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I
ntelligent buildings are quickly becoming 
cohesive and integral inhabitants of cyber-
physical ecosystems. Modern buildings 
adapt to internal and external elements and 
thrive on ever-increasing data sources, such 
as ubiquitous smart devices and sensors, 

while mimicking various approaches previously 
known in software, hardware, and bioinspired 
systems. This article provides an overview of 
intelligent buildings of the future from a range of 
perspectives. It discusses everything from the 
prospects of U.S. and world energy consumption 
to insights into the future of intelligent buildings 
based on the latest technological advancements 
in U.S. industry and government.

U.S. and World Energy  
Consumption Predictions
The U.S. Department of Energy’s (DOE’s) Energy 
Information Administration (EIA) estimates the 
share of total U.S. electricity use by major con-
suming sectors in 2014 as follows: residential, 36%; 
commercial, 35%; and industrial, 28% (Figure  1) 
[1], [2]. In U.S. homes, the single largest use of elec-
tricity is for air-conditioning (cooling), followed by 
about 40% of electricity use by washers, dryers, 
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and other appliances. In the commercial sector, lighting accounts for about 19% of energy usage and 
is the single largest user of electricity. This is because lighting includes office, institutional, public, 
and government buildings as well as public street lighting. Space and water heating (10%), space 
cooling (11%), and ventilation (6%) together make up 27% of all electricity used. While electricity 
use is projected to grow slowly, efficiency improvements and new appliance standards are expected 
to contribute to slower future growth. The EIA’s “Annual Energy Outlook 2015” projected a total U.S. 
electricity use growth of less than 1% per year from 2014 to 2040 [1].

On the world level, the EIA, in its “International Energy Outlook 2013,” projected that world ener-
gy consumption would increase 56% between 2010 and 2040, from 524 quadrillion to 820 quadrillion 
British thermal units [3]. Most of this growth will come from non–Organization for Economic Coop-
eration and Development countries, where demand is driven by strong economic growth. Renew-
able energy and nuclear power are the world’s fastest-growing energy sources, each increasing 2.5% 
per year. However, fossil fuels are expected to continue to supply nearly 80% of the world's energy 

through 2040. Natural gas is the fastest-growing fossil fuel, as global supplies of tight gas, shale 
gas, and coal-bed methane increase.

The industrial sector continues to account for the largest share of delivered energy 
consumption and is projected to consume more than half of global delivered en-

ergy in 2040. Based on current policies and regulations governing fossil fuel 
use, global energy-related carbon dioxide emissions are projected to rise 

to 45 billion metric tons in 2040, a 46% increase from 2010. Economic 
growth in developing nations, fueled by a continued reliance on 

fossil fuels, accounts for most of the emissions increases.
Buildings consume 70% of the total electricity generated 

and 50% of total natural gas production in the United 
States [4]. Hence, the potential impact of increasing 

energy efficiency, while continuing to meet cus-
tomer needs and comfort levels and simultane-
ously supporting grid operations, is substantial.

Smart Grids and Smart Homes
The concept of smart buildings, while typi-
cally referring to smart homes, can be easily 
extended to all types of buildings (residential, 
commercial, and industrial)—in other words, 
smart cities (Figure 2). The American Recovery 
and Reinvestment Act of 2009 (Recovery Act), 
cited by the DOE, Office of Electricity Delivery 
and Energy Reliability (OE), provided the DOE 
with US$4.5 billion to modernize the electric 
power grid and implement Title XIII of the Ener-
gy Independence and Security Act of 2007. The 
DOE OE was given the lead for modernizing the 
more-than-a-century-old U.S. electric grid that 
currently consists of more than 9,200 electric-
ity-generating units, with over 1 million MW of 
generating capacity connected to more than 
300,000 mi of transmission lines.

The concept of the original one-way com-
munication and localized-generation-to-home 

Buildings consume 70% of the total electricity 
generated and 50% of total natural gas production  
in the United States.
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communication concept has evolved 
toward two-way electricity and infor-
mation exchange between utilities 
and their customers, offering unprec-
edented levels of consumer participa-
tion and thus creating the essence of 
the modern smart grid. The develop-
ing symbiosis of communications, con-
trols, and automation makes the grid 

more efficient, secure, reliable, and 
green, according to SmartGrid.gov, a 
DOE information gateway. One of the 
pivotal ideas of the smart grid para-
digm is distributed generation, with 
microgrids relying on typically renew-
able energy sources such as hydro, bio-
mass, solar, wind, and geothermal, the 
concept enabling autonomous power 

generation and usage. The distribution 
intelligence (a term coined by the DOE 
OE) enables intelligent and automatic 
controls leading to self-healing and re-
silience to both malicious and benign 
failures. Buildings, estimated to be re-
sponsible for about 40% of all energy 
used in the United States, play a pivotal 
role in smart grids.

Renewable
Energy

Intelligent
Distribution

Operation
Centers

Smart
Homes

Smart and Connected
Cities PEVs

FIGURE 2 – A smart grid. (Images courtesy of and adapted from SmartGrid.gov.)
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FIGURE 1 – U.S. electricity consumption in 2014 in the (a) residential, (b) commercial, and (c) manufacturing sectors [1]. (Courtesy of EIA.) 
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Interactiveness of Buildings  
and Smart Grids
One of the key elements of smart grid 
technologies is the interactive rela-
tionship between grid operators, utili-
ties, and consumers. Smart grids can 
be viewed as interconnected resourc-
es and consumers of energy, with 
buildings as major entities of the equa-
tion [mainly because of central heat-
ing ventilation and air-conditioning 
(HVAC) and lighting]. Hence, buildings 
play roles in both energy usage and as 
energy generation entities (with stor-
age capabilities). Through interaction 
with smart grids, smart buildings (as 
building blocks of smart cities [5], [6]) 
can perform load reduction and peak 
shaving (reducing demand for electric-
ity during peak usage times) and load 
shifting, and can reduce blackouts (to-
tal loss of power) and brownouts (volt-
age drops). The concept of islanding in 
microgrids can be reduced to the level 
of buildings, where one or several of 
them can share distributed resources 
frequently integrated with distributed 
energy storage systems. Examples of 
distributed resources can entail re-
newables (such as rooftop solar, small 
turbine/wind, and hydro projects) and 
lately natural gas-based home fuel-cell 
systems, whereas distributed energy 
storage systems for buildings entail 
water tanks. VionX Energy, a US$12 
million DOE National Energy Technol-
ogy Laboratory project scheduled to 
be completed in 2018, aims at demon-
strating competitively priced, multi-
megawatt, 6–10-h operation, 20-year 
operation lifetime vanadium redox 
battery energy storage systems [7]. 
Johnson Controls L1000 In-Building 
Distributed Energy Storage System 
features 40–65-kWh storage capac-
ity increments of lithium-ion (Li-ion) 
cylindrical batteries with 20-year life 
expectancy [8]. Another aspect of 
distributed load and generation are 
plug-in electric vehicles (PEVs). In the 
future, PEVs will serve as distributed 
sources of stored energy that can put 
power back into the grid, a concept 
called vehicle to grid [9]. As mobile 
energy storage devices, PEVs have 
the potential to inject additional power 
into the grid at critical peak times and 

