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Abstract—Building Energy Management Systems (BEMSs) 

are responsible for maintaining indoor environment by 

controlling Heating Ventilation and Air Conditioning (HVAC) 

and lighting systems in buildings. Buildings worldwide account 

for a significant portion of world energy consumption. Thus, 

increasing building energy efficiency through BEMSs can result 

in substantial financial savings. In addition, BEMSs can 

significantly impact the productivity of occupants by maintaining 

a comfortable environment. To increase efficiency and maintain 

comfort, modern BEMSs rely on a large array of sensors inside 

the building that provide detailed data about the building state. 

However, due to various reasons, buildings frequently lack 

sufficient number of sensors, resulting in a suboptimal state 

awareness. In such cases, a cost effective method for increasing 

state awareness is needed. Therefore, this paper presents a novel 

method for increasing state awareness through increasing spatial 

resolution of data by means of data downscaling. The presented 

method estimates the state of occupant zones using state data 

gathered at floor level using Artificial Neural Networks (ANN). 

The presented method was tested on a real-world CO2 dataset, 

and compared to a time based estimation of CO2 concentration. 

The downscaling method was shown to be capable of consistently 

producing accurate estimates while being more accurate than 

time based estimations. 

Keywords—Data Downscaling, Building Automation, Artificial 

Neural Networks, Building State Awareness 

I. INTRODUCTION 

Building Energy Management Systems (BEMS) are highly 
complex multi input multi output systems, which are 
responsible for maintaining indoor environment by controlling, 
Heating Ventilation and Air Conditioning (HVAC) and 
lighting systems in buildings.  

Worldwide, buildings consume more than 20% of the total 
energy production [1]. Similarly, in the United States, 
buildings account for 40% of the total energy consumption [1]-
[3]. Due to the high energy consumption, buildings are also 
one of the major contributors to green house gas production 
[4]. Due to economic growth and various other factors, these 
numbers are projected to increase [1], [5].  

Building HVAC systems are the largest energy consumers 
in buildings [6]. It has been shown that over 30% of the 
building energy consumption is utilized by HVAC [6]-[9]. 
Thus, increasing building energy efficiency using BEMS can 
result in substantial financial gains. Furthermore, it has been 

shown that with close monitoring of the state of the buildings 
coupled with advanced control schemes, building energy 
efficiency can be increased by up to 40% [10]. Thus, 
improving HVAC control via BEMS is the most cost effective 
method to improve building energy efficiency [9]. 

A comfortable work environment has been shown to 
increase productivity and overall satisfaction of employees 
[11]. Thus, in addition to improving building energy efficiency, 
BEMSs should maintain a comfortable indoor environment 
[12]. This is achieved by closely monitoring factors such as 
temperature, humidity and CO2 levels [13] inside the building 
and maintaining them within specified limits. 

Thus, in order to maintain and improve both energy 
efficiency and occupant comfort, close monitoring of the 
building environment is necessary [2], [3], [14]. To achieve 
this, modern buildings rely on thousands of sensors 
strategically placed throughout the building [15]. However, 
with increased number of sensors, the cost is increased and the 
robustness of the system is decreased [15]. Thus, many 
buildings lack the instrumentation required for high resolution 
state awareness. Further, commissioning of the sensors and 
control system in buildings is done at the building design phase 
[12] and can be suboptimal if changes to floor-plans are made. 
Hardwired sensor networks are difficult to maintain and are 
inflexible [16] [17]. 

Therefore, this paper presents a novel methodology for 
increasing state awareness of buildings without the need of 
increasing the number of sensors. The presented method 
utilizes data downscaling to increase spatial resolution of data. 
This is achieved by estimating the state of occupant zones by 
utilizing data gathered at floor level of the building. The 
presented method uses Artificial Neural Networks (ANN) that 
are capable of learning the functional dependencies between 
the coarse spatial resolution floor level data and fine spatial 
resolution zone level data. 

The data downscaling method presented in this paper was 
applied to a real-world CO2 concentration dataset gathered 
from an office building in the Pacific Northwest. The presented 
method was capable of estimating zonal CO2 level with high 
accuracy. Furthermore, the presented method was compared 
against a time based estimation of the CO2 level and was 
shown to be more accurate than the time based estimation. 



The rest of the paper is organized as follows. Section II 
introduces data downscaling. Section III briefly discusses ANN 
and discusses the presented ANN based data downscaling 
method. Section IV gives specific details about implementation 
and the dataset used in this paper and presents experimental 
results. Finally, Section V concludes the paper.  

