
 1

Abstract—A challenge facing industrial control network

administrators is protecting the typically large number of

connected assets for which they are responsible. These cyber

devices may be tightly coupled with the physical processes they

control and human induced failures risk dire real world

consequences. Dynamic virtual honeypots are effective tools for

observing and attracting network intruder activity. This paper

presents a design and implementation for self-configuring

honeypots that passively examines control system network traffic

and actively adapts to the observed environment. In contrast to

prior work in the field, six tools were analyzed for suitability of

network entity information gathering. Ettercap, an established

network security tool not commonly used in this capacity,

outperformed the other tools and was chosen for implementation.

Utilizing Ettercap XML output, a novel four-step algorithm was

developed for autonomous creation and update of a Honeyd

configuration. This algorithm was tested on an existing small

campus grid and sensor network by execution of a collaborative

usage scenario. Automatically created virtual hosts were deployed

in concert with an Anomaly Behavior (AB) system in an attack

scenario. Virtual hosts were automatically configured with unique

emulated network stack behaviors for 92% of the targeted

devices. The AB system alerted on 100% of the monitored

emulated devices.

Index Terms—Industrial Control, Intrusion Detection,

Network Security.

I. INTRODUCTION

ANY modern complex control systems are

interconnected via Ethernet networks. These networks,

found deployed in areas such as chemical facilities or energy

production, are utilized to deliver status and control

information vital to the operation of physical systems. A

compromised control system could have security, public

safety, industrial or economical consequences [1],[2]. The

need for resilient adaptive security systems, specifically

developed for critical cyber-physical systems, is increasing

with the elevated levels of cyber security threats in the modern

world [3],[4].

Copyright (c) 2011 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be

obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Todd Vollmer is with the Idaho National Laboratory, Idaho Falls, ID

83415 USA (e-mail: denis.vollmer@inl.gov).

Milos Manic is with the University of Idaho, Idaho Falls, ID 83402 USA

(e-mail: misko@uidaho.edu).

Furthermore, with the advent of the smart grid, the number

of configurable devices to be deployed is relatively high. For

example, in a typical Advanced Metering Infrastructure (AMI)

system 1,500 wireless sensors report to one or multiple

Wireless Access Points (WAP) nodes [5]. As of April 2010,

almost 69 million of these meters were planned for deployment

in the United States [6]. Assuming a uniform deployment of

sensors, this plan calls for 46,000 WAP’s. So, in addition to

protecting existing networks, a large-scale deployment of new

devices will soon be prevalent.

Network security monitoring systems are a significant part

of a solution to protecting control systems. In most contexts,

they are rarely capable of providing perfect intrusion detection

[7],[8]. Deceptive systems, called honeypots, that emulate

critical network entities have been deployed in tandem with

monitoring solutions to improve detection accuracy and

precision rates [9],[10].

It is difficult to list the definitive attributes of a network host

necessary to attract an attackers attention. This requires

analysis of attackers motivations, which may vary in depth and

details depending on the situation. However, a reasonable

assumption can be made that if any of the real devices on the

network are a desirable target, than emulation of those systems

would be a productive exercise. Given this premise and the

issue of a large device deployment, a relevant concern is

reducing the human effort involved while providing an

improved security posture.

In addition to a honeypots faithful reconstruction of a host’s

network presence, automation is a key capability. According to

John Ousterhout, there are four common steps for turning

deployments from an enemy into a friend [11]. First, and most

important, is automation. This is essentially a question of

economy. It is usually cheaper to build better tools than

manually manage the configurations of individual devices in a

large system.

In this paper, the collaborative use of dynamic virtual

honeypots in a control system network is introduced. Aspects

of effective tools for identifying network host characteristics

are examined. The presented algorithm focuses on

automatically managing the complexity of self-configurable

dynamic virtual hosts by adapting to an operational network

environment. A self-updating model, based on passive

monitoring of the network devices, is created and maintained.

This model is used to configure deceptive network entities

designed to draw the focus of malicious intent. Finally, a usage

Cyber-Physical System Security with Deceptive

Virtual Hosts for Industrial Control Networks

Todd Vollmer, Milos Manic, Senior Members, IEEE

M

 2

scenario is examined to show how imitating a real network is

useful when combined with an anomaly detection routine.

The remainder of this paper is organized as follows: Section

II provides background information on honeypots and network

scanning. Related prior work is found in Section III. Section

IV defines the algorithm design and implementation details. A

description of the test control system network and usage case is

in Section V. Section VI provides an analysis of results and the

presented algorithm. Section VII concludes the paper.

II. BACKGROUND

Lance Spitzner introduced the concept of a dynamic

honeypot (DHP) in 2004. The idea was based on automatically

configuring a honeypot by gathering information gleaned from

network traffic. This type of system has the benefit of requiring

little human input and can readily adapt to changes in network

behavior. A DHP requires implementation in two key areas: 1.

Network information gathering, and 2. Generating honeypot

configuration for deployment.

Honeypots have uses other than presenting an emulated

host. For instance, gathering malware by presenting a

vulnerable service, acting as a mail host to collect SPAM email

and acting as a ‘tarpit’ that consumes all attempts to break into

a system. These uses are not explored in this paper but are

provided for completeness.

Implementations of honeypots fall into two categories: high

or low interaction. Low interaction virtual honeypots are used

to gather information. They are simpler to deploy, less likely to

be compromised and can work collaboratively with other

agents. Additionally, they might distract an attacker from

hitting real systems.

Honeyd, created by Niels Provos, is an open source project

implemented as a small software daemon that creates virtual

hosts on a network [12]. It is a low interaction honeypot that

emulates an OS network stack and provides basic service

functionality. Another advantage is the ability to deploy

thousands of virtual hosts on a single host thereby reducing

hardware costs.

Honeyd simulates the network stack and generally provides

only superficial services. Because of this, an attacker is never

able to gain access to the host by compromising a service but

would quickly realize that something is amiss. The primary

goal is not to entrap the attacker into spending all his effort on

the deceptive system. It is to attract his attention, for at least a

short time, and gather information that helps identify the

attacker and a possibly compromised internal attack platform.

In this paper, Honeyd was evaluated and logic created to

automatically configure it. The resulting configuration is

designed to emulate, as close as possible, any user identified

host on the network. This is in contrast to previous work that

focused primarily on dynamically creating several honeypots,

called a honeynet, that in aggregate are statistically similar to a

network of hosts [13].

High interaction honeypot systems are typically hardware

replicas of existing operational components that include the

appropriate software. For purposes of this discussion, virtual

machines are included in the High category. These systems do

not mimic services but are deployed with working instances.

This type of system provides a high fidelity solution that is less

prone to discovery of its deceptive purpose by network

intruders. However, they are at a higher risk for compromise

by an attacker and require a more complicated deployment

investment. Deploying a virtual machine is simpler than a

hardware base system but still requires complex management

scenarios for deploying a wide array of service software. This

includes having copies of multiple OS distributions and server

software.

