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Abstract. Brain Computer Interfaces (BCI) are becoming 

increasingly studied as methods for users to interact with 

computers because recent technological developments have 

lead to low priced, high precision BCI devices that are aimed 

at the mass market. This paper investigates the ability for 

using such a device in real world applications as well as 

limitations of such applications. The device tested in this 

paper is called the Emotiv EPOC headset, which is an 

electroencephalograph (EEG) measuring device and enables 

the measuring of brain activity using 14 strategically placed 

sensors. This paper presents: 1) a BCI framework driven 

completely by thought patterns, aimed at real world 

applications 2) a quantitative analysis of the performance of 

the implemented system. The Emotiv EPOC headset based 

BCI framework presented in this paper was tested on a 

problem of controlling a simple differential wheeled robot by 

identifying four thought patterns in the user: “neutral”, 

“move forward”, “turn left”, and “turn right”. The developed 

approach was tested on 6 individuals and the results show that 

while BCI control of a mobile robot is possible, precise 

movement required to guide a robot along a set path is 

difficult with the current setup. Furthermore, intense 

concentration is required from users to control the robot 

accurately. 

 

Keywords: Brain Computer Interface, Emotiv EPOC, EEG, 

Differential Wheel Robot. 

 

I. INTRODUCTION 

RAIN Computer Interfaces (BCI) are direct functional 

interactions between a human brain and an external 

device [1-2]. BCI have recently gained a new interest as a 

practical Human Machine Interface (HMI). Although early 

BCI was proposed in the late ‘70s [3] wide spread use was 

limited due to equipment cost and complexity [4]. 

However, recent technological advantages have enabled the 

development of low cost BCI devices that are aimed at the 

mass market. The Neurosky Minwave [5] device and the 

Emotiv EPOC headset [6] are examples of low cost BCI 

devices.  

BCI is performed by measuring the brain activity of a 

user and then identifying the thought pattern or desired 

action using of the user. Brain activity is measured by 

detecting minute voltage changes in specific areas of the 

brain [7]. This can be done in three ways: 1) invasive, 

where electrodes are placed on the brain itself, 2) 

 
 

partially-invasive where electrodes are placed in the skull 

and 3) non-invasive where electrodes are placed on the 

scalp [8]. Electroencephalography (EEG) is the only 

currently available non-invasive brain activity measuring 

method and therefore it is the most widely used [7]. It has 

been shown that using EEG is a viable method of BCI [9], 

[10]. 

Many researchers have focused on remote tele-operation 

of robots via BCI [8], [11-13]. BCI has also been 

extensively investigated as a feasible method of HMI for 

physically impaired individuals [9], [14-15]. BCI can 

enable such individuals to interact with machines without 

using any motor skills to physically touch a HMI device. 

BCI have also been investigated in medical and commercial 

applications such as physiotherapy [7], [16] and measuring 

brain activity of individuals to stimuli [17-18]. Researchers 

have also focused on BCI technology for the gaming 

industry where users can manipulate their environment via 

thought or facial muscle movements [4], [19-20]. Another 

application of BCI is steady state visual evoked potential 

(SSVEP) feedback. SSVEP uses brain activity of the user to 

detect where the user is focusing on [19-20]. Also, since 

BCI bypasses conventional motor output pathways 

comprising of muscles and nerves [21], it is possible that 

signals can be passed to the device faster. Furthermore, BCI 

can be used as a secondary input device that complements 

already existing input devices, and increase the accuracy 

and responsiveness of the control input. 

Typical BCI equipment that utilize EEG to measure brain 

activity is expensive and require expert knowledge to setup 

and use. However, recently developed low price BCI 

devices that are aimed at the mass market, are more user 

friendly. One of the more recent and very well documented 

BCI devices is the Emotiv EPOC Neuroheadset [6]. The 

Emotiv EPOC headset utilizes 14 strategically places 

sensors to measure brain activity of the wearer. 