also to help integrate variable renew-
able power sources into the grid, which 
with adequate financial incentives can 
accelerate their market penetration.

Connectivity (Smart = Connected 
+ Analytics)
Another key concept of smart build-
ings is connectivity. In fact, in a context 
of smart buildings and smart devices, 
the words smart and connected are 
being frequently and interchange-
ably used to denote Internet of Things 
(IoT) devices. However, certain dis-
tinctions need to be made. The mean-
ing of connected is typically reflected 
by the ability of buildings to commu-
nicate with other buildings, with the 
grid (for reasons of scheduling, island-
ing, and peak shaving), with utilities, 
with energy storage units (water tanks 
for hot or cold energy storage and  
batteries), with occupants (through 
comfort input by means of light, air, 
heat, and cooling controls), with other 
smart devices (thermostats and sen-
sors), and so on. In other words, for 
the unit to be smart, it needs to be 
connected (e.g., a thermostat needs to 
know about its environment through 
an outside weather station or in-home 
usage patterns from sensors). On the 
other hand, connected does not nec-
essarily imply smart. For example, the 
motion sensor may not be smart even 
though it is connected to the thermo-
stat, but the thermostat has to be con-
nected for it to deploy learning and 
prediction algorithms. Remote access 
alone does not imply smart aspects 
of devices.

IoT devices feature intelligent algo-
rithms and are constantly increasing 
in local processing power. They oper-
ate interactively and autonomously 
while being wirelessly networked 
with other such devices or connected 
to the Internet directly. Sometimes 

simply referred to as things (Sam-
sung’s home monitoring kits are 
aptly named SmartThings), they are 
quickly entering the consumer world. 
Gartner Analytics predicts a 30% in-
crease of such connected things from 
2015 to 2016 or about 6.4 billion con-
nected things and 21 billion things by  
2020 (Figure 3).

HVAC and lighting systems, the larg-
est energy consumers in buildings, are 
being highly modernized through the 
penetration of IoT devices. The key is-
sue here is extracting knowledge from 
monitoring building energy and au-
tomation systems—in terms of what 
a particular machine or appliance is 
doing at what time. IoT devices pro-
vide quantitative measurements of 
the processes they are involved in, 
which in turn generate data streams 
that have not existed before. The 
need for big data hence arises to pro-
cess and analyze large amounts of un-
structured data and make predictions 
of future behavior.

The concept of smart appliances is 
based on several attractive features: 
convenience (e.g., remote control and 
monitoring via smartphones and tab-
lets), intelligent automation and con-
trol (autonomous, intelligent learning 
and prediction of user behavior pat-
terns, and smart scheduling), and the 
ability to control and improve energy 
efficiency. Connectivity is the underly-
ing characteristic of IoT devices, such 
as connected coffee machines, beds, 
ranges, refrigerators, and frying pans. 
For example, Wi-Fi touchscreen smart 
refrigerators can sync across family 
calendars, perform smart inventory 
via integrated cameras that detect 
food expiration dates, notify users of 
food that needs restocking, and even 
automatically place orders for such 
food. While such products by General 
Electric, Whirlpool, Lucky Goldstar, 

The concept of smart buildings, while typically 
referring to smart homes, can be easily extended to 
all types of buildings (residential, commercial,  
and industrial)—in other words, smart cities.
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Nest, Samsung, Sleep Number, and 
others improve quality of life and per-
sonal health, one of the major benefits 
is energy efficiency, energy savings, 
and peak shaving, starting with such 
simple tasks as deferring refrigera-
tor defrost cycles or dishwasher and 
laundry deferral until off-peak hours  
[10], [11].

The sky is the limit when it comes to 
energy efficiency and smart devices to-
day. Windows, doors, and skylights can 
gain and lose heat through conduction 
(U-factor) or radiation (solar heat gain 
coefficient). In 1990 alone, the energy 
used to offset unwanted heat losses 
and gains through windows in residen-
tial and commercial buildings cost the 
United States US$20 billion (one-fourth 
of all the energy used for space heat-
ing and cooling) [12]. Smart windows, 
smart glass, or switchable glass use 
the technology called suspended par-
ticle devices (SPDs) [13], adjusting ac 
voltage to the SPD film to quickly con-
trol the amount of light, glare, and heat 
passing through windows. Rayno win-
dows use the polymer-dispersed liquid 
crystal technology, which combines 
polymers and liquid crystal materials 
to control transparency [14], [15]. Be-
sides their use for energy efficiency, 
these technologies can be used in 
smart buildings for instant privacy, to 
eliminate the need for curtains, to filter 
ultraviolet rays, or as a rear-projection 
surface for theaters or high-profile cor-
porate and retail displays.

Various manufacturers provide 
automation and energy-efficiency 
controls. Companies like Lutron, Hon-
eywell, and Johnson Controls provide 
solutions ranging from commercial 
smart grid, whole building, and resi-
dential solutions for energy efficiency. 
Lutron’s Quantum lighting control and 
energy management system offers “a 
smart decision for any building own-
er” in terms of scheduling of lights 
and lowering shades for energy sav-
ings and also for the comfort, safety, 
and security of occupants. Quantum 
and EcoSystem solutions enable shed-
ding of a percentage of a building’s 
lighting output during peak demand, 
instantly saving energy. The solutions 
also provide control, configuration, 

monitoring, and reporting on the 
lighting for any space in a building for 
maximum energy efficiency, comfort, 
and productivity [16].