Finally honeypots, high or low interaction, can only detect

attacks directed at them. A competent attacker who discovers

that a system is a honeypot will avoid any further contact with

that system. The fidelity of the deception is in the presentation

of the honeypot to the network. How the data is gathered to

create this deception is important.

A. Passive vs. Active Scanning

The two primary means for gathering the necessary network

host information to create a honeypot includes passive and

active network scanning. Unfortunately, most research to this

point provides minimal analysis on suitable tools for passive

information gathering. This is a key enabling capability if the

intent is to deceive an attacker into believing an emulated

system is real. This paper corrects this deficiency by

examining characteristics of six existing tools and

consequently recommends a tool, previously not used in this

context, called Ettercap [14].

In most of the literature reviewed, passive scanning has been

implemented with P0f and occasionally Snort [13],[15]. P0f is

a command line tool that utilizes an array of mechanisms to

identify hosts in a network stream. It is a passive OS

fingerprinting tool frequently cited in creation of dynamic

virtual honeypots. Snort is inherently a rule based intrusion

detection system.

The amount of information that may be gleaned from

passive scanning is a limited subset of possible information

[16]. A passive scanning based tool is restricted to only

gathering data that is offered in the captured stream. If a

service on a host is available, but not utilized, this data point

will be missed. Active scanning may prove more successful at

extracting this type of information.

Nmap is an active scanning tool that has proven useful for

interrogating hosts on a network [17]. However, a downside to

active scanning is the possible interruption of services on

hosts. This problem is especially acute in control systems. For

instance, ping sweeps on older systems have been known to

disrupt normal operation and cause physical damage [18].

Active scanning also provides a beacon of network activity

outside the norm and could be revealing for intruders listening

in on the traffic. In either case of active or passive scanning,

the resulting information may be used to configure a honeypot.

 3

III. RELATED WORK

Dynamic honeypot solutions that gather network

information, process that information into a configuration and

deploy appropriately have been created as in

[13],[15],[19],[20]. These papers propose monitoring methods

that are active [19], passive [13], combined [15] or are

ambiguous [20]. When passive monitoring is implemented, the

chosen tool is typically P0f with no analysis of competing tools

provided. Finally, the test implementations are all on non-

control system networks.

There are two notable projects related to control system

honeypots. The SCADA Honeynet project by Matthew Franz

and Venkat Pothamsetty of the Cisco Critical Infrastructure

Assurance Group (CIAG) was initially released in March of

2004 [21]. The project is not actively maintained, with a last

release date of July 15, 2005, however it is still available from

Sourceforge. The design utilizes Honeyd for simulating a set

of services for a PLC. The major contributions of this project

are service scripts, which include functionality for FTP,

MODBUS, Telnet and a web server. However, the SCADA

Honeynet does not consider automatic provisioning of the

virtual hosts and is a manually configured project.

Digital Bond, Inc. is a control system security consulting

and research group founded by Dale Peterson. Their SCADA

Honeynet implementation is an evolution of the original

project just described [22]. It utilizes two virtual machines

instead of Honeyd. One virtual machine includes network

monitoring tools such as Snort with Digital Bond’s Quickdraw

IDS signatures to detect activity. The other virtual machine

simulates a PLC with several exposed services. There is no

dynamic provisioning of hosts or services, although it is

possible to replace the virtual machine PLC with an actual

hardware component. This assures complete deception if the

PLC is configured correctly with the added expense of an

actual hardware device.

IV. SOLUTION DESIGN

This section describes the software tool evaluation and

implementation logic of the solution. Fig. 1. shows the

relationship of three key functional areas: Network Entity

Identification (NEI), Dynamic Virtual Host configuration

(DVH) and Virtual Host Instantiation (VHI). These act in a

continuous cycle of processing and updating information

represented by the dotted line box.

A pseudo code of the algorithm is shown in Fig. 2 with

implementation details for procedures in italics found

afterward in each section.

A. Network Entity Identification

The Network Entity Identification (NEI) component

monitors network traffic from which it extracts the source,

destination, and port activity. Information from the NEI is

delivered to an implementation of the logic tasked with

creating a dynamic honeypot configuration.

An evaluation was conducted on six passive network

information gathering open source tools to determine their

strengths and weaknesses relevant to support of automated

configuration. The tools evaluated for providing network host

identification are: p0F [23], Tshark [24], Ettercap, Snort [25],

Tcpdump [26] and Ntop [27]. Of the six tools, Ettercap and

Ntop provide well-formatted structured output as an option.

Another tool, called SinFP [28], was removed from

consideration because it did not execute correctly on the test

sensor system.

In addition to identifying network entities, NEI needs to

provide the information necessary to create a representative

virtual network presence. The critically required capabilities

examined were operating system identification, port or service

identification per host and the capture of MAC addresses with

a resolution to the appropriate vendor [15]. Considering the

results in the critical capabilities matrix shown in Table I, it is

apparent that Ntop and Ettercap fulfill all three criteria. Of the

Create and update virtual hosts with following:

Network Entity Identification.

Write entities to XML.

Read_data; from input files and Ettercap

For each IP create a Dynamic Virtual Host

Find_closest representative OS.

Map_OS values to Honeyd names

Create_MAC address for new hosts

Create_Features for device specific behaviors

Create_Config for virtual hosts

End

Fig. 2. Pseudo code

TABLE I

TOOL CAPABILITY MATRIX

Tool OS Identify Port identify MAC Vendor

ettercap yes yes yes

ntop yes yes yes

p0f yes no no

snort no yes no

tcpdump no yes no

tshark no yes yes

Fig. 1. Conceptual Design Diagram

 4

two candidates, Ettercap was chosen for its support of XML

output, completeness of information provided from this output

and available functionality for support of future work.

Table II presents the results when running the tools against

the test network described in section V. The system, as

configured during the test, had 46 physical connections to the

network. The second column contains the number of operating

systems identified by each tool. Ntop’s identification of 202

hosts in column 3 contains duplicate entries for entities that

have both IPv4 and IPv6 addresses. Additionally, records

created for broadcast addresses inflate the host number.

Ettercap outperformed or equaled the other tools in three of the

four categories.

Ettercap is an extensible network manipulation and

reconnaissance tool [14]. It is an established and popular tool

in the hacking community. However, this paper is the first to

establish its use as a source of information for dynamic

honeypot creation. It was run as a daemon process with unified

sniffing. In this mode it maintains internal network host

records and updates them as new information is found. A

binary log file is continuously updated as well. An Ettercap

companion executable Etterlog is then run on the log file with

a -x option to produce an XML file. This data file is the source

for communication of the network entity information to the

dynamic virtual host configuration process.

In conclusion of this section, the Ettercap tool was selected

for identifying network entities. It provides information on

host IP addresses, MAC values and port usage. When

compared with the five tools listed in Table I, it performed as

well or better than all of them. An additional key driving

capability is Ettercap’s formatted XML output that can easily

be integrated into other systems. Communication within an

automated system requires a defined consistent messaging

system. Lastly, Ettercap is capable of performing more

advanced operations that could be useful for future functional

enhancements.

