
978-1-5386-5024-0/18/$31.00 ©2018 IEEE

Toward Explainable Deep Neural Network based

Anomaly Detection

Kasun Amarasinghe1, Kevin Kenney2, Milos Manic1

Virginia Commonwealth University, Richmond, Virginia, USA1

Idaho National Laboratory, Idaho Falls, Idaho, USA2

amarasinghek@vcu.edu, kevin.kenney@inl.gov, misko@ieee.org

Abstract—Anomaly detection in industrial processes is crucial

for general process monitoring and process health assessment.

Deep Neural Networks (DNNs) based anomaly detection has

received increased attention in recent work. Albeit their high

accuracy, the black-box nature of DNNs is a drawback in practical

deployment. Especially in industrial anomaly detection systems,

explanations of DNN detected anomalies are crucial. This paper

presents a framework for DNN based anomaly detection which

provides explanations of detected anomalies. The framework

answers the following questions during online processing: 1) “why

is it an anomaly?” and 2) “what is the confidence?” Further, the

framework can be used offline to evaluate the “knowledge” of the

trained DNN. The framework reduces the opaqueness of the DNN

based anomaly detector and thus improves human operators’

trust in the algorithm. This paper implements the first steps of the

presented framework on the benchmark KDD-NSL dataset for

Denial of Service (DoS) attack detection. Offline DNN

explanations showed that the DNN was detecting DoS attacks

based on features indicating destination of connection, frequency

and amount of data transferred while showing an accuracy

around 97%.

Keywords— Deep Learning; Deep Neural Networks;

Explainable AI; Layer wise Relevance Propagation; Anomaly

Detection;

I. INTRODUCTION

Modern industrial processes are continuously growing in
complexity, structure and degree of automation [1]. With this
increasing complexity, reliability and security of systems are a
concern and thus continuous monitoring of the systems is
essential [1]. In system monitoring, identifying anomalous
behavior in data is crucial [2]. This process, named anomaly
detection and novelty detection has many forms such as network
intrusion detection, fault detection and condition monitoring [2].
As a result, research on anomaly detection methodologies have
been a popular topic in the last few decades.

One of the major approaches is model-based techniques [3]–
[5]. However, the drawback of model based techniques is that
they require a priori knowledge and the mathematical
knowledge of the system. Therefore, data-driven process
monitoring techniques are attractive alternatives as they require
minimal a priori knowledge about the system [1]. In data driven
techniques, traditionally, “shallow” Artificial Neural Networks
(ANNs) and Support Vector Machines (SVM) have been very
popular in anomaly detection applications [6], [7]. ANNs have
been successfully used in anomaly detection in many
applications such as intrusion detection [8]–[10] and hardware
component fault detection [11]. SVMs, especially one-class
SVMs have been a very popular approach in many anomaly

detection approaches [12]–[14]. Further, methods such as
Random Forests have been successfully applied to anomaly
detection [15].

In recent years, Deep learning or Deep Neural Networks
(DNNs) gained immense popularity [16]–[18]. DNNs learn
features with multiple layers of abstraction and thus are capable
of modeling complex patterns [19], [20]. Therefore, naturally
DNNs based anomaly detection methodologies have received
increased attention in the last few years. Methods such as
Restricted Boltzmann Machines, Autoencoders, Long Short
Term Memories, Deep Multi-Layer Perceptrons and
Convolutional Neural Networks have been proposed in the
literature [21]–[29]. Despite their impressive accuracies, DNNs
are still used as black boxes due to their opaque highly non-
linear structure [30]. This poses a limitation in practical
applications, especially in mission critical systems where it is
important to have insight about DNN predictions. It is important
to verify whether DNN’s high accuracy is due to the correct
reasons or by exploiting special artifacts in the dataset [31].
Further, these mission critical systems largely employ humans-
in-the-loop for controls and monitoring and when machine
learning based decision support systems are deployed, the
human trust on the machine learning models is extremely
crucial.