 

II. DATA DOWNSCALING 

Data downscaling refers to the process of obtaining fine 
spatial resolution data from coarse spatial resolution data [18], 
[19]. Data downscaling identifies the functional dependencies 
between coarse data and fine data to derive the latter from the 
former. This enables estimation of the state of a smaller local 
area based on the state of a larger global area. The main 
advantage of data downscaling is the ability of gaining state 
awareness using spatially concentrated sensors. Thus, it is 
possible to reduce overall cost, communications and increase 
security without sacrificing state awareness. Data downscaling 
was initially developed to address the need of increased spatial 
resolution of environmental data [18].  

Two main categories exist for data downscaling; process 
based nested models and empirical methods [18]. Process 
based methods involve solving the physical dynamics of the 
system explicitly [18]. Hence, they require detailed domain 
knowledge and exhaustive modeling of the system. For many 
applications obtaining such domain knowledge is difficult and 
modeling such systems can be computationally expensive [18]. 
Empirical downscaling methods are data driven techniques 
which use historical data to approximate the functional 
dependency between fine and coarse data. Thus, with limited 
domain knowledge and using lower computational resources 
empirical methods can be applied for data downscaling. Hence, 
due to the ease of implementation and the need of lower 
computational requirements empirical methods are more 
widely used [18]-[21]. 

A wide array of empirical downscaling methods which use 
statistics based models are documented in literature [18], [19]. 
Out of these, Statistical Downscaling Model (SDSM) [22], 
which uses Multiple Linear Regression method, is the most 
widely used statistical model [18]. Furthermore, methods such 
as stochastic modeling [24] and downscaling using 
interpolation [19] have also been used. Computational 
Intelligence (CI) methods such as K-Nearest Neighbor (KNN) 
[25], Artificial Neural Networks (ANN) [18], [25], [27] have 
been utilized for data downscaling as well. In literature, it can 
be found that the aforementioned downscaling methods are 
mostly applied in areas such as climate research [18], [21], 
[26], [27] and geological research [19]. In [27], the authors 
used Temporal Neural Networks (TNN) to downscale 
precipitation values and temperature that relates to climate 
variability and extremes. Furthermore, in [27] the authors 
compared TNN to a regression-based statistical downscaling 
method and showed that TNN outperforms the regression 
based model. In [19], several empirical downscaling methods 
were used for geological remote sensing.  

III. ANN BASED DATA DOWNSCALING FOR BUILDING 

SENSOR DATA 

This section first discusses Artificial Neural Networks 
(ANN), and then details the presented ANN based data 
downscaling method for building sensor data. 

A. Artificial Neural Networks 

ANN are Computational Intelligence (CI) architectures 
which are a proven methodology for optimization, forecasting, 
data mining, multidimensional nonlinear function 
approximation and many other areas [28], [29]. ANN are based 
on biological neural networks and have the capability of 
acquiring, storing and utilizing experiential knowledge [30]. 

The basic unit of an ANN is a neuron. Artificial neurons are 

modeled to behave in the same way as a biological neuron; 

each neuron has a set of inputs and produces an output based 

on the inputs.  

Similar to a biological neuron, an artificial neuron produces 

an output by comparing the sum of each input to a threshold 

value. Based on that comparison, it produces an output. In 

addition, it is able to differently weigh each input according to 

the priority of the input.  

An artificial neuron achieves that by using input vectors, 

weights, a threshold value and output vectors. For each input 

xq there is a weight wq assigned. The weighted sum of a neuron 

can be given as,  
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where, n is the number of inputs. 

The output of the neuron is controlled by the activation 

function, value of which, act as a threshold. The output of the 

neuron a is given by: 

 













 



n

q
qqs xwfa

1  

 (2) 

where,       is called the activation function, and in this case 

was the sigmoid activation function: 
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A neural network comprises of multiple interconnected 

neurons, arranged in several layers. There are one input and 

one output layer and multiple hidden layers. The neurons in 

the input layer have the activation function        .  

The output of neuron i in layer l+1 is calculated as: 
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where    denotes the number of neurons in layer l,    
    is the 



weight of the connection from neuron j in layer l,    
    is the 

bias of neuron i and   
  is the output of neuron j in layer l. 

The output of neuron i in layer l+1 is given by: 
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For a given layer L we can calculate the error if the desired 

output is known using: 
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where, P is the number of patterns, M is the number of outputs 

and     is the desired output pattern p and output m. 

B. ANN Based Data Downscaling for Buildings 

As mentioned, data downscaling entails the estimation of 
information at a certain point in space using known 
information from a point that is located at a different place in 
space. For this to be feasible, a functional dependency between 
the known information and the estimated information should 
exist: 

 )),(()( UtIftI ke   (6) 

where, Ie(t) is the estimated information at time t and Ik(t) is the 
known information at time t. U is a set of other factors that 
affect Ie that is independent from Ik, and f() is the functional 
dependency between Ie and Ik. If the functional dependency f() 
and the set of factors U are known then Ie can be calculated 
using Ik. However, in complex systems and environments, the 
functional dependency and the set of factors that affect Ie 
independently is difficult to identify and model. 