B. Dynamic Virtual Hosts

This section discusses the configuration creation of the

Dynamic Virtual Hosts (DVH). These hosts emulate the

network signature of actual systems on a physical network.

Honeyd is a popular open source solution for virtual honeypots

that provides a flexible and feature rich configuration

capability. As autonomous configuration is a desired aspect for

minimization of expensive manual configuration, Honeyd’s

configuration flexibility is an advantage. The overall goal is

the automatic configuration and dynamic update of a variable

length list of virtual hosts based on information gathered from

actual hosts using Ettercap.

The following sections describe four functional areas in

DVH: OS selection, OS name mapping, MAC creation and

Service (port) emulation.

1) Operating System Selection

For any given host on a network, Ettercap may not be able

to identify the operating system. If this occurs, for an

emulation target, then an OS must be chosen. It is desirable to

provide an exact match in network behavior. This does not

necessarily require an exact match with the OS name in the

database.

Read_data consists of extracting n host records h from the

Ettercap entries and forming a record set O such that O = {h1,

h2,…, hn}. O then becomes a source of information for creation

of virtual hosts. The intention is to examine these records for

similarities to an IP address i provided in a list of j target IP

addresses where IL = {i1, i2,…, ij}. An assumption is being

made that the hosts h on the network have an OS similar to a

candidate i even if an exact match is not found.

Given that Ph is a set of port values for a host h and a

network port set Si for target i, Find_closest examines the

intersections of SiPh for all h in O. The integer count of

matching ports is stored for each intersection. In addition, the

number of ports for the target is calculated. Given these

values, a match percentage is calculated, e.g. two candidate

ports and an intersection count of two constitute a 100%

match. Candidates with a higher percentage were considered to

be more similar. Some OS’s utilize ports specific to services

offered by that OS and they could be used in identification

[16].

If a candidate OS is not identified by examining ports, then

the MAC address is examined. Find_closest compares the

vendor identification section of the candidate MAC address of

i to the MAC addresses for each host h in O. If a match is

found that has an identified operating system, this value is

placed on a candidate list. After exhaustively examining O, the

largest matching value, if one exists, from the candidate list is

chosen as the OS. The assumption is that any hosts on the

network that have the same NIC vendor may be performing

similar functions and thereby have a similar operating system.

As is described later, several control system vendors have an

organizationally unique identifier for their network devices.

If no prior step has identified an OS, a random number r is

generated in the range 0 to N where N is the cardinality (O). If

the host record hN OS field exists, this value is utilized. If not,

a random value supported by Honeyd is chosen. In other

words, a field is possibly selected for inclusion proportional to

the relative frequency of its presence in O. Given that not all

host records contain an OS, and possibly none of them; the

completely random OS value is required.

Once an OS is identified by the selection algorithm or

trivially identified by Ettercap further action, as described in

the next section, is still required.

TABLE II

TOOL PERFORMANCE RESULTS

Tool # OS ID # of Hosts # of MACs # of IPs

ettercap 16 45 35 44

ntop 0a 202 43 39

p0f 13 NA NA 10

tshark NA NA 69 44

tcpdump Not Tested

snort Not Tested
aNtop displays OS information only in the web output.

 5

2) Operating System Name Mapping

 The Honeyd configuration value for an operating system

makes use of the Nmap version 1 database defined named

values. Similarly, Ettercap utilizes its own defined name values

that do not directly match Nmap. To make a functional

configuration, a simple algorithm implemented in Map_OS

was developed to associate Ettercap names with Nmap names.

The algorithm’s initial pass compares the word tokens of the

OS names looking for case insensitive string matches. The

number of word matches were summed and stored. After

iterating through each possible OS combination, the one with

the largest count total is presented as a candidate. Finally, each

OS name combination is written to a file for reference during

creation of the configuration.

3) MAC Creation

Honeyd provides two options for specifying the MAC

address, either by vendor name or the six-octet string. Because

Honeyd has hard coded vendor strings, the six-octet

representation was chosen for use in the algorithm. Ettercap

captures this MAC octet address for all hosts in O. The MAC

protocol specifies that the first three octets are organizationally

unique and should not overlap with any other vendor. Thus, in

order to create a new MAC address that appears to come from

a specific vendor, these first three octets were used. The

vendor typically assigns the remaining three octets. In this

algorithm these last three octets are created as described next.

In the Create_MAC function, the last three octets are

randomly generated and appended to the end of the captured

candidate vendor portion. This new MAC is then compared

with all other MAC’s noted in the Ettercap host list O. Any

collision of addresses instigates a recreation of another random

set of values. Given the 2
24

 possible values, the probability of a

collision is low. Depending upon the security configuration of

a deployed switch, these generated MAC values may require

more refinement. For instance, if port security is enabled on

the network switch the possible MAC’s would have to be

predefined.

4) Network Service Emulation

The host entries in O contain network ports, previously

defined as Ph, that were active during the capture session.

Along with the port number, a port service name is available.

This service name is a human readable text value that is

defined in an Ettercap configuration file called etter.services.

Utilizing the service names contained in this file, a new

configuration file called serv.conf was created. This file maps

the service name to a service emulation script path.

The Device_Features function examines any service ports

found in the Ettercap output and loads the serv.conf file. Any

service name match to entries in the file results in the

appropriate service script value placement in the Honeyd

configuration. This enables the creation of service specific

behaviors that furthers the goal of deception. Currently, the

manual creation of scripts is necessary although some service

scripts are already available from other projects. Automatic

creation of these behavior scripts is another future area of

exploration.

In addition to services found during passive scanning, a

variable number of ports associated with the common services

are randomly activated A common service mapping file for

control system devices is utilized by the Device_Features

function. It consists of a hierarchical MAC mapping structure.

Generally, in the case of a control system device, the vendor

portion of the MAC is directly tied to the device manufacturer

enabling usage of the mapping file to find relevant services

Constructed utilizing XML, the file maps the vendor MAC

to a list of common services that are possible to find activated

on a device of this type. Each service in the file is described by

the following attributes: port number, protocol, service

description and action script. The action script specifies which

script Honeyd should utilize, if any, when it sees traffic to this

port. A value in this field will overwrite any previously defined

default script found in serv.conf. This provides the capability

to customize a response to this specific device type while still

retaining generic service emulation functionality.

Each service description has an 'include' value. This is a

floating-point value between 0.0 and 1.0. This value is

compared to a randomly generated value in the appropriate

range. If the random value is less than the include value, the

port is added to the honeypot configuration. The intention is to

vary port inclusion to represent the variability in device

configurations.

An analysis of available vendor product specifications was

used to create this file. For example, the test system contains a

Rockwell Micrologix 1100 Programmable Logic Controller

(PLC) and the possible services listed for this consist of

Ethernet/IP, web services, SMTP email (outbound) and SNMP

[29].

C. Virtual Host Instantiation and Update

The candidate emulation hosts are provided at startup as a

list of IP addresses. It is assumed that if a host in the list

disappears from passive sensing, the user still desires to have

an emulated version of it. The overhead to maintain the

missing hosts records is minimal. Of course, the actual system

has to have appeared in the passive analysis during the

monitoring period to create an initial virtual host

configuration.