This paper presents a framework for explainable DNN based
anomaly detection. The presented framework provides
explanations of the DNN based anomaly detector. In the
proposed framework, when the DNN detects an anomalous
event, in addition to the prediction, the system provides the user
with the following: 1) The confidence of the prediction, 2) A
textual description of the detected anomaly and 3) the factors
which was relevant in making the prediction. This framework
enables the user to get justifications of the DNN decisions in
addition to the decision itself, i.e. the user gets to see whether
the DNN is “doing the right thing for the right reasons”. During
online processing, when an anomaly is detected, the user can
obtain a justification from the DNN which answers the questions
“why is it an anomaly?” and “how certain are you that it’s an
anomaly?” Further, a domain expert can use the framework
offline to evaluate DNNs “knowledge” and make decisions
about deployment. In addition to the framework, this paper
presents an initial implementation of the framework. The offline
knowledge evaluation is discussed in the implementation.

The rest of the paper is organized as follows. Section II
elaborates on the concept of interpretability/ explainability of
DNNs. Section III presents the framework we propose and
outlines the methodology of the initial implementation of the

framework, Section IV presents the details about the
experiments conducted and their results, and finally Section V
concludes the paper.

II. EXPLAINABLE DEEP NEURAL NETWORKS

This section elaborates on the concepts of explainability and
interpretability of DNNs and overviews the existing consensus
on the taxonomy.

Gunning identifies an explainable machine learning system
as one that answers the following questions. 1) “Why did it do
that?” 2) “Why didn’t it do something else?” 3) “When does it
succeed?” 4) “When does it fail?” 5) “When can it be trusted?”
and 6) “how can an error be corrected?” [32]. Improving
interpretability of Deep Neural Networks remain to be an open
research area. The terms interpretability and explainability are
used interchangeably in the domain and Lipton pointed out that
a formal definition on what an interpretable DNN is needed [33].
The only formal definition of interpretability and explainability
is provided in [31]. Montanvon et al. propose a distinction
between the terms “explanation” and “interpretation” in the
context of DNNs. Since it is out of the scope of this paper, we
will be using the words interchangeably and in the context of
this paper, “interpretation” or “explanation” would infer
shedding light into the DNNs predictions. Despite the lack of a
formal definition, DNN interpretability can be categorized into
two broad categories,: 1) model transparency and 2) model
functionality [33], [34].

Transparency of the model refers to understanding what the
network has learned and the reasons behind the concepts it has
learned. Transparency can be viewed in three parameters: 1)
decomposability, 2) simulatability and 3) algorithmic
transparency[34]. Decomposability is whether there is an
intuitive explanation for the model parameters. Algorithmic
transparency relates to the ability to explain the inner workings
of the learning algorithm. Simulatability refers to the ability of a
human using the input data together with the model to reproduce
every calculation that’s necessary to make the prediction,
allowing a human to understand the changes in the model

parameters during the training process. Given the complexity of
DNNs, achieving these three components is not a trivial task.
Further, it is assumed that the simulatability is very low in DNNs
and hence most of the research is focused on improving
decomposability and algorithmic transparency [34].

Model functionality explanations can be used to explain
predictions by the model. This facet of interpretable DNNs is
also called post-hoc explanation generation [33]. Post-hoc
explanation generation entails understanding a pre trained
model, i.e. the trained model is available and methods attempt
to gain a functional understanding of the trained model [31].
Post-hoc explanations can be generated in four different ways.
First method is to provide textual justifications of the DNN
predictions. This involves providing a semantically meaningful
description of the model’s output and the reasons behind the
output. Therefore, it requires a combination of models. Second
method is to provide justifications through different
visualizations of parameters. Third, local explanations are used
to gain insight on the model’s behavior. For instance, in DNN’s
the gradient of the output with respect to the inputs can be used
to identify the local changes that are influenced by the input
vector [35]. The focus of this paper is on post-hoc explanations
for DNN based anomaly detection algorithms.

III. EXPLAINABLE DEEP NEURAL NETWORKS BASED ANOMALY

DETECTION

This section presents a framework for DNN based anomaly
detection and explanation of DNN based decisions. When using
DNNs for process monitoring in mission critical systems such
as critical infrastructure security, interpretability is almost as
important as the prediction accuracy. Therefore, the deployed
DNN models should be able to provide explanations of their
predictions. In this paper, we present a framework for
explainable DNNs for process monitoring. Figure 1 shows the
presented framework.