In a constrained environment such as a building, the set of 
factors that affect Ie independently of Ik (U) is minimal. 
Furthermore, if the estimated information Ie and known 
information Ik are gathered simultaneously, and are in close 
proximity the effect of U on f() is minimal. Therefore, in this 
work U is assumed to be an empty set: 

 {}U  (7) 

However, as shown in Fig. 2 the functional dependency 
between Ik and Ie, as well as Ie and t is highly non-linear and 
complex. Therefore, this paper proposes a methodology that 
utilizes the well documented function approximation 
capabilities of ANN to identify the functional dependency 
between Ie and Ik using historical data. 

The presented method utilizes historical data gathered from 
the location of the estimated information to learn f(). Once f() is 
learnt, the ANN is capable of estimating Ie given Ik. To further 
enhance the learning of f(), k previous time steps along with the 
first derivative of each time step is also used as inputs for the 
ANN: 
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where, P is the set of inputs to the ANN and O is the set of 
outputs. Thus, the number of inputs to the ANN is 2k + 1. 

Fine spatial resolution data is required for initial training of 
the neural networks. This can be gathered by implementing a 
temporary set of sensors for data collection or by using a state-
based estimation model of the building. 

Thus, using the presented methodology, a better state 
awareness of building environment can be obtained without 
increasing the number of existing sensors. This information can 
then be used for advanced control of HVAC systems for 
improved energy efficiency and occupant comfort. 

 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

This section presents the dataset used for this paper, the 
specific implementation parameters and then details the results 
acquired from the experiment. 

A. Dataset 

Indoor Air Quality (IAQ) refers to the quality of the air that 
building occupants consume indoors and it is the most 
important criterion of a HVAC system [31]. In addition to 
comfort and building energy efficiency, IAQ is directly related 
with occupant health and can be causes of illnesses such as, 
Sick Building Syndrome (SBS) and Building Related Illness 
(BRI) [32]. IAQ is adversely affected substantially by gaseous 
pollutants such as Carbon Monoxide (CO) and Carbon Dioxide 
(CO2) [32]. Furthermore, accurate CO2 concentration 
information can be used for advanced building automation for 
improved energy efficiency. 

Thus, the presented method was tested on a CO2 
concentration dataset gathered from a multi-floor office 
building in the Pacific Northwest.  

For testing purposes, CO2 concentration data with fine 
spatial resolution was gathered by implementing a temporary, 
wireless sensor network in one floor of the building. Nine 
different occupant zones were identified and wireless CO2 
sensors were deployed in each zone. Fig. 1 shows the selected 

 

 
 

Fig. 1 Selected occupant zones for gathering fine spatial resolution CO2 

concentration data 



occupant zones. Zones 1 through 9 were identified as occupant 
zones and zones 10 and 11 are unoccupied zones. Temporary 
wireless CO2 sensors were placed in the occupant zones. 

The coarse spatial resolution data was CO2 concentration 
data that was extracted from the existing BEMS. This CO2 
concentration sensor is located in the return air duct of the air 
handling unit of the selected floor. Using the presented ANN 
based data downscaling method, the functional dependency 
between the coarse floor level CO2 concentration and fine zone 
level CO2 concentration will be indentified.  

The experimental data was gathered for a time period of 
one month at one minute time intervals. Both fine and coarse 
spatial CO2 concentration data was measured in terms of Parts 
Per Million (PPM) and the observed minimum was 280ppm 
and maximum was 1229ppm. Fig. 2 shows the variations of 
zonal CO2 concentrations and CO2 concentrations of the floor 
on a typical weekday. In order to facilitate faster learning and 
easier manipulation all the data was normalize between -1 and 
1 using the observed minimum and maximum values.  

B. Implementation of Data Downscaling 

The presented data downscaling method was implemented 
for the data described above. Since CO2 concentration of each 
zone has a different functional dependency to the higher level 
spatially coarse value, a separate ANN for each zone was 
trained. Thus, 9 ANNs were trained. Each ANN trained 
contained 2 hidden layers with 9 and 7 neurons in each. The 
input layer contained 11 neurons while the output layer 
contained 1 neuron. 

The aforementioned architecture was selected after 
evaluating the results for different NN architectures. First, an 
architecture with two layers with 2 neurons in each layer was 
tested. Then, the results were evaluated by increasing the 
number of neurons in each layer and number of layers. The 
selected architecture was identified as the architecture which 
produced the best results. Furthermore, the results did not show 
a significant improvement when the number of neurons were 
increased beyond that point. 