An example of such concepts is so-
called daylight autonomy, a sustain-
able concept driven by Lutron that 
adapts to its environment and claims 
reducing daytime lighting energy 
use by 65% or more through the use 
of automated shades [16]. Designing 
for daylight autonomy involves un-
derstanding how the entire building 
is affected by the dynamic nature of 
daylight and creating a lighting con-
trol strategy to automatically adjust 
to these changes.

Security and Resilience  
of Intelligent Buildings
If intelligent buildings are the future, 
then so too are cyberthreats to build-
ing services [17]. According to Grand 
View Research, a San Francisco–based 
consulting firm, the intelligent build-
ing automation technologies market is 
expected to reach US$98.95 billion by 
2024 [18]. The technology is expected 
to grow rapidly due to benefits such as 
increased energy efficiency, occupant 
comfort, and productivity as well as 
seamless operation of HVAC, electric-
ity, lighting, and other systems. Fur-
thermore, the increasing demand for 
security and life safety systems (e.g., 
systems that indicate the presence 
of fire) in education, hospitality, and 
large commercial complexes is ex-
pected to give a boost to the adoption 
of intelligent buildings automation.

Modern buildings heavily rely on 
several advantageous concepts: in-
teroperability, connectivity, cloud ser-
vices, remote monitoring and control, 
or programmable logic controllers. At 
the heart of all these are the communi-
cations among sensors, hubs, and nu-
merous smart devices, whether small 
(e.g., coffee machines, power outlets, 

and smart locks) or large (e.g., large 
energy storage batteries and electric 
cars). As highly integrated as they 
are, such systems run high exposure 
risks. The same information flow that 
enables users and managers of large 
building complexes and residential 
home users to monitor and control 
smart buildings can, if compromised, 
give attackers unprecedented power 
to interact with devices and gain in-
sight into behavioral patterns. For ex-
ample, monitoring occupancy sensors 
can tell when a person leaves home, 
controlling cameras can provide ways 
for unlawful surveillance and inva-
sion of privacy, and worse, usurping 
control power can remotely enable 
structural and material damage or 
even loss of life (in the case of criti-
cal infrastructure).

In the world of home automation, 
the security research firm Veracode in 
April 2015 published its security study 
on four different manufacturers of IoT 
devices, evaluating simple features 
such as the encryption of transmission 
between devices and back-end cloud 
services (Figure 4). The study revealed 
potential vulnerabilities, such as the 
nonexistence of two-factor authenti-
cation on any of the investigated plat-
forms. In addition to potential software 
exploitation, such devices suffer from 
hardware security issues. Through 
physical access (a universal-serial-bus 
boot), an attacker can gain root ac-
cess, as shown in 2014 [19]. Similarly, 
Fernandes et al. published in May 2016 
two intrinsic design flaws in Samsung’s 
SmartThings: 55% of apps were over-
privileged (given excessive access to 
a system), and there were insufficient 
sensitive information protections [56].

On the enterprise level, the risks 
grow higher. One simple problem 
is the introduction of new IoT de-
vices into a network. Data exfiltra-
tion through any device with built-in 

The developing symbiosis of communications, 
controls, and automation makes the grid more 
efficient, secure, reliable, and green.
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network connectivity creates a risk 
and requires constant monitoring of 
approved communications (e.g., if a 
smart refrigerator connects to the 
payment card zone) [20]. Another is-
sue involves exposed undocumented 
application programming interfaces, 
device software that gives itself too 
many permissions, insuring that 
the network can properly handle in-
fluxes in the volume of data. An ad-
ditional issue is the legality of storing 
IoT data [21].

In 2012, the U.S. Federal Bureau 
of Investigation reported a memo on 
the illegal hack into the heating and 
air-conditioning system of a New 
Jersey–based company. Widely re-
ported security vulnerabilities in 
the Niagara Framework, a prevalent 
building automation software plat-
form developed by Tridium Inc., a 
business entity of Honeywell Interna-
tional Inc., allowed the hack to occur, 
and it was serious enough to warrant 

a Department of Homeland Security 
alert [22].

Solutions in this area need to take 
into account various approaches. One 
is increasing resilience by segmenta-
tion of the network of connected de-
vices (limiting the exposure), coupled 
with the use of strong user/password 
combinations. Cloud-hosted systems 
relieve customers of the burden of se-
curing sensitive data and web services. 
Geographically separated redundancy 
increases resilience in case of cata-
strophic events at data centers in one 
location. Cloud services must include 
multifactor authentication via various 
proofs of identity—something that us-
ers know, through a password; some-
thing they possess, as with a phone; 
and something inherent to them, as 
with fingerprints [23]. In addition to 
the best cybersecurity practices be-
ing made an integral part of the de-
ployment of equipment and training 
for building managers, contingency 

plans should be drawn up for periods 
during which intelligence is not avail-
able (known as plan for the worst). To 
maintain minimum acceptable levels of 
service, hardwired hardware may be a 
necessary cost for the resilience of mis-
sion-critical building automation sys-
tems, even at a cost of sacrificing the 
intelligent part of the automation [17].

Resilience—a system’s ability to 
bounce back after malicious or benign 
failures or, from a business perspec-
tive, the ability to maintain continuity 
of business operations—assumes an 
intelligent response that goes beyond 
fault tolerance and is inextricably 
linked with cybersecurity [24]. The da-
ta-driven techniques overviewed in the 
following, sometimes referred to as bio-
inspired, self-healing, and reconfiguring, 
represent an integral component of 
resilience. The interactiveness and 
interoperability of modern buildings, 
along with the ubiquitous IoT devices 
that generate large data streams, also 
bring bioinspired data mining and data 
analytics into the purview of resilience 
in the domain of intelligent buildings.