Furthermore, simple interface and wireless connectivity 

enables the user to use the headset without expert 

knowledge or supervision [22]. Thus, the Emotiv EPOC 

headset is used as the BCI device in this paper. 

This paper presents: 1) a BCI framework using low cost 

EEG devices aimed at a real world application, 2) the 

control actions of the presented framework are entirely 

based on thought patterns, 3) the strength of the thought 

patterns are linearly transferred into control actions of the 

robot and 4) a quantitative analysis of the performance of 
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the system that can identify usability and limitations of the 

system.  

An implementation of a differential wheeled mobile 

robot that is controlled by identifying brain activity of the 

user is presented in this paper. The mobile robot was 

controlled by using 4 commands: “neutral”, “move 

forward”, “turn left” and “turn right”. These commands 

were identified by measuring the brain activity of the user at 

a given time. Performance of the mobile robot over a given 

path was measured. The BCI implementation was 

experimented on 6 different users and the results show that 

while BCI control of a mobile robot is possible, precise 

movements required to guide the robot along a set path is 

difficult. Furthermore it was observed that intense 

concentration was required by the user and even minor 

distraction will divert the path of the robot. 

The rest of the paper is organized as follows. A survey of 

related literature is performed in Section II. Section III 

describes the hardware used for the proposed 

implementation. Section IV presents the proposed 

implementation of the BCI framework. Section V presents 

the experimental results and Section VI concludes the 

paper. 

 

II. RELATED WORK 

In [9] and [23] Philips et al and Millan et al proposed the 

use of EEG for control of a wheelchair. This work was 

aimed at physically impaired individuals and used EEG to 

identify thought patterns and classify intended actions. 

Furthermore the final decision of motion was made by 

observing the surrounding environment for improved 

obstacle avoidance. 

In [5], [11] and [16] the authors focused on using EEG to 

control robotic arms which will aid physically impaired 

people. Palankar et al proposed a methodology that was 

able to control a 9-DOF control arm using EEG [16]. In 

[11], the authors used Emotiv EPOC headset to control a 

robot arm using facial expressions. The authors found that 

while the EPOC headset compares well with higher grade 

equipment, and that facial expressions can sometimes be 

difficult to differentiate [1]. A robotic arm that will aid 

physiotherapy for disabled and paralyzed individuals was 

proposed in [5], where the authors used EPOC headset and 

showed promising results. 

Significant research has been done on BCI for gaming 

and virtual environment interaction in the past [4], [12], 

[19-20]. In [4] the authors proposed the use of low cost 

EEG devices for mobile gaming applications and 

concluded that while there is a significant advantage, more 

research needs to be conducted on this area. Vliet et al 

investigated the use of consumer grade equipment using 

SSVEP interaction for gaming and concluded that for this 

application consumer grade equipment shows good results 

[19]. A similar experiment was performed by Chumerin et 

al using Emotiv EPOC headset in [20]. In [4] the authors 

used Emotiv EPOC headset for the control of a virtual 

environment and suggested that classification of intended 

activity of the user needs to be improved. 

BCI systems for mobile applications were proposed in 

[4], [16], [24] and [25]. In [16] the authors proposed the use 

of low cost wireless EEG devices for measuring brain 

activity and displaying the results using mobile devices. A 

methodology where emotions are detected to aid speech 

recognition software in mobile devices was suggested in 

[24]. Campbell et al [25] proposed the use of EEG headset 

for interaction with a mobile phone. 

Vourvopoulos and Liarokapis proposed the use of low 

cost EEG devices for control of mobile robots in [8] and 

[13]. The authors used Emotiv EPOC headset and 

Neurosky Mindset to control a Lego NXT mobile robot. 

The work presented in [8] and [13] is different to the work 

proposed in this paper in several ways: 1) robot control in 

[8] and [13] is performed via a combination of thought and 

facial expressions, while in this paper the control is 

performed entirely using thought. 2) In this paper we use 

the strength of the thought signal and linearly transfer it to 

the robot motion whereas in [8] and [13] it was not. And 3) 

[8] and [13] focus on a qualitative analysis and does not 

show any performance details, whereas in this paper we 

perform a quantitative analysis based on the intended 

actions of the user and movement of the robot. 