An initial configuration file is created by

Create_Host_Conf. Changes to the configuration of the virtual

hosts running under Honeyd are performed while the system is

running. After a configurable time period, currently an

arbitrarily chosen 60 seconds, etterlog is called on the ettercap

daemon log file. The resulting XML output is saved and

compared to an existing output file. Differences in network

host activity are noted and stored on a list for possible action.

Actions include adding network services, updating OS

configuration and changing MAC addresses. A companion

Honeyd executable file, called Honeydctl, provides this

functionality.

A simple example Honeyd configuration file containing one

virtual host configuration is shown in Fig. 3.

 6

V. USAGE SCENARIO AND RESULTS

In the following test scenario, scans and probes are directed

at all devices on the network representing the reconnaissance

phase of an intrusion. This assumes the attacker is an outsider

and does not have a network map. The goal of the security

system is to generate informational alerts about the anomalous

presence. A secondary effect is the diversion of attention and

effort of the attacker to a virtual honeypot system. Keys for

success include: a faithful imitation of real devices on the

network, a mechanism for monitoring activity directed at the

honeypots, and appropriate communication of emulated IPs

and alerts.

To improve the cyber security of network systems various

approaches can be applied [30][32]. One of the most common

approaches is anomaly detection. An anomaly detection system

is trained on a set of normal network behaviors. The extracted

behavior model is then used to detect anomalous behavior in

any subsequently observed traffic.

One of the difficulties of this approach is building a

comprehensive normal behavior model for a specific network

communication system. Typically a user-defined period of

activity is designated as ‘normal’. However, by definition, any

network activity directed at a honeypot can be considered

abnormal. This provides a definitive source of information for

classifying traffic that does not require direct user interaction.

Anomaly Behavior (AB) implementation details are not

covered in this paper but may be found in previous work of the

authors [32],[33]. For this test scenario, an AB system was

configured to monitor the virtual honeypot IP addresses and

send alerts on any activity. The role of the automatically

created honeypots is to attract and possibly delay an intruder

on the network. This usage is similar to that proposed in [7]

and [34].

The intended deployment is an operational control system

network with a heterogeneous mix of hosts. There are two

possibilities for timing when the honeypots are instantiated.

The first approach, used in this test scenario, is to create the

virtual hosts in advance of any anomalous situations. This

would increase the probability of a network scan identifying

the hosts. It removes the race condition between recognizing

an anomaly and getting the hosts instantiated in time to get

noticed.

The second approach, with the race condition, would be to

instantiate the hosts after some indication of intrusion has

occurred. This indication could come from a traditional

intrusion detection system or some other security mechanism.

Given the DVH use of virtual hosts with its reduced hardware

requirements, a dedicated integrated host and low network

impact; there is little benefit to delaying instantiation until after

detection.

At the beginning of the scenario, all hosts are running and a

sensor host with the virtual host logic is connected to the

control network. As the NEI component becomes aware of

changes in the host characteristics, the honeypots are

automatically reconfigured to include the new behavior. The

emulated hosts become more authentic appearing, in the

service ports offered, over time. As already mentioned, this

early instantiation reduces the risk of a stealthy intruder

bypassing the honeypots, as they will most likely be present

prior to the malicious activity.

A. Test Network

An existing small campus grid (SCG) and sensor network

that physically exists in the Center for Advance Energy Studies

in Idaho Falls, Idaho was used to test the algorithm. The

network includes a suite of wireless sensors targeted at

environmental conditions in the building, wind and solar

renewable resources, and a variety of control system devices.

The SCG is connected to a small wind turbine, a solar power

station, and a wireless advanced metering infrastructure.

Additionally, the network has several Windows based

computers, web camera’s, a Rockwell Automation PLC and a

National Instruments PLC.

The SCG network contains wireless systems from Emerson,

Honeywell and Arch Rock. Each system connects wirelessly to

the sensors via a wireless access point. These WAP gateways

have a wired connection on one side of the network and

wireless interfaces to remote environmental sensors. The

network sensor device has visibility on the wired side of the

connection. Each wired WAP connection has a variation in the

method of Ethernet network protocols utilized that makes each

one a unique challenge to emulate. For instance, the Emerson

device transports data at the raw Ethernet level using a custom

protocol.

The software for the implemented algorithm was deployed

on a test host platform. This platform runs a 32 bit Ubuntu

12.04 operating system on a dual core Intel Atom 330

processor with 2 GB of DDR2 RAM, a 250 GB hard drive and

three GigE network ports. One of the Ethernet ports was

dedicated for use by the honeypot. Honeyd is capable of

running multiple virtual hosts on one physical network

interface. The second port was used to perform passive

monitoring by NEI. The final port was connected to a second

separate network used for management of the devices.

B. Test Steps and Results

A PERL implementation of the algorithm was run on the test

sensor platform attached to the operational test network. In

addition to OS emulation performance, seven network test

probes were completed. Thirteen systems shown in the first

create vh1

set vh1 personality "Linux 2.4.xx"

set vh1 default tcp action reset

set vh1 default udp action reset

set vh1 default icmp action reset

add vh1 tcp port 23 "/script/router-telnet.pl"

set vh1 ethernet “00:00:BC:A1:00:23”

bind 192.168.1.125 vh1

Fig. 3. Honeyd Host Configuration

 7

column of Table III were evaluated; six control devices and

seven more typical information technology devices. The ID

column is used as a reference identifier and corresponds to the

last octet used in the emulated IP address. For completeness,

the Honeywell wireless access point is included. Because it

does not utilize an IP address for communication, Honeyd

cannot emulate this device.

1) Initiate Honeypots

An input text file for the DVH component contained two

sets of space delimited IP addresses labeled R and E. List R

contains the unordered IP addresses of real hosts. List E

contains the list of IP addresses to be assigned to the emulated

hosts. The lists represent a bijective function in that f: R->E is

a one-to-one and onto mapping of set R to set E. A sample

message with three hosts is shown in Fig. 4.

The same message was initially sent to DVH. Three virtual

honeypots were created and verified by sending ICMP echo

messages. After 60 seconds, a newly updated input text

message was sent containing twelve test IP addresses for the

hosts in Table III. The software automatically created

configurations for all of the devices. Each emulated host was

assigned its own unique IP and MAC address and was

instantiated on the test sensor hardware.

These actions verified that the integrated communication

mechanism works and virtual hosts are instantiated.

Specifically, the NEI component created a network model

stored as an XML file. A sample host entry is shown in Fig. 5.

The information from this file was retrieved by the DVH

component to create configuration entries similar to those

shown in Fig. 3.

A message file similar to Fig. 4., containing the emulated IP

addresses, was sent to the Anomaly Behavior (AB) detection

software. The message passing mechanism is a simple text file

dropped into a specific directory. The application continuously

monitors the appropriate directory for a new file. After receipt

of the message the AB commenced passive monitoring of the

twelve virtual hosts.

Of the thirteen devices initially chosen for emulation, ten

specific operating systems were configured autonomously, two

were ‘random’ and the Honeywell device was undetermined.