Artificial Intelligence  
in Buildings

The Need for Intelligence
Due to the interactive, adaptive, and in-
terconnected nature of buildings, their 
components, and outside environments, 
modern buildings must be capable of 
negotiating constantly changing scenar-
ios. Continuous communications among 
smart hubs, sensors, and appliances 
within buildings as well as communica-
tions among smart meters, renewable 
energy generators, storage units, and 
utilities generate massive, heterogeneous 
data sets about every aspect of their op-
erations. These big data sets require 
increasingly automated and adaptive ap-
proaches to information processing and 
real-time decision making.

Artificial intelligence (AI) and ma-
chine learning (ML) techniques ex-
hibit proven capabilities for learning 
from heterogeneous data sets [25]. 
Such techniques can identify patterns 
or trends that exist in data and extract 
crucial performance knowledge, make 
accurate predictions of future system 

Cloud Services

User
Facing

User
Facing

Mobile App IoT Devices Web App

Back End

FIGURE 4 – The security of the IoT involves web and mobile applications and devices themselves 
[55]. (Courtesy of and adapted from the Veracode white paper 2015.)

HVAC and lighting systems, the largest energy 
consumers in buildings, are being highly modernized 
through the penetration of IoT devices.
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states, and identify anomalous scenar-
ios that may lead to suboptimal behav-
ior due to benign or malicious faults. 
These approaches can be effectively 
used for tasks ranging from building 
energy management and energy effi-
ciency, self-healing, and adaptation to 
the security, information assurance, 
and resiliency of such systems.

Brief Overview of AI
AI and ML encompass a multitude of 
algorithms and techniques. Traditional 
techniques such as logistic regression, 
artificial neural networks (ANNs), fuzzy 
logic systems (FLSs) (Figure 5), support 
vector machines (SVMs), and differ-
ent Bayesian probabilistic models are 
well-documented methods and have 
been extensively used in a wide array 
of domains for learning patterns and 
trends in data. Recently, the advent of 

deep learning revamped the field of AI 
by introducing algorithms that had an 
unprecedented capability to handle 
complex data. Deep learning has revo-
lutionized a multitude of fields, such as 
speech recognition, natural language 
processing, and computer vision appli-
cations such as face recognition.

Deep learning extends the capabili-
ties of standard ANNs by enabling ar-
chitectures of many layers. Therefore, 
deep learning enables learning of com-
plex patterns that exist in data through 
multiple layers of abstraction. The 
modern development of deep learn-
ing and its recent widespread use have 
naturally inclined researchers to inves-
tigate its effectiveness in the domain 
of intelligent buildings. The capability 
of learning complex patterns using the 
multilayered architecture enables deep 
learning algorithms to extract patterns 
and trends from growing and diverse 
data streams of intelligent buildings 
of the future. Therefore, through 
the effective use of deep learning, the 

capability of learning from data is aug-
mented and hence intelligent decision 
making for optimizing energy efficien-
cy is improved.

This section provides a very brief 
introduction to traditional ANNs and 
several deep learning architectures: 
convolutional neural networks (CNNs), 
long short-term memory (LSTM), 
and restricted Boltzmann machines 
(RBMs). These algorithms are selected 
since they are relevant to the concrete 
application and case study discussed in 
the next sections. However, it should be  
noted that there are more deep learn-
ing and traditional AI algorithms that 
can be used in building energy systems. 
Readers are referred to [26] for a com-
prehensive review of deep learning 
techniques and methodologies.

ANNs are AI architectures based 
on biological neural networks (see  
Figure 6). As in the latter, the basic 
unit of an ANN is a neuron. A biological 
neuron produces an output by com-
paring a weighted sum of inputs to a 
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Data exfiltration through any device with built-in 
network connectivity creates a risk and requires 
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threshold. The artificial neuron mim-
ics the biological neuron through a 
similar methodology of using weights 
and a threshold value to produce an 
output for a given input vector [27]. 
An interconnected layered network of 
such neurons is arranged to produce 
an output vector given an input vec-
tor. This interconnected network has 
the capability of learning the interde-
pendencies between the inputs and 
outputs. Thus, a well-trained ANN has 
the capability of accurately estimat-
ing the outputs for inputs it has not 
seen in the past. ANNs are well docu-
mented and proven for being useful in 
many applications.

CNNs are a special type of neural 
network and are mainly used to process 
data with grid topology (Figure 7) [29]. 
The CNN learning process is a great ex-
ample of how deep learning algorithms 
learn through layers of abstraction. As 
with ANNs, CNNs are biologically in-
spired; they attempt to mimic the bio-
logical visual cortex. CNNs possess a 
layered architecture where different 
layers can be trained to detect different 
features in data (e.g., edge detection in 
an image). Therefore, in a collection of 
layers, each of them will learn the exis-
tence of a different feature. Hence, when 
put together, CNN layers have the capa-
bility of learning very complex patterns 
and trends in data. Figure 7 shows the 
architecture of a standard CNN. CNNs 
have been shown to be extremely use-
ful in fields such as computer vision, 

image classification, and time series 
data modeling.

LSTMs and RBMs are increasingly 
used in the literature as generative 
deep learning algorithms. LSTM algo-
rithms, introduced by Hochreiter and 
Schmidhuber [30], are a type of recur-
rent neural network (RNN) composed 
of memory cells with self-connections. 
Figure 8 shows an LSTM architecture 
with multiple LSTM cells. These can 
be stacked in a multilayer architecture 
to create a deep network. LSTMs have 
been shown to be extremely useful in 
generative models, especially in the 
natural language processing domain. 
RBMs [31] are shallow two-layer neural 
networks. The first layer of an RBM is 
called the visible layer, and the second 
is the hidden layer. RBMs can learn fea-
tures that exist in data in an unsuper-
vised fashion. Therefore, they do not 
need preannotated data to learn the 
features. RBMs are the building blocks 
of deep belief networks (DBNs) [32] 
and have been used in a range of do-
mains, including image processing and 
time series data modeling.