The focus of presented framework is on generating post-hoc
explanations for the DNN predictions. Therefore, in addition to
the DNN prediction the following outputs are generated to

Figure 1: The Presented framework for Explainable DNN based Anomaly detection. The decision maker is the human operator. The operator gets the DNN

predictions and the justifications.

improve the user’s trust on the DNN prediction: 1) relevance of
input features for the DNN prediction, 2) the confidence of
estimation, and 3) textual justification. Therefore the user has
the capability of validating the DNNs decisions. For instance,
when an anomaly is detected, the framework will provide the
user 1) the confidence the DNN has on the estimation (a
probability score or a fuzzy membership grade), 2) input feature
relevance scores, indicating what input features “drove” the
DNNs decision and 3) textual description of the anomaly (can
be a preset description of the anomaly type, or an IF-THEN type
linguistic summary). Further a textual summary can be given to
the user summarizing all the aspects: e.g. DoS Attack WITH high
confidence BECAUSE “connections to same host in last 2
seconds” is high.

In this paper, the first steps of the framework implementation
is presented. A feed forward DNN is used to identify anomalies
in a data stream and input feature relevance is calculated for
classification decisions. In order to validate the “knowledge” of
the DNN, the relevance scores for each class is extracted. It has
to be noted that in a practical scenario, this process is carried out
offline, i.e. prior to deployment of the DNN. First, the DNN
based anomaly detection method is presented. Then, the input
feature relevance calculation is presented.

A. Deep Neural Networks based Anomaly Detection

In this paper, anomaly detection is carried out using a
supervised DNN, i.e. the DNN is trained with labeled data.

An input record can be considered as 𝑋 ∈ ℝ𝑑, where each
input patter X is composed of a set of input features: 𝑋 = {𝑥𝑑}
where d denotes the dth feature in the dataset. In addition to the
input features, each X is associated w
ith its label Y. Therefore, the function of the DNN is a
classification function where the mapping learned by the DNN

can be expressed as 𝑓: ℝ𝑑 → ℝ+.

The DNN consists of an input layer, an output layer and a
multiple hidden layers of neurons. Each hidden layer neuron is
activated as:

𝑎𝑗
(𝑙+1)

= 𝑔(∑ 𝑎𝑖
(𝑙)

𝑤𝑖𝑗
(𝑙,𝑙+1)

+ 𝑏𝑗
(𝑙+1)

𝑖

) (1)

where, 𝑎(𝑙) is the activation of the lth layer, 𝑤𝑖𝑗
(𝑙,𝑙+1)

 is the weight

of the connection between ith neuron in layer l and jth neuron in

layer l+1 and 𝑏𝑗
(𝑙+1)

 is the bias of the jth neuron in layer l+1.

Rectified Linear Unit (ReLu) neurons are used in the hidden
layers, i.e. 𝑔(∙) can be expressed as:

𝑔(𝑥) = max (0, 𝑥) (2)

The output layer is a softmax layer to obtain the probability
distribution across the classes. Therefore, for each class the
probability is calculated using the softmax function as follows:

𝑃(𝑌 = 𝑦𝑖|𝑋) =
𝑒𝑎𝑖

∑ 𝑒𝑎𝑗
𝑗

 (3)

where the input values (𝑎𝑖) are calculated using eq.(1) with
𝑔(∙) being a linear pass through function. The cross entropy loss
is minimized in the training of the DNN. The optimization

process is carried out with a gradient based optimizer together
with error back propagation.

B. Calculation of Input Feature Contributions to DNN

Predictions

The focus of this work is generating post-hoc explanations
for the DNN. In this paper, the explanations of the DNN is
provided in terms of input feature relevance scores that indicate
the contribution each input feature made to the detected
anomaly. This results in a quantitative measure as to how much
influence a certain feature had in the DNN’s predictions, which
helps the user understand what input features contributed to
decisions that the DNN made. In this paper, the input feature
relevance is calculated by decomposing the composite function
of the DNN using a method named Layer-wise Relevance
Propagation (LRP). It has to be noted that this section assumes
that the DNN architecture takes the form described in the
subsection above.