The third column in Table III shows the Ettercap to Nmap

mapped OS names selected by the algorithm. For table space

purposes the ‘MS Windows ME, 2000 Pro or Advanced Server

or Windows XP’ value has had its text reduced.

2) Network Scan Tests and Results

Nine tests, described next, were executed on the virtual

hosts using Nmap, the Open Vulnerability System (OpenVAS)

and the ping command line tool. Nmap version 5.21 was

chosen to test the network presence of the emulated devices.

This version utilizes the second generation Nmap OS database

that is actively maintained. It uses a more robust guessing

implementation for uncertain signatures. OpenVAS is a

flexible comprehensive security scanning tool. It is capable of

over 30,000 network vulnerability tests. A laptop, with Nmap,

OpenVAS and ping installed, was assigned the IP address

192.168.1.15 and attached to the SCG network. The laptop

filled the role of network intruder.

TEST 1: nmap -n -sP 192.168.2.0/24

This simple test performs a ‘ping sweep’ on all 256

addresses in the range that contains the 12 emulated devices. A

combination of an ICMP echo request, TCP SYN to port 443,

TCP ACK to port 80 and ICMP timestamp request are sent.

Any system that responds to one of these requests is

considered available on the network. All twelve of the

emulated addresses were found in 2.2 seconds.

TEST 2: nmap -n -v -A -T4 -iL nmap.testhosts

This command line is the first example provided in the

Nmap man page documentation. The –A option enables

aggressive scan options including OS detection, version

scanning, script scanning and traceroute. The –T4 option is a

timing template that improves scan time on reasonably stable

networks. Note, that by default, Nmap only scans 1000 of the

most commonly used ports. It completed in 234 seconds.

OS detection in Nmap is based on a database of signatures.

R = 192.168.1.1 192.168.1.3 192.168.1.25

E = 192.168.2.1 192.168.2.3 192.168.2.25

Fig. 4. IP Emulation Message

<host ip="192.168.1.25">

 <mac>00:0C:29:77:61:78</mac>

 <os>D-Link DWL-900AP</os>

 <port proto="udp" addr="68" service="dhcpclient"/>

 <port proto="udp" addr="123" service="ntp"/>

 <port proto="udp" addr="137" service="netbios-ns"/>

</host>

Fig. 5. XML Host Record

TABLE III

HOST IDENTIFICATION RESULTS

ID Device Mapped OS

1 Rockwell HMI MS Windows ME, 2000 Pro or

Advanced Server or Windows XP

2 Micrologix 1100 PLC Novell NetWare 3.12 - 5.00

3 Arch Rock Server Random

5 Honeywell HMI MS Windows ME, 2000 Pro or

Advanced Server or Windows XP

10 Arch Rock WAP Random

25 D-Link WAP Apple Airport Extreme Base

Station (WAP)

99 D-Link Wireless camera Apple Airport Extreme Base

Station (WAP)

130 Arch Rock HMI MS Windows ME, 2000 Pro or

Advanced Server or Windows XP

150 Nat. Inst. PLC MS Windows ME, 2000 Pro or

Advanced Server or Windows XP

200 Emerson WiHart AP Linux 2.4.16 - 2.4.18

215 HMI(Windows PC) Windows for Workgroups 3.11 /

TCP/IP-32 3.11b stack or

Windows 98

253 Moxa 505A Switch FreeBSD 4.4 for i386 (IA-32)

 Honeywell WAP Nonea
aNo information available for initial Ettercap OS determination.

 8

Each fingerprint record in the database contains four fields:

vendor, OS family, OS generation and device type. Output

from detection includes lists of possible operating systems and

device classes with an accuracy score. The score falls in a

range of 0.0 to 1.0 with the later indicating a perfect match.

 The OS detection produces large amounts information. For

the 12 emulated devices, 223 device types and 40 OS matches

were returned. In both cases, accuracy ranged from .85 to .97.

As there were multiple results for most of the emulated

devices, any of the entries that matched either the original

device or its mapped OS were considered a success. Of the ten

non-random devices, Nmap identified seven for a 70% success

rate. Of the three that failed, no information was produced for

device 2. Twenty-one incorrect entries were created for device

215. Device 5 was identified by one incorrect entry.

TEST 3: nmap -sU -sS -O --osscan-guess -n -p1-65535

The –sU option executes a UDP scan to each port specified.

For some common ports a protocol specific payload is

included but for most of them the packet is empty. The –sS

option tells Nmap to send only a single SYN packet to each

port. This is the initial packet sent in a TCP connect sequence.

The –O option enables standard OS guessing while –osscan-

guess makes Nmap guess more aggressively. Finally, the –p

argument specifies to scan all possible ports instead of the

default top 1000. The tool took 258 seconds to complete the

configured actions.

The results from this Nmap execution were similar to those

in TEST 2 with some exceptions. First, the correct OS guess

for device 253 increased in accuracy by 2 points. Second,

device 215 was correctly identified with an accuracy score of

.86 were previously it had failed. This increased the overall

identification rate to 80%. It should be noted that, because of

the broad port scan range, port 44818 for device 2 was found.

The port was missed in TEST 2. This is a common port used

by the Rockwell Ethernet/IP protocol that is specific to that

control system implementation.

TEST 4: nmap –sO –n

 This scan sends IP packets and iterates through the eight-bit

IP protocol field. The emulated hosts responded to only three

of the 256 protocols: ICMP, TCP and UDP.

TESTS 5-7: ping -c2 –R, ping -c2 -T tsonly, ping -c2 -T

tsandaddr

Utilizing the ping command line tool, ICMP echo requests

were sent to the 12 emulated and 46 actual devices on the test

network. ICMP packets are wrapped in an IP datagram and can

contain IP option fields. Three rounds of requests were sent,

one with the Record Route (-R) option, one with timestamp

only (tsonly) and finally the option with both IP and timestamp

(tsandaddr). All but one of the physical devices responded with

varying levels of correctness to the pings. None of the 12

emulated devices responded correctly. The results for tests 4-7

are discussed later in section VI.

TEST 8 - OPENVAS:

 The OpenVAS framework was leveraged to perform more

intensive network probes than Nmap on the virtual hosts. A

single large-scale discovery and vulnerability scan was

executed against the 12 virtual hosts. Of the available 32,418

plugins 3,778 were enabled for the scan. Plugins are attributed

to a wide variety of functional categories and enable specific

scanning behaviors. Many of the plugins execute on the target

host with the appropriate credentials. Host plugin types were

disabled.

 All twelve devices and their open ports were discovered

during the scan. The activity took 21 minutes and 44 seconds

to complete and a scan report was produced. At the initial

level of detail, the finished scan report looked similar to those

reports from scans against the actual hardware. However,

several differences were found when looking at the details. All

of the devices had a common warning about a multicast

address response flaw that could lead to a denial of service

attack. This kind of similarity could possibly be leveraged to

facilitate identification of virtual hosts. In this particular

instance, a configuration change to the virtual hosts would

remove the commonality.