Concrete Application of AI: Deep 
Learning–Based Load/Demand 
Forecasting for Buildings
Load/demand forecasting is predict-
ing the energy consumption of an indi-
vidual building or an aggregate, such 
as a city or a county, for a future time 
step. Accurate load forecasts are ex-
tremely beneficial for decision making 

at the grid level as well as at the in-
dividual building level [33]. Modern 
building design is heading in a direc-
tion to incorporate energy storage de-
vices, such as thermal energy storage 
tanks [34], and/or renewable energy 
generators, such as photovoltaics or 
windmills. Thus, smart buildings will 
have to make decisions on what pro-
portions of utility energy, stored en-
ergy, and locally generated energy to 
use to attain optimal energy efficiency 
[35]. Therefore, at the building level, 
accurate energy load forecasting helps 
make building-level decisions, such 
as optimal local energy storage con-
trol [34] or renewable energy control. 
From a grid perspective, smart grids 
have to optimally utilize the various 
energy sources, including renewables 
[36]. Smart grids promise an unprec-
edented level of flexibility in energy 
management, making power genera-
tion and distribution more efficient 
and minimizing energy waste [33], 
[38], [39]. Therefore, at the grid level, 
accurate future predictions of individ-
ual demand help the grid adapt to the 
variable demand, and having individ-
ual building-level energy forecasting 
helps the grid carry out the demand 
response locally [33]. In other words, 
local demand can be met with local 
distribution, which leads to more ef-
ficient energy transmission and distri-
bution. Therefore, it can be seen that 
demand prediction can be discussed 
from an aggregate standpoint and an 
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individual standpoint. However, in 
the interest of brevity and of remain-
ing consistent with the theme of this 
article, the discussion in this section 
is focused on recent developments in 
building-level load forecasting.

Load forecasting can be classified 
into three classes: 1) short-term load 
forecasting, 2) medium-term load fore-
casting, and 3) long-term load forecast-
ing [33], [39]. Regardless of the type of 
forecasting, to accurately predict ener-
gy consumption, the forecasting meth-
odology should be able to accurately 
model the dependencies between build-
ing factors and energy consumption. Re-
search has shown that load forecasting 
is an extremely difficult problem [33], 
[40]. Hence, a range of methods—phys-
ics principles-based and statistics and 
AI based—have been proposed in the 
literature. This article focuses on the 
recent advancements in AI-based build-
ing-level load forecasting.

One of the most recent advances 
in building-level load forecasting has 
been the introduction of deep learn-
ing into the domain. Several recent ef-
forts exist in the literature that inves-
tigate and prove the effectiveness of 
using deep learning techniques over 
traditional techniques. Mocanu et al. 
tested two variations of the RBM: the 
factored conditional RBM (FCRBM) 
and the conditional RBM (CRBM) 
[33]. In the study, the CRBM and the 
FCRBM were compared to the ANN, 
SVM, and RNN. The authors conclud-
ed that the FCRBM outperforms all the 
other methods. 

In another study, DBNs, which are 
architectures built with layered RBMs, 
were used for electricity load fore-
casting by Dedinec et al. [41]. The au-
thors concluded that the DBN-based 
method outperforms traditional ANNs. 
Qiu et al. used an ensemble of DBNs 
coupled with a traditional SVM-based 
regression technique [42]. The authors 
showed that the presented ensemble 
DBN method outperforms methods 
such as ANN, SVM, and even single DBN 
for the data set it was tested on. There-
fore, it can be seen that deep learning 
techniques have shown promise in im-
proving the performance of load-fore-
casting methodologies and hence have 

the potential of having a significant im-
pact on the smart grids, smart homes, 
and smart cities of tomorrow. Next, we 
look at a case study conducted by the 
authors to compare the performance of 
deep learning techniques.

Case Study: Comparison of Deep 
Learning Algorithms for Demand 
Forecasting in Buildings
As mentioned, deep learning method-
ologies have been shown to be ben-
eficial in the domain of building-level 
demand forecasting. However, the 
published studies lack compara-
tive analyses among deep learning 
techniques. The presented case study 
discusses the work conducted by the 
authors to bridge that gap. In this 
work, we discuss the effectiveness of 
deep learning-based demand forecast-
ing using three deep learning architec-
tures implemented on the same data 
set. The architectures were:

■■ the standard LSTM-based load 
forecasting architecture

■■ the LSTM-based Sequence-to-Se-
quence architecture (LSTM S2S)

■■ the CNN-based architecture.
All three architectures were tested 

on a benchmark data set for a single 

residential energy consumer. The 
same data set that was used in [33] 
was used in the study so that the three 
tested architectures could be com-
pared to the FCRBM method. Further-
more, to keep the tests uniform, the 
same training and testing data were 
used as in [33].

Data Set
The data set contains electrical con-
sumption data for a single residential 
customer [43]. The data set is com-
posed of electrical consumption data 
for a residential building for four years 
(December 2006–November 2010). 
The study was conducted on 1-h-reso-
lution data. For all three architectures, 
the first three years were used as the 
training data and the last year was 
used as testing data. For all the archi-
tectures, the electricity consumption 
for the next 60 h was predicted.

Figure 9(a)–(c) illustrates the vari-
ability present in the data set. Fig-
ure 9(a) shows the monthly energy 
consumption across the four years. 
Note that the energy consumption 
toward the middle of the year is less 
than the consumption at the start 
and the end. Figure 9(b) depicts the 

Sigmoid

SigmoidSigmoid

LSTM Cell

Forget Gate

x(t )

Output GateInput Gate

Tanh Tanh

X

X X

O [t–1] i [t ]

O [t–1]

O (t )

i [t ]O [t–1]

O [t–1]

i [t ]

i [t ]
∑

LSTM
Layer 2

LSTM
Layer 1

i [t ]

y (t )

f (o2)

o2

o1

(a) (b)

FIGURE 8 – (a) An LSTM cell and (b) a multilayer LSTM network [39]. 

Deep learning has revolutionized a multitude of 
fields, such as speech recognition, natural language 
processing, and face recognition.



42  IEEE industrial electronics magazine  ■  DECEMBER 2016

average energy consumption across 
the seven days of the week. It can be 
seen that the weekend has higher en-
ergy consumption compared to the 
weekdays. Figure 9(c) illustrates the 
variability of energy use across the 
hours of the day for the seven days 
of the week. A significant variance 
in use across the 24 h can be seen. 

Furthermore, it shows that the week-
days show a similar use pattern while 
weekends are different.