Other related work in the literature include: classification 

of objects using EEG signals [21], identifying consumer 

responses to various stimuli [17], [26]. 

III. HARDWARE SETUP 

This section elaborates the hardware setup and used for 

the BCI framework presented in this paper. 

A. Emotiv EPOC Neuroheadset 

The Emotiv EPOC Neuroheadset is a low cost easy to 

use BCI device (Fig 1(a)). It is able to measure brain 

activity of the wearer by utilizing 14 sensors (Fig. 1(b)). 

Each of the 14 sensors is an electrode which is hydrated 

using a saline solution. This is necessary to increase the 
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Fig. 1 Emotiv EPOC Neuroheadset (a) and sensor pad (b) 



 

conductivity of the contact pad and thus increase the 

sensitivity of the reading.  

These sensors are placed according to the international 

10-20 system [27]. Fig. 2 shows the locations utilized by the 

Emotiv EPOC headset according to the 10-20 system 

electrode locations. The sampling rate of the EPOC headset 

is 2048 Hz with 14 bit resolution. This enables fast and 

precise data collocation. Additionally, gyroscopic sensors 

are located in the headset that can detect the orientation of 

the headset. Table 1 lists the specifications of the EPOC 

headset. 

It has been shown that the Emotiv EPOC headset 

compares well with high grade research level equipment 

and the information retrieved is reliable and sufficient for 

most applications [19], [22]. 

The wireless design and low comparable weight enables 

users to wear the EPOC headset for longer durations of 

time, compared with more sophisticated EEG devices [5], 

[20], [22]. Furthermore, the comparatively low preparation 

time enables regular use [24]. 

B. Differential wheeled robot 

A differential wheeled robot is a mobile robot with 2 or 

more wheels. Two wheels on either side of the robot body 

are driven separately and this governs the movement of the 

robot [28]. Fig. 3 shows the diagram of the differential 

wheeled robot used in this paper. The third wheel is a free 

turning wheel used to balance the robot. A differential 

wheeled setup was used in this paper because of the ease of 

control and ease of dead reckoning [28]. 

The differential wheeled robot shown in Fig. 3 was 

implemented using Lego NXT [29]. This enables the 

communication between robot and a computer wirelessly 

via Bluetooth. Furthermore, the rotation of the motors can 

be controlled using integer values between -100 and +100, 

and an accurate measure of the number of turns each motor 

performed can also be acquired. 

IV. PROPOSED BCI FRAMEWORK 

In order to implement the BCI, Emotiv SDK [6] and 

Lego NXT SDK [29] was used. A Graphical User Interface 

(GUI) was implemented in the C++ environment that 

combines the processed signals from the Emotiv SDK and 

the control outputs to the mobile robot. The implemented 

GUI provides the seamless connection required between 

the brain activity and the motion of the robot. 

Since the brain activities of individuals are different, 

each thought pattern corresponding to an action has to be 

identified for different individuals. The Emotiv SDK 

enables the training of the system to different individuals. 

Thus, before a new user can successfully control the mobile 

robot, training must take place. The required training 

process can also be performed using the implemented GUI.  

TABLE 1.EMOTIV EPOC NEUROHEADSET  
SPECIFICATIONS [27] 

Parameter Value 

Number of channels 14 Channels 

Sampling Rate 2048 Hz 

Sampling Resolution 14 bits 

Sampling Method Sequential. Single ADC 

Bandwidth 0.2 – 45 Hz 
Dynamic Range 8400  V(pp) 

Connectivity Wireless 2.4GHz band 
Battery LiPoly 

Battery Life ~12 Hours 

 

 
 

Fig. 3 Differential wheeled robot setup 

 
 

Fig. 4 BCI Framework block diagram 

 
 

Fig. 2 Emotiv EPOC Neuroheadset sensor placement according to the 

international 10-20 standard [27] 



 

Once the training is complete the Emotiv SDK is able to 

identify the intended action using the brain activity of the 

user. For this application 4 different actions were used: 

“neutral”, “move forward”, “turn left” and “turn right”. 