Layer-wiser relevance propagation (LRP) was introduced by
Bach et al. as an approach for understanding the contribution of
each pixel to image classification decisions made by the DNN
[36]. LRP in its general form assumes that the classification
algorithm can be decomposed into several layers of
computation. The first layer is considered as the inputs and the
last layer is the real-valued prediction of the classifier. It is
assumed that each dimension of each layer has a relevance score

(𝑅𝑑
(𝑙)

) where d is the dimension and the l is the layer. The idea is

to find the relevance scores for the layer l when the relevance
scores for layer (l+1) is available. The decomposition is carried
out so that the following rule of the conservation holds.

𝑓(𝑥) = ⋯ = ∑ 𝑅𝑑
(𝑙+1)

𝑑∈𝑙+1

= ∑ 𝑅𝑑
(𝑙)

𝑑∈𝑙

= ⋯

= ∑ 𝑅𝑑
(1)

𝑑

(4)

Where 𝑓(𝑥) is the output and 𝑅𝑑
(1)

 indicates the relevance score

of the dth
 dimension of the input layer.

In calculating these relevance scores, the multilayered
architecture of the DNN can be leveraged and the relevance
scores can be propagated in a backward pass, i.e. the relevance
scores of a lower level can be expressed as a function of upper
level relevance scores. The relevance scores are back-
propagated in “messages”, 𝑅𝑖←𝑗 (from neuron j in l+1 to neuron

i in l) such that, the relevance conservation property holds as
follows.

∑ 𝑅𝑖←𝑗
(𝑙,𝑙+1)

𝑖

= 𝑅𝑗
(𝑙+1)

 (5)

In the same way, the relevance score for ith neuron in the l

layer can be expressed as:

𝑅𝑖
(𝑙)

= ∑ 𝑅𝑖←𝑗
(𝑙,𝑙+1)

𝑗

 (6)

This relevance score distribution can be done based on the
ratio of pre-activations as follows:

𝑅𝑖←𝑗
(𝑙,𝑙+1)

= (
𝑎𝑖

(𝑙)
𝑤𝑖𝑗

(𝑙,𝑙+1)

∑ 𝑎𝑖

(𝑙)
𝑤𝑖𝑗

(𝑙,𝑙+1)
+ 𝑏𝑗

(𝑙+1)
𝑖

) ∙ 𝑅𝑗
(𝑙+1)

 (7)

The major drawback of the above propagation rule is that if
the activations of the neuron (the denominator) is small, the
relevance scores can get unboundedly large. To bound the
scores, the αβ method [36] is used. The αβ method can be
expressed as follows:

𝑅𝑖←𝑗
(𝑙,𝑙+1)

= (𝛼
𝑎𝑖𝑤𝑖𝑗

+

∑ 𝑎𝑖𝑤𝑖𝑗
+ + 𝑏𝑗

+
𝑖

+ 𝛽
𝑎𝑖𝑤𝑖𝑗

−

∑ 𝑎𝑖𝑤𝑖𝑗
− + 𝑏𝑗

−
𝑖

) ∙ 𝑅𝑗
(𝑙+1)

(8)

Where, 𝑎𝑖𝑤𝑖𝑗
+ and 𝑏𝑗

+are the positive portion of the activations

and the negative portion is indicated by “-”. Please note that the
super scripted layer notations have been stripped off to simplify
the notation and still i and j are considered to be indices
associated with layers l and l+1 respectively. Therefore, when
relevance scores are propagated across layers to the input layer,

the relevance score of each input feature d; 𝑅𝑑
(1)

 can be obtained.

For each DNN prediction, the relevance scores can be obtained.

In this study, we use these relevance measures offline for
providing insight to the user about the trained model. The mean
relevance of each input feature for each anomaly class is
reported to the user. These average relevance scores show the
input features which drove the DNNs decision when the specific
anomaly class was detected. The average relevance that each
feature had per class is calculated as follows:

𝑅𝑐
𝑑 =

1

𝑁𝑐

∑ 𝑅𝑥𝑘𝑑

(1)

𝑁𝑐

𝑘

 (9)

Where 𝑅𝑐
𝑑 is the average relevance of the dth feature for class c,

Nc. is the number of data points in the labeled data set belonging

to class c, 𝑅𝑥𝑘𝑑

(1)
 is the relevance of the dth dimension of the kth

data record.