Standard LSTM-Based Load Forecasting
The standard LSTM algorithm was 
used as the first architecture to per-
form the building-level electricity load 
forecast. The electrical consumption of 

the previous step and time stamp data 
are fed into the model. Table 1 lists 
the time stamp data used as inputs to 
all three models. The output from the 
LSTM network is the predicted power 
consumption for the next time step. 
To predict further into the future, the 
prediction of the next time step can be 
used. The model is trained using the 
standard backpropagation through 
time (BPTT) method [44] with gradient 
descent. For the elaborated methodol-
ogy, readers are referred to [39].

LSTM-Based S2S Architecture  
for Load Forecasting
S2S architectures for neural networks 
were proposed by Sutskever et al. [45] 
as a method of mapping sequences of 
arbitrary lengths. The LSTM S2S archi-
tecture for load forecasting contains 
two standard LSTM networks, namely, 
the encoder and decoder. The objec-
tive of the encoder is to convert input 
sequences of variable length into a 
predefined, fixed-length vector. This 
fixed-length vector is then used as the 
input for the decoder. The decoder 
produces the output vector, which is 
the energy load forecast for the next 
n steps. This architecture enables in-
puts of arbitrary length. In the energy 
load forecasting context, this means 
that an arbitrary number of historical 
energy consumption data can be fed 
into the architecture as inputs. The 
encoder network is trained alone as 
a preprocessing step, using the same 
methodology mentioned in the stan-
dard LSTM method. Then the encoder 
is plugged to the decoder, and both 
networks are trained together using 
BPTT. For the elaborated methodol-
ogy, readers are referred to [39].

CNN-Based Load Forecasting
Time series energy consumption 
data are viewed as a one-dimensional 
grid. To perform the CNN-based en-
ergy prediction, the CNN is fed with 
a predefined number of historical 
energy consumption data. Only the 
historical consumption data are fed 
into the convolutional layers. The 
time stamp data are not used in this 
phase. Once the historical energy 
consumption data are subjected to 

TABLE 1 – THE TIME STAMP INPUTS FOR THE DEEP LEARNING ALGORITHMS.

INPUT VARIABLE DESCRIPTION VALUES

Hour of the day Hour of the day for the first prediction [1, 24]

Month Month of the first prediction [1, 12]

Day of the week Day of the week for the first prediction [1, 7]

Day of the month Day of the month for the first prediction [1, 31]

Weekend flag Flag that is set if the day of the first prediction is a weekend [0, 1]
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the convolution and pooling phases, 
the output is fed into a fully con-
nected network. Time stamp data are 
introduced into the system at this 
phase. The training of the architec-
ture is carried out using BPTT with 
a gradient descent model. For the 
elaborated methodology, readers are 
referred to [46].

Experimental Results
As mentioned, all three architectures 
were tested on the benchmark data 
set on the single residential customer, 
with an identical training/testing split. 
Figure 10 shows a sample prediction 
obtained from the standard LSTM. It 
can be observed that the LSTM is able 
to follow the general trend of the pre-
diction. However, it can be seen that the 
LSTM fails to adapt to certain changes. 
Figure 11 shows a sample prediction 
produced by the S2S architecture. It 
can be observed that the S2S model 
manages to estimate the rapid chang-
es that appear in the data. Figure 12 
shows a sample CNN prediction. It can 
be seen that the CNN performs in a 
similar fashion. A standard ANN was 
implemented on the same data set, 
and the prediction was carried out for 
the purpose of comparison. Figure 13 
shows a sample ANN prediction. Table 2  
presents the average prediction errors 
in terms of root-mean-square-error val-
ues obtained for the three deep learn-
ing architectures and the ANN. It can 
be seen that all three deep learning 
architectures outperformed standard 
ANNs for the tested data set. Further-
more, it can be seen that all three 
deep learning architectures produced 
results comparable to each other and 
also comparable to [46].

Buildings and Humans
As discussed before, elements such 
as connectivity and AI are essen-
tial for achieving energy-efficient 
and smart buildings and the cities 
of the future. However, while those 
elements play a huge role in energy 
efficiency, another important aspect 
of buildings is ensuring occupant 
comfort [34], [47]–[49]. Even with the 
recent advances in intelligent control 
schemes, it has been shown that a 

significant portion of occupants are 
still left dissatisfied with the comfort 
provided by building thermal condi-
tions [47]. Hence, it is evident that 
mechanisms should exist for humans 
to interact with and provide feedback 
to the building management system. 
Humans in the building can be divid-
ed into two main categories: 1) occu-
pants or users of the building and 2) 
building managers. The behavior of 

the occupants plays a significant role 
in energy consumption and green-
house gas emissions [47]. Occupant 
behavior is a combination of human 
activity and preferences [50]. Occu-
pants thus have a huge impact on a 
building’s energy demand. Therefore, 
the human element from the perspec-
tive of the occupants should be taken 
into consideration on the following 
two fronts to optimize a building’s 
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Mechanisms should exist for humans to interact  
with and provide feedback to the building 
management system.
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energy usage while maintaining occu-
pant comfort:

■■ modeling occupant activity
■■ enabling personalized comfort feed-

back and mechanisms to optimally 
incorporate subjective comfort feed-
back.
In addition to the occupants, from 

a building manager’s perspective, au-
tomated building controls can be sup-
plemented with human-in-the-loop, 
semiautomated control strategies. 
Such strategies have the capability of 
using the knowledge of an experienced 
building manager to supplement the 
intelligent control schemes in place.

Human–Building Interaction for 
Comfort and Energy Efficiency
While data-driven intelligent algo-
rithms can provide control for in-
creased energy efficiency, balancing 
performance with occupant comfort 
involves acquiring data at the individ-
ual workstation level. However, cur-
rent building energy-system designs 
lack the implementation of sensors at 
individual work locations. Therefore, 
these systems are dependent upon ag-
gregate or zone understanding of the 
parameters for achieving individual 
comfort. Individual occupant feedback 
is extremely important for maintain-
ing comfort levels because human 
comfort is subjective. Accurately un-
derstanding the impact on individuals 
and variables such as radiation from 
windows or inadequate airflow is of 
the essence, especially since those 
factors are subjective. Therefore, the 
unavailability of highly granular in-
formation for the entire building may 
lead to areas of low comfort and low 
energy dissipation going unnoticed. 
To alleviate this, a method of acquiring 
individual comfort feedback is neces-
sary. Therefore, methods need to ex-
ist that enable direct communication 
between occupants and the building 
energy management system (BEMS). 
Human–computer interaction meth-
odologies should be incorporated to 
provide easy-to-access and intuitive 
interfaces for occupants to send their 
comfort-level feedback to the BEMS.