 Another similarity arose from what was missing in the

details. Service port information, on actual hosts, usually

provides a variety of information. For instance, a service note

on an open SSH port might detail what SSH protocol versions

are supported and any vulnerabilities discovered. For each

virtual host few of the services had additional information,

which is unusual. As was noted in the Network Services

Emulation portion of the Design section, it is possible to add

service emulation scripts to the virtual host configuration. Only

the default scripts that came with Honeyd were included in the

algorithm implementation. Another possible solution is to

configure the service ports to interact with a subsystem. A

subsystem is a complete application that is capable of

executing on its own. They run as a separate process. Honeyd

acts as a proxy and passes the connection to the subsystem.

This provides a greater depth of deception but could also

introduce more configuration complexity and security issues.

TEST 9 - ANOMALY TEST:

 As was mentioned earlier in this section, a message with the

12 emulated IP addresses was sent to the AB component. The

function of the AB component is to passively monitor host

traffic and send alert messages. If the AB component receives

an input IP, for which it has not been trained, then it will

consider all traffic to it as abnormal. This is a convenient

feature for the intended use of honeypots in this system. The

AB posted abnormal behavior messages for %100 of the

monitored emulated hosts during tests 1-7. A sample message

is shown in Fig. 6. It contains the source IP address,

destination IP address and the IP layer protocol number

involved. In the example protocol 1 indicates ICMP.

 9

VI. ANALYSIS

Although honeypots, physical or virtual, emulate real

operations systems at some level, there is no guarantee that

attackers would perform a scan of a network. However, if one

is conducted having emulated devices similar to actual devices

can provide a benefit to the security of the system. Minimally

it makes the attackers analysis of the devices difficult by

increasing the amount of data to analyze. Additionally, the

attacker will waste time and effort if an emulated device is

chosen for further probing. This provides defenders with

extended opportunities to identify intruders on the network.

Based on information from the tests, Industrial control

network protocols are a viable candidate for emulation by the

presented algorithm. Application ports are fixed, unusual ports

that readily identify the use of a particular protocol. Given the

passive nature of information capture, active network sessions

are needed to discover the ports and nature of the service. For

instance, the test system contains a Rockwell Micrologix 1100

processor that uses EtherNet/IP for communication. The

network traffic from the operator HMI to this device occurs on

port 44818 using TCP. The TCP connection is maintained for

the duration of the session. The traffic between the HMI and

control device is regular in size and timing. The packet lengths

were as follows: 19.15% between 40-79 bytes, 80.82%

between 80-159 bytes and 0.04% between 160-319 bytes. The

average packet size is 95.861 bytes. This regularity benefits

the anomaly detection algorithm as well.

In the background section is a discussion on the choice of

passive scanning for host information. One side effect of

passive scanning is the inability to directly identify network

ports not in use. While the control system network traffic is

typically regular and a constant connection, it or other services

may not be enabled. However having these inactive services as

part of the virtual hosts is beneficial to the presented

deception. The mechanism to support this capability is found

in the Device_Features function described in the solution

design section. Originally created to add optional services for

control devices, it can also be used to ensure service ports for

hosts are added to the virtual host configurations. For example,

host ID 130 in Table III runs a Microsoft Windows 2000

Server OS. An Nmap scan of the device revealed 6 open TCP

ports. Passive scanning identified 4 of the ports. One of the

missing ports was for a terminal service that was not accessed

during the test time frame. This terminal service port was

subsequently added to a service file with a probability of

addition set to 1.0. All subsequent reruns of the test scenario

then included this port in the configuration for that virtual host.

Prior to this configuration change the passive discovery tool

discovered 30 of the 33 of the ports found in an active Nmap

scan on the twelve test devices.

Tests one through three in the previous section were

designed to evaluate the network presence of the virtual hosts.

Test one verified that as a base case 100% of the virtual hosts

were discoverable on the network. At a superficial level they

appeared to be legitimate devices. Test two provided a more in

depth network probe designed to verify the OS representations.

The scan correctly identified 70% of the devices. A more

intensive OS scan in test three correctly identified 80% of the

emulated OS’s. So given both a superficial and more intense

scan the virtual hosts appear to resemble actual hosts, at a 70%

or 80% accuracy rate. This shows the end result of an effective

integration of the information gathering, communication and

host creation logic.

A. Scalability and Security Issues

Scalability of the presented solution relies primarily on the

capability of the hardware host. Honeyd is technically capable

of emulating 65,535 hosts. Testing by the Honeyd authors

shows that on a modest system thousands of different

honeypots are possible [12]. To validate this claim, a test with

986 virtual hosts was run on the test platform. The Honeyd OS

signature database contains 986 entries. Each host

configuration was created similar to Fig. 3. with a unique OS

entry from the database and an IP address.

The Nmap command in TEST 1 was then executed targeting

the 986 IP’s. The top command was run on a 1 second interval

to capture CPU and memory usage of the Honeyd daemon. At

rest, prior to the Nmap tests, 8,748 KB’s of memory was

consumed. 8,860 KB’s were used at the conclusion of the test.

The average CPU utilization was 0.3% with a standard

deviation of 1.23% and a maximum of 14.9%. This testing is

not comprehensive but does validate that, at a superficial level,

a large number of virtual hosts can be created. Honeyd is

single threaded and with more intensive probing it is possible

to maximize utilization of a single CPU. The test system has

two CPU’s and can continue to function even if this occurs.

The tested hardware host uses a Long Term Support (LTS)

version of Ubuntu 12.04. This OS has a five-year support cycle

that includes security upgrades. As part of the hardware

design, three physical Ethernet ports were specified. The ports

are all assigned to a specific communication task to avoid a

complete denial of service situation. For instance, if a large

number of honeypots are active and consuming the entire

bandwidth of a single port the system can still communicate on

another port assigned to the management network.

 Updates to the host OS, communication of alerts and IP

<meta:event>

<dtime>2012-09-14T01:00:00</dtime>

<confidence>.9</confidence>

<type>behavior</type>

<window-size>20</window-size>

<ip_list>

<ip>192.168.2.25</ip>

<ip>192.168.1.15</ip>

</ip_list>

<proto_list>

<proto>1</proto>

</proto_list>

</meta:event>

Fig. 6. Anomaly Behavior Message

 10

monitoring/emulation lists are delivered on a separate

management network. The second interface is configured as a

passive read only interface on the operational network. This

means it is not directly addressable from another host on the

network. One security concern is a possible flaw in the

monitoring software attached to the interface. The third

interface is for use by the honeypot software to present its

emulated hosts on the operational network. The most likely

threat to the host is from this interface. This is a logical

outcome considering the honeypots are designed to attract the

attention of those with nefarious intent.

This threat is partially mitigated by the design of Honeyd.

The software runs as a restricted user and, by default, does not

provide any real services to compromise. For instance, on a

high-interaction honeypot there are real shell services that

might be compromised. Note that this does not rule out a

denial of service or exploitation of a possible flaw in Honeyd

itself. In addition to the Honeyd features, a host monitoring

system such as OSSEC [35] can be utilized to provide self-

monitoring.

