to remove the issues the KDD dataset contained such 
as redundant records.  

 Each data record in the NSL-KDD dataset is a “connection”. 
A connection is defined as a sequence of TCP packets recorded 
within a well-defined time window between a well-defined 
source and a destination IP address. Each connection is labeled 
[38]. NSL-KDD dataset comprises of separate train and test sets. 
The training dataset contains 21 different types of attacks. The 
test set contains 37 types of attacks. In order to make the task 
more realistic, the test dataset is not from the same probability 
distribution as the train set and test set has more attack types that 

TABLE 1: FEATURES OF KDD-NSL DATASET. THIS NOT THE COMPLETE SET OF FEATURES. ONLY A SUBSET OF FEATURES ARE PRESENTED 

No. Feature Name Feature Type Description 

1 Duration 

Basic features  

 

Time length of connection 

2 Protocol type Protocol used in the connection 

3 Service Destination network service used 

4 Flag Status of the connection 

5 Src_bytes Number of bytes transferred from source to destination in a single connection 

6 Dst_bytes Number of data bytes transferred from destination to source in single connection 

7 Land Whether the source and destination port numbers are the same 

8 Wrong fragment Total number of total fragments in the connection 

9 Urgent Number of urgent packets in the connection  

23 Count 

Time related traffic 
features 

Number of connections to the same destination as the current connection’s destination 

in the past two seconds 

24 Srv_count 
Number of connections to the same port as the current connection’s port in the last two 

seconds 

25 Serror_rate 
The percentage of connections that have activated the one or more of flags S0-S3 
among the connections aggregated in count (23) 

26 Srv_error_rate 
The percentage of connections that have activated the one or more of flags S0-S3 

among connections aggregated in Srv_count (24) 

27 Rerror_rate 
Percentage of connections that have Flag REJ activated in among the connections 
aggregated in count (23) 

28 Srv_error_rate Percentage of REJ activated among connections aggregated in srv_count (24) 

32 Dst_host_count 
Host based traffic 

features 
Number of connections with the same destination IP 

 



 

doesn’t appear in the training data. All the attacks in the dataset 
can be grouped into four higher level attack categories: 1) Denial 
of Service (DoS), 2) Probe, 3) U2R, and 4) R2L. This study only 
focuses on the DoS attacks, i.e. the DNN based anomaly 
detection algorithm performs a binary classification in the 
presented work. 

The dataset contains 41 features in total that can be 
categorized as 1) basic features, 2) content related features, 3) 
time related traffic features and 4) host based traffic features. 
These features were derived from the raw data by Stolfo et al. 
[38] Table 1 lists a selected feature set along with their 
description, since the discussion is formed around these features. 
The complete feature set is not presented due to space 
constraints.  

B. Experimental Results 

Experimentation was carried out to assess the DNNs on two 
fronts: 1) classification accuracy (ability to make the right 
decision), and 2) interpretability (the ability to make the right 
decision for the right reasons). The goal of the experiments was 
to get insight into what the DNN was learning and produce post-
hoc explanations of its predictions. Using the method described 
in Section III, the relevance of each input feature for each 
classification decision was calculated and averaged across the 
two classes. These relevance scores are used as means to 
interpret the DNN predictions. 

As mentioned, a two class problem was considered and the 
DNN based classifier was trained to distinguish between normal 
communication and DoS attacks. Deep Feed Forward Networks 
were used in the experiments. Several test configurations were 
used to observe the relevance of input features on the 
classification decisions. More specifically, experimental set up 
was changed by changing the number of features used for the 
classification and by changing the DNN architecture. The 
changes in input relevance to classification was observed for 
these different test cases. The DNN architecture was changed in-
terms of the depth and number of total neurons. DNN 
architectures that were used are given in Table 3. Two different 
feature sets were considered: 1) The basic traffic features and 2) 
the complete 41 features.  

Classification accuracies across models were evaluated for 
the different test configurations. For the basic set of features 
(Features 1-9 in Table 1), models were able to produce 
predictions with accuracies ~93% on the test dataset. (See Table 
2). Then, the complete feature set was used to perform the 
classification with the same DNN architectures as the previous 
test. In this test, it was noticed that all the DNNs improved their 
accuracies to ~97% on the test dataset. Therefore, it can be seen 
that the classification accuracy was improved slightly with the 
augmented feature set.  