While automating building con-
trol is crucial for achieving building 

Real Measurement
CNN Estimation

4

3.5

3

2.5

2

1.5

1
0 10 20 30

Time (Hours)

A
ct

iv
e 

P
ow

er
 (

kW
)

40 50 60

FIGURE 12 – The prediction results for the CNN [46]. 

Real Measurement
ANN Estimation

5

4.5

4

3.5

3

2.5

2

1.5

0.5

0
0 10 20 30

Time (Hours)

40 50 60

1

A
ct

iv
e 

P
ow

er
 (

kW
)

FIGURE 13 – The prediction results for the ANN [46]. 

TABLE 2 – THE PREDICTION ERRORS FOR THE TESTED METHODOLOGIES (RMSE).

ARCHITECTURE TRAINING ERROR (RMSE) TESTING ERROR (RMSE)

LSTM 0.752 0.684

LSTM S2S 0.701 0.625

CNN 0.714 0.677

ANN 0.788 0.697
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energy efficiency, it is difficult to ig-
nore the impact that an experienced 
building manager can make in opti-
mizing and supplementing the auto-
mated control. For this to be possible, 
it is imperative to have an appropriate 
interface between the human manager 
and the control system. The interface 
should be able to provide the building 
manager with data streams from dif-
ferent building sensors (information 
processing being an essential task 
in automation [51]) and information 
about the control system. In addition, 
the interface should be able to provide 
the manager with information about 
the control actions in real time.

Case Study: Human–Machine 
Interaction for Incorporating a 
Human Element
The main objective of the performed 
study was to devise strategies to in-
corporate the human in the building 
automation and control to increase 
energy efficiency and occupant com-
fort. Two types of human interaction 
with the building and the BEMS were 
identified: 1) by building managers 
and 2) by building occupants. There-
fore, strategies were developed to in-
corporate human interaction with the 
BEMS using two different methods: 1) 
incorporating expert control through 
building managers to supplement the 
automated control for increased en-
ergy efficiency and 2) incorporating 
occupant feedback for increasing oc-
cupant comfort.

Building Manager Interaction
A user-friendly visualization tool was 
developed that presents a real-time 
data stream from sensors, anomalies 
in the data streams, and linguistic sum-
maries of the data. Anomalies in the 
data are identified using an AI-based 
framework [52]. In the anomaly detec-
tion process, AI-based data-mining al-
gorithms extract and model the normal 
behavior of the building and thus are 
capable of identifying behavior that 
is anomalous and potentially harm-
ful. Similarly, linguistic summaries of 
data are generated using an AI-based 
framework [52]. In this framework, the 
data from the building are summarized 

using human-interpretable linguistic 
terms. Therefore, a summary of data 
trends pertaining to building perfor-
mance is given to the building manger 
in an understandable manner. Both 
AI-based frameworks were developed 
by the authors. However, those frame-
works are out of the scope of this ar-
ticle. The developed visualization tool 
focuses on increasing the building 
manager’s situational awareness by 
providing a comprehensive overview 
of building performance.

The visualization tool was devel-
oped for different platforms. First, 
the interface was developed for a Mi-
crosoft Windows–based platform. To 
provide mobile capability, the inter-
face was developed as an Android ap-
plication. The functionality was kept 
identical across the two versions. 
Figure 14 shows the interface for the 
Windows and the Android versions. 
Furthermore, the tool was extend-
ed to a web-based version to make 
it platform independent. Figure 15  
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FIGURE 14 – The interface of the developed tool for incorporating the building manager  
(Windows and Android Versions). 

FIGURE 15 – The web interface of the building manager tool.
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shows the interface for the web-
based application.

The tool was designed to be inter-
active so the user would be able to se-
lect different information to visualize. 
Furthermore, the user is able to use 
the tool to update the anomaly detec-
tion algorithm. That is, the building 
manager is able to provide feedback 
on the detected anomalies. For ex-
ample, the building manager is given 
the capability of validating a detected 
anomaly. If the detected anomaly is 
a false positive, the anomaly detec-
tion algorithm will learn that and will 
refrain from tagging that behavior as 
an anomaly thereafter. Therefore, the 
knowledge of the experienced build-
ing manager is incorporated in the 
building automation through the de-
veloped interface.

Occupant Interaction
Implementing an extensive sensor 
network to achieve individual work-
station thermal environments is 
time consuming and entails a signifi-
cant financial commitment. There-
fore, the cost-effective and feasible 
method of acquiring the required 
data is a user-centered approach. A 
user-centered approach will ease 
the task of building managers and 
the automated building controller to 
proactively monitor occupants’ com-
fort levels and adjust building states 

for optimal comfort and efficiency 
through the interface elaborated in 
the section above.

Therefore, a user-centric data col-
lection methodology was developed 
to acquire highly granular readings 
of the ambient environmental condi-
tions in buildings and the subjective 
comfort levels of users. To acquire 
highly granular recordings of ambient 
environmental conditions in the build-
ing, a low-cost sensor was developed 
[53]. The sensor has a modular design 
so that new components can be added 
to it without much effort [53]. The de-
signed sensor includes measurements 
such as temperature, humidity, CO2, 
and visible light. Figure 16 shows the 
designed sensor.

Even though deploying sensors 
at individual workstations can help 
obtain highly granular data, it does 
not factor in the subjective human 
feedback. The current BEMS systems 
lack a methodology for the users to 
interact with the building managers. 
Therefore, to provide a method for 
the users to interact with the building  
control, a smartphone app was de-
veloped because of the ease of ac-
cess and use. Figure  17 shows the 
developed smartphone application. 
Through the developed comfort app, 
the users are able to report back to 
the building managers about com-
fort levels in terms of such things as 

lighting, temperature, and ventilation 
at their specific location. Once the 
necessary information is acquired 
from the occupants, the imprecise 
human feedback is handled in lin-
guistic terms [52]. Then the feed-
back is incorporated in the build-
ing control to improve the comfort 
level of the individuals. 