IV. EXPERIMENTS

This section elaborates the experimental setup, and the
results obtained from the experiments. First, the dataset used in
the study is presented. Then, the experimental results are
presented and discussed.

A. NSL-KDD Dataset

KDD Cup 1999 Dataset (KDD99) was used for the Third
International Knowledge Discovery and Data Mining
Competition [37]. The KDD dataset is a network intrusion
detection dataset. The NSL-KDD dataset is a modified version
of the benchmark KDD 99 dataset. The NSL-KDD was
proposed to remove the issues the KDD dataset contained such
as redundant records.

 Each data record in the NSL-KDD dataset is a “connection”.
A connection is defined as a sequence of TCP packets recorded
within a well-defined time window between a well-defined
source and a destination IP address. Each connection is labeled
[38]. NSL-KDD dataset comprises of separate train and test sets.
The training dataset contains 21 different types of attacks. The
test set contains 37 types of attacks. In order to make the task
more realistic, the test dataset is not from the same probability
distribution as the train set and test set has more attack types that

TABLE 1: FEATURES OF KDD-NSL DATASET. THIS NOT THE COMPLETE SET OF FEATURES. ONLY A SUBSET OF FEATURES ARE PRESENTED

No. Feature Name Feature Type Description

1 Duration

Basic features

Time length of connection

2 Protocol type Protocol used in the connection

3 Service Destination network service used

4 Flag Status of the connection

5 Src_bytes Number of bytes transferred from source to destination in a single connection

6 Dst_bytes Number of data bytes transferred from destination to source in single connection

7 Land Whether the source and destination port numbers are the same

8 Wrong fragment Total number of total fragments in the connection

9 Urgent Number of urgent packets in the connection

23 Count

Time related traffic
features

Number of connections to the same destination as the current connection’s destination

in the past two seconds

24 Srv_count
Number of connections to the same port as the current connection’s port in the last two

seconds

25 Serror_rate
The percentage of connections that have activated the one or more of flags S0-S3
among the connections aggregated in count (23)

26 Srv_error_rate
The percentage of connections that have activated the one or more of flags S0-S3

among connections aggregated in Srv_count (24)

27 Rerror_rate
Percentage of connections that have Flag REJ activated in among the connections
aggregated in count (23)

28 Srv_error_rate Percentage of REJ activated among connections aggregated in srv_count (24)

32 Dst_host_count
Host based traffic

features
Number of connections with the same destination IP

doesn’t appear in the training data. All the attacks in the dataset
can be grouped into four higher level attack categories: 1) Denial
of Service (DoS), 2) Probe, 3) U2R, and 4) R2L. This study only
focuses on the DoS attacks, i.e. the DNN based anomaly
detection algorithm performs a binary classification in the
presented work.

The dataset contains 41 features in total that can be
categorized as 1) basic features, 2) content related features, 3)
time related traffic features and 4) host based traffic features.
These features were derived from the raw data by Stolfo et al.
[38] Table 1 lists a selected feature set along with their
description, since the discussion is formed around these features.
The complete feature set is not presented due to space
constraints.

B. Experimental Results

Experimentation was carried out to assess the DNNs on two
fronts: 1) classification accuracy (ability to make the right
decision), and 2) interpretability (the ability to make the right
decision for the right reasons). The goal of the experiments was
to get insight into what the DNN was learning and produce post-
hoc explanations of its predictions. Using the method described
in Section III, the relevance of each input feature for each
classification decision was calculated and averaged across the
two classes. These relevance scores are used as means to
interpret the DNN predictions.

As mentioned, a two class problem was considered and the
DNN based classifier was trained to distinguish between normal
communication and DoS attacks. Deep Feed Forward Networks
were used in the experiments. Several test configurations were
used to observe the relevance of input features on the
classification decisions. More specifically, experimental set up
was changed by changing the number of features used for the
classification and by changing the DNN architecture. The
changes in input relevance to classification was observed for
these different test cases. The DNN architecture was changed in-
terms of the depth and number of total neurons. DNN
architectures that were used are given in Table 3. Two different
feature sets were considered: 1) The basic traffic features and 2)
the complete 41 features.