Finally, it is not required that Honeyd and the anomaly

behavior routines reside on the same machine. However, by

condensing the software installs to one platform, it simplifies

configuration. It creates a more secure mechanism for passing

messages, as the information never leaves the machine. This

also provides an opportunity to explore the recently expanding

computational capabilities of low power multi-CPU devices.

B. CPU and Memory Performance Measurements

The DVH configuration logic, when implemented in Perl

and run on the test machine previously described, took .7s

clock time to run and utilized 21 MB’s RAM. The input

Ettercap XML file contained 46 host entries and the resulting

Honeyd configuration file included 12 devices. When running

this configuration file, Honeyd consumed 5.7 MB’s of RAM.

During active scanning with Nmap, this would increase to 7.2

MB’s. Ettercap was run continuously in daemon and logging

mode on the test machine. It utilized 6 MB’s of RAM and

would utilize up to 60% CPU time when the Ethernet port it

was monitoring was utilized to transfer data files.

C. Tool Limitations Discussion

This section describes issues found with the tools used to

implement the automatic configuration algorithm. They are

provided as findings relevant to the specific tools and are not

detractors directly related to performance of the algorithm

presented in Section IV. The deficiencies found are special

cases of characteristics that are not commonly examined. A

review of literature has found similar types of weaknesses in

other honeypot implementations so this is not necessarily

unique to Honeyd [36].

Examination of the emulated test systems, using the Nmap

protocol scan, revealed a Honeyd limitation. As was noted in

TEST 4, the emulated hosts only responded to three protocols.

When run against real devices in the test network, a variety of

responses are noted. This includes a varying number of

protocols acknowledged. A review of the Honeyd source code

reveals that basic support for other protocols could be added.

An issue with the handling of the IP options field was

discovered with Honeyd in tests 5-7. The IP datagram format

consists of a header, option and data sections [37]. The option

section is a variable length list of options, up to 40 bytes, that

is not typically used. Of the five currently defined options, two

are relevant to this project: Record Route and Timestamp.

Record Route requests that the target, and each hop on the path

to it, add their IP to a list in the option field. Timestamp has

three request variations: timestamp only, timestamp with IP

and a preloaded IP list. Honeyd does not support any of the

options.

As this field in the IP header is optional, support by vendors

vary from none to dropping packets that contain options. A

study done in 2005 found a 45% success rate for Record Route

and a 36% success rate for the Timestamp option when

implemented in a SYN packet sent to web servers located on

the Internet [38]. Another study, performed in 2010, on

267,736 Internet addresses found a 47.7 % response rate to

Timestamp requests delivered in an ICMP Echo Request [39].

These studies show, that despite being optional, a significant

number of devices provide some level of support and therefore

makes it a concern for emulation. Honeyd is built with a

library named libdnet. This library has the requisite

functionality to correct the issues noted.

Honeyd uses an older version of the Nmap database scheme.

There are two primary drawbacks to this situation. First, the

fingerprints are not updated and are missing more modern

signatures. Second, there is very little control of the emulation

behavior outside of the signature definitions. Effectively this

means emulation is dependent almost entirely on the

definitions. A better solution might be a melding of a historical

signature with observed characteristics found in the live

network traffic and upgrading to the latest Nmap version 2

formatted database.

Finally, as was noted earlier, a host on the network used a

custom protocol that did not utilize IP addresses and

consequently was not recognized by Ettercap. The host

communicates using raw Ethernet frames and is characteristic

of a Honeywell proprietary protocol. However Ntop did notice

the host communication and tracked the host in its node list.

The choices are to choose Ettercap, Ntop or merge data

from both sources of information. A weakness with Ntop is in

the data export routine. The interface does not contain all the

information needed to create a configuration. Ettercap was

chosen based on its XML output functionality and general

recognition performance. It is possible to correct the Ntop

programmatic interface to provide all necessary information as

it is an open source project and it internally tracks the data.

Likewise, Ettercap could be modified to track host information

on IP's or MAC addresses.

 11

VII. CONCLUSION

An algorithm was proposed and demonstrated to

automatically deploy deceptive virtual network entities in a

control system network. Six open source passive network-

monitoring tools were evaluated and Ettercap was chosen for

host identification. This differs from prior work in the field in

which p0f is typically used. The algorithm created unique

network stack signatures for twelve of the thirteen test devices.

Eight of the twelve emulated devices were correctly identified

by an aggressive Nmap scan. OpenVAS found all twelve

devices but some abnormal details were found. Several

deficiencies with both the monitoring tools and virtual

honeypot implementation Honeyd were discovered and

discussed. These problems are: non-IP based traffic, OS

identification database support, missing information and well

formatted program output.

In order to show the necessary depth of the proposed

automatic deployment and configuration, a usage scenario was

executed. In this scenario an anomaly detection system

monitored the network activity of the honeypots. The role of

the automatically deployed honeypots was to attract and

possibly delay an intruder on the network. The primary

enabling technologies included continual host monitoring,

reconfigurable deceptive virtual hosts and a network anomaly

behavior monitor. The benefits of the presented system

include: 1) reduced operator interaction, 2) low operational

network impact, 3) increased awareness of the security

situation, and 4) an independent view of hosts and services that

are active on the network. The behavior system alerted on

%100 of the packets targeted at the virtual hosts.

This work has identified several areas of possible future

research. The use of virtualized networks and devices derived

from the automated system presented could subsequently be

used as a standard test bed for a variety of IDS systems. An

obvious category of work would be correcting the deficiencies

found in the support software. Finally, service emulation

scripts are manually created. Autonomously developing

service behaviors that emulate observed network

communications would further the goals of deception and IDS

testing.

REFERENCES

[1] D. A. Shea, “Critical infrastructure: control systems and the terrorist

threat,” Library of Congress, Report for Congress RL31534, Jan. 2004.

[2] Y. Huang, et al., “Understanding the physical and economic

consequences of attacks on control systems,” Int. J. Critical

Infrastructure Protection, pp. 73-83, 2009.

[3] C. Rieger, D. Gertman, and M. McQueen, “Resilient control systems:

next generation design research,” in Proc. 2nd IEEE Conf. Human

System Interactions, May 2009, pp. 632-636.

[4] G. Rueff, B. Wheeler, T. Vollmer, T. McJunkin, “INL Control System

Situational Awareness Technology Final Report”, INL, Idaho Falls, ID,

Rep. EXT-11-23408, Jan. 2013.

[5] T. Iwao, K. Yamada, M. Yura, Y. Nakaya, A. Cardenas, S. Lee, and R.

Masuoka, “Dynamic Data Forwarding in Wireless Mesh Networks,” in

Proc. IEEE SmartGridComm, 2010.

[6] The Edison Foundation (2010, Apr.). Utility-Scale Smart Meter

Deployments, Plans & Proposals. [Online]. Available:

http://www.edisonfoundation.net.

[7] A. Carcano, et al., “A multidimenisonal critical state analysis for

detecting intrusions in SCADA systems,” IEEE Trans. Ind. Informat.,

vol. 7, no. 2, May 2011.