In addition to reporting comfort 
data, users are able to use the mobile 
application to report system failures 
to the managers. This method can 
be used to send specific information 
about which system failed, comments 
regarding the failure, and even images 
of the failure. This information can be 
used with the anomaly detection algo-
rithms mentioned in the previous sec-
tion to provide the building manager 
with more information on the subop-
timal behavior of the building. Fur-
thermore, the developed smartphone 
application connects to the developed 
modular sensor to acquire the data for 
localized details.

Looking into the Future
Buildings will continue their evolution 
toward becoming living and breathing 
cyberphysical mechanisms. The U.S. 
Green Building Council, under its Lead-
ership in Energy and Efficient Design 
program, may be only the beginning 
of the transition toward the concept 
of living buildings. The Living Building 
Challenge certification program that 
started in 2006 continues the promo-
tion and advocacy of sustainability in 
the building environment. While net-
zero buildings (buildings with zero 
net energy consumption, i.e., not using 
more energy then they themselves gen-
erate) are still rare, they may become 
more common with advances in renew-
ables and distributed storage technolo-
gies, such as Li-ion batteries and PEVs. 
In the future, buildings with a surplus of 
energy may be able to buy and sell that 
energy to the grid or to other buildings.

The concept of living buildings will 
likely further the analogy with hu-
man beings. Just as the human body 
sweats to release excess heat, build-
ings may use evaporative roof sys-
tems. Rain-absorbing matting could 
act in the same way as perspiration to FIGURE 16 – The developed modular wireless sensor.

Buildings will continue their evolution  
toward becoming living and breathing  
cyberphysical mechanisms.
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cool the buildings as the rain evapo-
rates. Similarly, as blood vessels 
constrict or dilate to preserve or re-
lease heat, buildings will be using in-
telligent adaptive insulation systems 
and smart transparent windows and 
shading. Although natural breath-
ing systems such as wind towers and 
wind catchers have been used in 
buildings for centuries, modern tech-
nologies will enable more effective, 
automated, and predictive controls, 
using modern polymers and bioma-
terials (such as self-healing concrete) 
and architectures of such structures. 
Modern renewables generators, tur-
bine designs, and wind energy towers 
will increase buildings’ autonomy and 
building grid islanding.

At the smart grid level, smart loads 
will interact with utilities to reduce peak 
demand or respond to demand dispatch 
(increasing loads at times of excess gen-
eration). Grid-interactive hot and cold 
thermal energy storage systems (tanks) 
will further advance load shifting and in-
crease the sustainability and autonomy 
of smart buildings. Advanced power 
electronics will be able to provide sub-
minute load management [54].

When it comes to human–building 
interactions, the increase of modali-
ties and platforms of heterogeneous 

sensor systems will lead to the seam-
less integration of buildings into the 
everyday lives of humans. The novel 
interaction technologies emerging 
with smart devices via sound, voice, 
and three-dimensional touch will be-
come a norm for communicating with 
smart building components. A home-
owner’s arrival at his or her house will 
trigger preset rules, and the owner 
will be able to ask for the curtains to 
be closed or the lighting and music ad-
justed. Interesting questions will arise, 
such as the personification of smart 
building components (as with thera-
peutic robots like Paro), or questions 
of human changes in response to con-
tinuous interactions with buildings.

Software will play an increasing role 
in the buildings of the future. Similar 
to software virtualization (hard disk 
drives or software-defined networks), 
the virtualization of power plants that 
combines geographically dispersed 

resources (e.g., smart homes, local re-
newables, and PEVs) can increase the 
correlation between resources and en-
able greater flexibility, while decreas-
ing the uncertainty associated with 
individual resources used in isolation 
[54]. The aggregated resources could 
be bid into wholesale electricity mar-
kets and provide other grid services if 
allowed. One emerging concept is the 
Distributed Energy Resource Manage-
ment System software platform.

AI techniques are expected to con-
tinue their way into the buildings of 
the future. From automation and occu-
pant behavioral pattern learning and 
prediction to processing of the big data 
generated by buildings and smart grids, 
AI techniques have already been estab-
lished as an approach to the autono-
mous execution of routines on behalf of 
users. With regard to energy efficiency 
as one of the most important aspects 
of future smart cities, approaches such 

Comfort-Level Reporting Failure Reporting Location Selection

FIGURE 17 – The smartphone application and its features.

With the growth of ubiquitous IoT devices, modern 
buildings seamlessly integrate with the environment, 
lowering energy-related expenses and increasing 
productivity and the quality of life.
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as deep learning (Google’s DeepMind) 
were reported in July of this year to 
have cut cooling energy use by 40% 
and total energy use by 15% in Google’s 
data centers.

Conclusion
This article presented an overview of 
the state of the art and the future of 
smart buildings. Starting with U.S. and 
world energy consumption predictions, 
we overviewed the most important as-
pects of smart grids and smart build-
ings, elaborating further on the interac-
tiveness and interoperability between 
the two. We then discussed the emerg-
ing aspects of smart homes—connec-
tivity and analytics—while recognizing 
the increasingly evident issues of the 
security and resilience of intelligent 
buildings and the corresponding need 
for research in these areas. The article 
additionally overviewed the cutting-
edge AI techniques, reflecting on the 
recent hot topics in deep learning. Also  
presented were the results of case stud-
ies done by the authors on two highly 
relevant problems: load/demand fore-
casting for buildings and human–build-
ing interaction. The article concluded 
with insights into the future of intelli-
gent buildings.

Modern intelligent buildings are 
becoming cohesive cyberphysical 
ecosystems that live and breathe with 
their surroundings. Intelligent build-
ings adapt to external (seasonal) and 
internal (occupancy and usage pat-
terns) changes and are doing so with 
increasing autonomy and sustainabil-
ity. Modern buildings thrive on data 
sources that were previously nonexis-
tent (sensors) or ignored and feature 
highly reconfigurable infrastructure 
and control elements. With the growth 
of ubiquitous IoT devices, modern 
buildings seamlessly integrate with the 
environment, lowering energy-related 
expenses and increasing productivity 
and the quality of life.
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