As mentioned in Section III, for higher accuracy k 
historical steps and derivative of each step of the coarse data is 
provided as inputs. In this case, k was set to 3, i.e. sensor 
values for 3 minutes prior to the current value and their 
derivatives were used as the inputs. All inputs were normalized 
and once the outputs were generated, they are normalized to 
retrieve the actual CO2 concentration in PPM. 

The first 18 days (60% of the data) of the collected data 

 
 

Fig. 2 Fine and coarse spatial resolution CO2 concentration data gathered for 

a weekday 

TABLE I 

TRAINING AND TESTING ERRORS OF THE TWO METHODS 

TESTED 

 

Error 
Time Based  

CO2 Estimation 

Downscaling Based 

CO2 Estimation 

Training MSE 4101.5   4103.1   
Testing MSE 3104.3   3106.1   

 

TABLE II 

COMPARISON OF RESULTS OBTAINED BY TIME BASED ESTIMATION AND ANN BASED DATA DOWNSCALING METHOD 

 

Zones 

Time Based Data Downscaling. Based 

MSE 

310  

Max Absolute 

Error 

(ppm) 

Max Percent 

Error 

% 

Standard 

Deviation 

(ppm) 

MSE 

310  

Max Absolute 

Error 

(ppm) 

Max Percent 

Error 

% 

Standard 

Deviation 

(ppm) 

Zone 1 2.17 58.24 10.14 41.06 1.33 41.21 8.45 26.5 

Zone 2 3.62 56.11 9.54 35.32 2.58 34.02 4.21 18.11 

Zone 3 2.57 110.69 15.32 40.05 1.89 24.91 5.78 6.63 

Zone 4 4.63 134.02 14.54 43.87 2.63 54.61 9.35 27.4 

Zone 5 2.12 40.34 7.21 23.89 0.88 12.53 2.14 7.29 

Zone 6 1.14 38.58 5.21 21.07 0.93 17.32 3.53 8.03 

Zone 7 1.83 67.23 10.43 39.36 1.43 38.16 5.12 14.82 

Zone 8 11.23 154.56 17.24 62.09 1.48 40.83 6.31 15.37 

Zone 9 1.39 65.36 11.65 34.31 1.53 53.6 5.12 25.93 

 

 

 



were used for training and the remaining 12 days were used for 
testing. 

C. Experimental Results 

The presented data downscaling method for buildings was 
applied to the dataset described above. The performance of the 
presented method was evaluated using Mean Square Error 
(MSE), the absolute error, standard deviation of the absolute 
error, and the percent error. 

The presented method was compared to a purely time based 
estimation of fine spatial data. For this, the relationship 
between the time of day and the CO2 concentration was 
utilized and the same ANN architecture was used with the 
exception of the input layer. The time of day and the day of the 
week were used as inputs for the time based estimation. 
Furthermore, the same set of training and testing portions was 
used to train the time based ANN. 

Table I shows the overall training and testing errors for the 
time based estimation and the presented data downscaling 
based method. Table II elaborates the results of the two for 
each zone for the 12 testing days. It can be observed that for all 
zones the presented downscaling method estimated the CO2 
level more accurately than the time based method. The 
observed maximum percentage error was lees that 10% in all 
cases for the downscaling method. Furthermore, the low 

standard deviation of the presented method indicates the 
capability of consistently estimating the CO2 value.  

The lowest testing MSE for a zone was 
4108.8   and was 

for zone 5, whereas the highest testing MSE was for zone 4 and 

was 
3106.2  . Fig. 3 and Fig.4 respectively depict the zones 

with the lowest and highest errors achieved by the presented 
method for a time period of a day. 

 

V. CONCLUSION 

This paper presented an Artificial Neural Networks (ANN) 
based method for data downscaling for improved building state 
awareness. The presented method utilizes existing, sensors 
with coarse spatial resolution to estimate data with a finer 
spatial resolution. 

The presented method was tested on a real-world CO2 
sensor dataset gathered for a time period of a month, from an 
office building in the Pacific Northwest. The presented method 
was tested against estimation which was based on time alone, 
and was shown to be more accurate. Further, the standard 
deviations of errors in the presented downscaling method was 
lower compared to the time based estimation, confirming that 
the presented method is consistent it estimating high resolution 
CO2 data. 

As future work, the presented method will be implemented 
for other sensors such as, temperature, occupancy, humidity, 
etc. In order to increase the estimation accuracy, other factors 
that affect building environment will be added to the presented 
method. Furthermore, the feasibility of utilizing the presented 
method for advanced control of BEMS will be explored. 
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