Classification accuracies across models were evaluated for
the different test configurations. For the basic set of features
(Features 1-9 in Table 1), models were able to produce
predictions with accuracies ~93% on the test dataset. (See Table
2). Then, the complete feature set was used to perform the
classification with the same DNN architectures as the previous
test. In this test, it was noticed that all the DNNs improved their
accuracies to ~97% on the test dataset. Therefore, it can be seen
that the classification accuracy was improved slightly with the
augmented feature set.

Relevant input features were compared across models for the
test configurations. For the basic features, it was noticed that all

the DNN models “agreed” on the important features for
detecting a DoS attack. For DoS detection models gave a higher
relevance to features No 03 and 04, the destination network
service and the status of the connection respectively (see Figure
2). When using the complete feature set, all the models seemed
to “agree” on the most relevant features for identifying “DoS”.
It was observed that the DNNs assigned a higher relevance to
features that indicated the number of connection to the same
destination in a short period of time, number of connections to
the same IP and the number of bytes transferred in a single
connection (features 05, 23, 32 in Table 1). See Figure 3 for the
relevance scores comparison.

Therefore, experimental results showed that all the DNN
models were able to achieve high classification accuracies on
the KDD-NSL dataset on the two classes. However, the most
important takeaway from the experiments is the insight that can
be gleaned about the DNN decision making process from the
LRP based input relevance scores. For example, when
comparing the two feature sets used, the classification
accuracies achieved had relatively small difference (~3%).
However, it can be argued that when using the basic features,
despite the high classification accuracy, the features that the
DNN gave high relevance to when identifying DoS doesn’t help
a domain expert to validate the model. The DNNs can be
modeling the artifacts in this specific dataset. However, when
using the complete feature set, the features that were considered
by the DNNs were, number of connections to the same
destination and the frequency of connections to the same host
and number of data transferred. These are factors directly related
with a DoS attack. Therefore, these “valid reasons for
classification”, enables the human operator to validate the
“knowledge” of the DNN. As a result, black box nature of the
DNN based Anomaly Detection can be reduced. As a corollary
of this, the human operator’s trust on the anomaly detection
algorithm increases since they have a way of evaluating whether
the DNN based anomaly detection is “doing the right thing for
the right reasons”.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a framework for explainable DNNs
based anomaly detection in process monitoring. In the presented
framework, post-hoc explanations of DNN predictions are
presented to the user along with the prediction. This paper
presented the initial implementation of the framework where a
DNN based anomaly detection algorithm is developed on a
network intrusion detection dataset. The DNN was trained in a
supervised manner and the classification was carried out to
identify DoS attacks from normal communication. Several DNN

TABLE 3: THE DNN ARCHITECTURES TESTED

Model Name Hidden Layer Architecture

3HL_Config-1 (256, 128, 64)

3HL_Config-2 (100, 100, 100)

4HL_Config-1 (256, 128, 64, 32)

4HL_Config-2 (100, 100, 100, 100)

TABLE 2: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT DNN

ARCHITECTURES FOR THE TWO FEATURE SETS

Model

Basic Features Complete Feature set

Train

Accuracy

(%)

Test

Accuracy

(%)

Train

Accuracy

(%)

Test

Accuracy

(%)

3HL_Config-1 95.9889 88.3191 98.6217 96.1572

3HL_Config-2 89.3754 93.7852 97.442 97.2372

4HL_Config-1 92.0553 93.4274 97.5925 97.1113

4HL_Config-2 86.8467 85.8743 97.1882 97.0318

architectures (all Deep MLPs) were experimented with and it
was observed that DNNs were able to produce accuracies of
97% on the test dataset. The explanations of the DNNs were
produced in terms of relevance scores for each input feature for
each classification prediction. Experimental results showed that
the DNNs gave a higher relevance to number of connections,
connection frequency and amount of data transferred when
classifying as “DoS”. With this knowledge, a domain expert can
intuitively assess the “knowledge” of the DNN based anomaly
detection algorithm. The main implications of this work are the
following: 1) provides a method for the user to interact with the
DNN based anomaly detector, 2) builds human operator’s trust
on the behavior of the model and 3) provides a method for
assessing the “knowledge” of the DNN based anomaly detection
model. The next steps of this work are to provide confidence
information about the DNN based anomaly detection
predictions and provide textual justifications.