Relevant input features were compared across models for the 
test configurations. For the basic features, it was noticed that all 

the DNN models “agreed” on the important features for 
detecting a DoS attack. For DoS detection models gave a higher 
relevance to features No 03 and 04, the destination network 
service and the status of the connection respectively (see Figure 
2). When using the complete feature set, all the models seemed 
to “agree” on the most relevant features for identifying “DoS”. 
It was observed that the DNNs assigned a higher relevance to 
features that indicated the number of connection to the same 
destination in a short period of time, number of connections to 
the same IP and the number of bytes transferred in a single 
connection (features 05, 23, 32 in Table 1). See Figure 3 for the 
relevance scores comparison. 

Therefore, experimental results showed that all the DNN 
models were able to achieve high classification accuracies on 
the KDD-NSL dataset on the two classes. However, the most 
important takeaway from the experiments is the insight that can 
be gleaned about the DNN decision making process from the 
LRP based input relevance scores. For example, when 
comparing the two feature sets used, the classification 
accuracies achieved had relatively small difference (~3%). 
However, it can be argued that when using the basic features, 
despite the high classification accuracy, the features that the 
DNN gave high relevance to when identifying DoS doesn’t help 
a domain expert to validate the model. The DNNs can be 
modeling the artifacts in this specific dataset. However, when 
using the complete feature set, the features that were considered 
by the DNNs were, number of connections to the same 
destination and the frequency of connections to the same host 
and number of data transferred. These are factors directly related 
with a DoS attack. Therefore, these “valid reasons for 
classification”, enables the human operator to validate the 
“knowledge” of the DNN. As a result, black box nature of the 
DNN based Anomaly Detection can be reduced. As a corollary 
of this, the human operator’s trust on the anomaly detection 
algorithm increases since they have a way of evaluating whether 
the DNN based anomaly detection is “doing the right thing for 
the right reasons”.  

V. CONCLUSIONS AND FUTURE WORK 

This paper presented a framework for explainable DNNs 
based anomaly detection in process monitoring. In the presented 
framework, post-hoc explanations of DNN predictions are 
presented to the user along with the prediction. This paper 
presented the initial implementation of the framework where a 
DNN based anomaly detection algorithm is developed on a 
network intrusion detection dataset. The DNN was trained in a 
supervised manner and the classification was carried out to 
identify DoS attacks from normal communication. Several DNN 

TABLE 3: THE DNN ARCHITECTURES TESTED 

Model Name Hidden Layer Architecture 

3HL_Config-1 (256, 128, 64) 

3HL_Config-2 (100, 100, 100) 

4HL_Config-1 (256, 128, 64, 32) 

4HL_Config-2 (100, 100, 100, 100) 

 

TABLE 2: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT DNN 

ARCHITECTURES FOR THE TWO FEATURE SETS 

Model 

 

Basic Features Complete Feature set 

Train 

Accuracy 

(%) 

Test 

Accuracy 

(%) 

Train 

Accuracy 

(%) 

Test 

Accuracy 

(%) 

3HL_Config-1 95.9889 88.3191 98.6217 96.1572 

3HL_Config-2 89.3754 93.7852 97.442 97.2372 

4HL_Config-1 92.0553 93.4274 97.5925 97.1113 

4HL_Config-2 86.8467 85.8743 97.1882 97.0318 

 



 

architectures (all Deep MLPs) were experimented with and it 
was observed that DNNs were able to produce accuracies of 
97% on the test dataset. The explanations of the DNNs were 
produced in terms of relevance scores for each input feature for 
each classification prediction. Experimental results showed that 
the DNNs gave a higher relevance to number of connections, 
connection frequency and amount of data transferred when 
classifying as “DoS”. With this knowledge, a domain expert can  
intuitively assess the “knowledge” of the DNN based anomaly 
detection algorithm. The main implications of this work are the 
following: 1) provides a method for the user to interact with the 
DNN based anomaly detector, 2) builds human operator’s trust 
on the behavior of the model and 3) provides a method for 
assessing the “knowledge” of the DNN based anomaly detection 
model. The next steps of this work are to provide confidence 
information about the DNN based anomaly detection 
predictions and provide textual justifications.  
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