[8] R. Sommer and V. Paxson, “Outside the Closed World: On Using

Machine Learning for Network Intrusion Detection,” in Proc IEEE

Symp. on Security and Privacy, May 2010.

[9] L. Chao, M. Sumiko, K. Hirotsugu, “Dynamic Hybrid System of

Honeypot and IDS for Network Security Analysis”, IPSJ SIG Notes, vol.

2013, no. 26, pp. 1-5. December 2013.

[10] M. A. McQueen and W. F. Boyer, “Deception used for Cyber Defense

of Control Systems,” in Proc. 2nd IEEE Conf. on Human System

Interaction, May 2009.

[11] J. Ousterhout,” Is Scale Your Enemy, Or is Scale Your Friend?,” in

Communications of the ACM, vol. 54 No.7, July 2011, pp .110-111.

[12] N. Provos and T. Holz, Virtual Honeypots, Boston, MA: Addison-

Wesley, 2007.

[13] J. Hieb and J. H. Graham, “Anomaly-Based Intrusion Detection for

Network Monitoring Using a Dynamic Honeypot,” Intelligent Systems

Res. Lab., Univ. of Louisville, TR-ISRL-04-03, Dec 2004.

[14] Ettercap network sniffer. [Online]. Available:

http://ettercap.sourforge.net/.

[15] C. Hecker and B. Hay, “Securing E-Government Assets Through

Automating Deployment of Honeynets for IDS Support,” in Proc. 43rd

Hawaii International Conf. on System Sciences, HI, 2010, pp. 1-10.

[16] F. Gagnon and B. Esfandiari, “A Hybrid Approach to Operating System

Discovery Based on Diagnosis,” Int. J. Network Mgmt, vol. 21, pp. 106-

119, Mar 2011.

[17] G. Lyon, Nmap Network Scanning, Sunnyvale, CA: Insecure.Com,

2008.

[18] D. P. Duggan, “Penetration Testing of Industrial Control Systems,”

Sandia National Laboratories, Tech. Rep. SAND2005-2846P, Mar.

2005.

[19] C. Hecker, K. L. Nance, and B. Hay, “Dynamic Honeypot

Construction,” in Proc. 10th Coll. For Information Systems Security

Education, Adelphi, MD., 2006.

[20] X. Jiang and D. Xu. (2004). BAIT-TRAP: A Catering Honeypot

Framework. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.3.
[21] V. Pothamsetty and M. Franz. SCADA Honeynet Project. [Online].

Available: http://scadahoneynet.sourceforge.net/.

[22] Digital Bond Incorporated. SCADA Honeynet. [Online]. Available:

http://www.digitalbond.com/tools/scada-honeynet/.

[23] P0f, available: http://lcamtuf.coredump.cx/p0f.shtml.

[24] Tshark network analyzer. [Online]. available:

http://www.wireshark.org/.

[25] M. Roesch, “Snort: Lightweight intrusion detection for networks, “ In

Proc. of the 13th Conf. on Systems Administration, Berkeley, CA, Nov.

7–12 1999, pp. 229–238.

[26] Tcpdump packet analyzer. [Online]. Available:

http://www.tcpdump.org/.

[27] Ntop network traffic probe. [Online]. Available: http://www.ntop.org/.

[28] P. Auffret, “SinFP, Unification of Active and Passive Operating System

Fingerprinting”, Jour. in Comp. Virology, Vol. 6, No. 3., pp. 197-205,

Aug. 2010.

[29] Micrologix Ethernet Interface User Manual, Rockwell Automation,

Publication 1761-UM006E-EN-P, Aug. 2005.

[30] O. Linda, T. Vollmer, and M. Manic, “Neural Network Based Intrusion

Detection System for Critical Infrastructures,” in Proc. Int. Joint Conf.

on Neural Networks, June 14-19, 2009, pp. 1827-1834.

[31] S. Zhong, T. Khoshgoftaar, and N. Seliya, “Clustering-based network

intrusion detection,” in Int. J. Reliability, Quality and Safety, Vol. 14,

No. 2, pp. 169-187, 2007.

[32] O. Linda, T. Vollmer, and M. Manic, “Improving cyber-security of

smart grid systems via anomaly detection and linguistic domain

knowledge,” in Proc. IEEE Symp. on Resilience Control Systems, Salt

Lake City, UT., Aug. 2012.

[33] T. Vollmer, M. Manic, O. Linda, “Autonomic intelligent cyber sensor to

support industrial control network awareness”, IEEE Trans. Ind.

Informat., DOI: 10.1109/TII.2013.22703, to be published.

[34] Y. Jain, S. Singh, “Honeypot based secure network system,” Int. Jour.

On Comp. Sci. and Eng., Vol. 3, No. 2, Feb 2011.

 12

[35] A. Hay, D. Cid, and R. Bray, OSSEC HIDS Host-based intrusion

detection guide. Burlington, MA: Elsevier, 2008.

[36] S. Mukkamal, K. Yendrapalli, R. Basnet, M. K. Shankarapani, and A.

H. Sung, “Detection of Virtual Environments and Low Interaction

Honeypots,” In Proc. Information Assurance and Security Workshop,

June 2007, pp. 92-98.

[37] Internet Protocol, DARPA RFC 791, Sept. 1981, [Online]. Available:

http://www.ietf.org/rfc/rfc791.txt.

[38] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, ”IP Options

are not an option,” UC Berkeley, EECS-2005-24, Dec. 9, 2005.

[39] J. Sherry, “Applications of the IP Timestamp Option to Internet

Measurement,” B.S. thesis, Dept. Comp. Sci. and Eng., Univ. of

Washington, 2010.

Todd Vollmer (M’06–SM’13) Todd Vollmer, IEEE

Senior Member, received his B.S. and M.S. degrees

in computer science from South Dakota School of

Mines and Technology in 1996 and 1998

respectively. He is currently pursuing a Ph.D. in

computer science from the University of Idaho.

Todd has worked as a Research Scientist at the

Idaho National Laboratory since 2006. Prior work

involved satellite system software development for

Lockheed-Martin and DigitalGlobe, Inc. He has

several recent published papers at IEEE conferences on computational

intelligence and computer security.

Milos Manic (S’95-M’05-SM’06) received the Dipl.

Ing. and M.S. degrees in electrical engineering and

computer science from the University of Nis, Serbia

in 1991 and 1997 respectively, and a Ph.D. degree in

computer science from the University of Idaho in

2003. Dr. Manic is an Associate Professor at the

University of Idaho. He has over 20 years of

academic and industrial experience, including an

appointment at the ECE Dept. and Neuroscience

program at University of Idaho. As university

collaborator or principal investigator he lead number

of research grants with the National Science Foundation, Idaho National

Laboratory, EPSCoR, Dept. of Air Force, and Hewlett-Packard. Dr. Manic is

a Secretary of IEEE Industrial Electronics Society and is a member of several

technical committees and boards of this Society such as IES Committees

(previously the Boards) for Conferences and for Publications. Dr. Manic has

published over hundred refereed articles in international journals, books, and

conferences.