REFERENCES

[1] S. Yin, S. X. Ding, X. Xie, and H. Luo, “A review on basic data-driven
approaches for industrial process monitoring,” IEEE Trans. Ind.

Electron., vol. 61, no. 11, pp. 6414–6428, 2014.

[2] L. Aguayo and G. A. Barreto, “Novelty Detection in Time Series Using

Self-Organizing Neural Networks: A Comprehensive Evaluation,”

Neural Process. Lett., vol. 47, no. 2, pp. 717–744, Aug. 2017.

[3] H. Li, J. Yu, C. Hilton, and H. Liu, “Adaptive Sliding-Mode Control for

Nonlinear Active Suspension Vehicle Systems Using T–S Fuzzy

Approach,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3328–3338,

Aug. 2013.

[4] M. Blanke and J. Schröder, Diagnosis and fault-tolerant control.

Springer, 2006.

[5] J. Seshadrinath, B. Singh, and B. K. Panigrahi, “Vibration Analysis Based

Interturn Fault Diagnosis in Induction Machines,” IEEE Trans. Ind.

Informatics, vol. 10, no. 1, pp. 340–350, Feb. 2014.

[6] A. Buczak and E. Guven, “A survey of data mining and machine learning

methods for cyber security intrusion detection,” IEEE Commun. Surv.

Tutorials, vol. PP, no. 99, p. 1, 2015.

[7] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neural

networks and support vector machines,” in Proceedings of the 2002
International Joint Conference on Neural Networks. IJCNN’02 (Cat.

No.02CH37290), pp. 1702–1707.

[8] O. Linda, T. Vollmer, and M. Manic, “Neural Network based Intrusion

Detection System for critical infrastructures,” in 2009 International Joint

Conference on Neural Networks, 2009, pp. 1827–1834.

[9] J. Ryan, M.-J. Lin, and R. Miikkulainen, “Intrusion Detection with Neural

Figure 2: Input feature relevance scores (DoS class) when DNN is trained with the 9 basic features. It can be seen that features 3 (service) and 4 (flag) receive

the highest relevance in the DNN for DoS. Using this information, the operator can say that the DNN model needs to be improved since the “reasons for

picking DoS” is not intuitive to the domain expert

Figure 3: Input feature relevance scores (DoS class) when DNN is trained with the complete set 41 features. It can be seen that features 5 (Src bytes), 23

(count) and 32 (Dst_host_count) are given highest relevance by all the models. This information helps the domain expert to say that the DNN’s performance

is acceptable since the “reasons for picking DoS” is intuitive to the domain expert

Figure XXX: Input Feature relevance scores for DNNs when trained with the basic traffic features

Networks.”

[10] R. P. Lippmann and R. K. Cunningham, “Improving intrusion detection

performance using keyword selection and neural networks,” Comput.

Networks, vol. 34, no. 4, pp. 597–603, Oct. 2000.

[11] P. Bangalore and L. B. Tjernberg, “An Artificial Neural Network

Approach for Early Fault Detection of Gearbox Bearings,” IEEE Trans.

Smart Grid, vol. 6, no. 2, pp. 980–987, Mar. 2015.

[12] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-

dimensional and large-scale anomaly detection using a linear one-class

SVM with deep learning,” Pattern Recognit., vol. 58, pp. 121–134, Oct.

2016.

[13] R. Perdisci, G. Gu, and W. Lee, “Using an Ensemble of One-Class SVM

Classifiers to Harden Payload-based Anomaly Detection Systems,” in
Sixth International Conference on Data Mining (ICDM’06), 2006, pp.

488–498.

[14] Yanxin Wang, Johnny Wong, and A. Miner, “Anomaly intrusion

detection using one class SVM,” in Proceedings from the Fifth Annual

IEEE SMC Information Assurance Workshop, 2004., pp. 358–364.

[15] S. Guha, N. Mishra, G. Roy, and O. Schrijvers, “Robust Random Cut

Forest Based Anomaly Detection On Streams,” 2016.

[16] S. Wang and J. Jiang, “Learning Natural Language Inference with

LSTM,” 2015.

[17] D. L. Marino, K. Amarasinghe, and M. Manic, “Simultaneous generation-

classification using LSTM,” in 2016 IEEE Symposium Series on

Computational Intelligence, SSCI 2016, 2017.

[18] A. Graves, N. Jaitly, and A. Mohamed, “Hybrid speech recognition with

Deep Bidirectional LSTM,” in 2013 IEEE Workshop on Automatic

Speech Recognition and Understanding, 2013, pp. 273–278.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[20] I. Goodfellow, B. Yoshua, and A. Courville, Deep Learning. MIT Press,

2016.

[21] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang, “Deep Structured Energy Based

Models for Anomaly Detection.”

[22] C. Zhou and R. C. Paaenroth, “Anomaly Detection with Robust Deep

Autoencoders.”

[23] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G.

Shroff, “LSTM-based Encoder-Decoder for Multi-sensor Anomaly

Detection,” Jul. 2016.

[24] A. M. Vartouni, S. S. Kashi, and M. Teshnehlab, “An anomaly detection

method to detect web attacks using Stacked Auto-Encoder,” in 2018 6th

Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), 2018,

pp. 131–134.

[25] S. Chauhan and L. Vig, “Anomaly detection in ECG time signals via deep

long short-term memory networks,” in 2015 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), 2015, pp.

1–7.

[26] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly Detection in
Automobile Control Network Data with Long Short-Term Memory

Networks,” in 2016 IEEE International Conference on Data Science and

Advanced Analytics (DSAA), 2016, pp. 130–139.

[27] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, “Network

anomaly detection with the restricted Boltzmann machine,”

Neurocomputing, vol. 122, pp. 13–23, Dec. 2013.

[28] S. Zhou, W. Shen, D. Zeng, M. Fang, Y. Wei, and Z. Zhang, “Spatial–

temporal convolutional neural networks for anomaly detection and

localization in crowded scenes,” Signal Process. Image Commun., vol.

47, pp. 358–368, Sep. 2016.

[29] J. R. Medel and A. Savakis, “Anomaly Detection in Video Using

Predictive Convolutional Long Short-Term Memory Networks,” Dec.

2016.

[30] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable Artificial

Intelligence: Understanding, Visualizing and Interpreting Deep Learning

Models,” Aug. 2017.

[31] G. Montavon, W. Samek, and K.-R. Müller, “Methods for Interpreting

and Understanding Deep Neural Networks,” Jun. 2017.

[32] D. Gunning, “Explainable Artificial Intelligence (XAI) Explainable AI

– What Are We Trying To Do ?,” Def. Adv. Res. Proj. Agency, pp. 1–18,

2017.

[33] Z. C. Lipton, “The Mythos of Model Interpretability,” Jun. 2016.

[34] S. Chakraborty et al., “Interpretability of Deep Learning Models: A

Survey of Results,” IEEE Smart World Congr. DAIS - Work. Distrib.

Anal. Infrastruct. Algorithms Multi-Organization Fed., 2017.

[35] D. Baehrens et al., “How to Explain Individual Classification Decisions,”

2009.

[36] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Müller, and W.

Samek, “On pixel-wise explanations for non-linear classifier decisions by

layer-wise relevance propagation,” PLoS One, vol. 10, no. 7, pp. 1–46,

2015.

[37] “KDD-CUP-99 Task Description.” [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/task.html. [Accessed: 23-Apr-

2018].

[38] S. J. Stolfo, Wei Fan, Wenke Lee, A. Prodromidis, and P. K. Chan, “Cost-

based modeling for fraud and intrusion detection: results from the JAM
project,” in Proceedings DARPA Information Survivability Conference

and Exposition. DISCEX’00, vol. 2, pp. 130–144.