Power of each action is returned from the Emotiv SDK as a 

value between 0 and 1. Using the values of these actions the 

desired speed of each motor is calculated using: 
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where, Mi is the speed of the motor i and Ej is the power of 

the action j. The function f() is a linear function that directly 

converts the power of intended action to the motor speed. 

The calculated motor power is then used to control the 

mobile robot. Fig. 4 shows the block diagram of the BCI 

implementation. 

The implemented GUI consists of 2 windows. The first 

window, shown in Fig. 5, extracts the EEG data and 

converts it into an action (neutral, push, turn left or turn 

right). Different users can be added to the BCI environment 

using the implemented profile management. The required 

training for different users can also be performed using this 

window. In order to aid the training and controlling process 

a 3D object that can be manipulated by thought is displayed 

on this window. Once training is completed a user profile 

can be saved and retrieved at a later time. 

The second window, shown in Fig. 6, provides the user 

with information about the mobile robot. The robot path is 

shown including a history of the motion. The calculated 

speeds of the motors are also displayed as well as the 

position and orientation in space.  

V. EXPERIMENTAL RESULTS 

The BCI system presented in Section III was 

implemented for the experimental phase. A simple route, 

made up of 60cm of straight section a 90 degree turn to the 

left and another 60cm straight section was set up for the 

robot to follow. The objective was to use the implemented 

BCI and move the robot along the path from the start to the 

finish. 

Six different users were tested and the results were 

compared to identify the limitations of using such a system. 

Each user was given 30 minutes to train the system and 

familiarize themselves with the system. Afterwards each 

user was given 30 minutes to complete as many runs as 

possible. Since the training time for users vary significantly 

and users take time to get used to the system the run with 

least error from each user was selected for comparison.  

The total error and average error of the robot trajectory 

compared to the objective path was calculated as well as the 

time for the completion of the route. The total error, TE, was 

calculated using: 
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Fig. 5 Emotiv control GUI implemented for the presented BCI framework 

 

 
 

Fig. 6 Robot information GUI implemented for the presented BCI 

framework 



 

 

where N is the set of all recorded robot positions during the 

run, (xbot,i, ybot,i) is the location of the robot at the i
th

 recorded 

time. M is a set of discretized locations of the preset path, 

and (xpath,j, ypath,j) is the location of the path at the j
th

 discrete 

step. The average error, TA, was calculated using: 
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Figs. 7(a) to 7(f) show the selected robot trajectories for 

each user. Table 2 shows the errors and time to complete the 

route for each user. Fig. 8 show the actions that was 

identified by the BCI system for User 4. The experimental 

results show that even after extensive training the BCI 

system show significant deviation from the intended path.  

The results show that while thought patterns regarding 

certain actions can be correctly identified, the precision and 

accuracy required to guide the robot along the path is 

lacking. Further, Fig. 8 shows that even with intense 

concentration, it is difficult to maintain a thought pattern for 

a long period of time. Fig. 9 shows the distance travelled by 

the robot (User 4) elaborating the non-smooth operation of 

the robot. Thus, the experimental results show that while 

BCI mobile robot control is possible, significant 

improvements to the presented BCI system need to be made 

to make it more usable in real world scenarios. 

The sub-optimal results may be due to the classification 

algorithm used to detect intended action of the user. An 

improved classification that is tailored to the control of a 

mobile robot might yield better results. The training time is 
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Fig. 7 The path of the mobile robot for each user compared to the set path  

TABLE 2. PERFORMANCE OF EACH USER 

User 
Total 

Error(cm) 

Average 

Error(cm) 

Maximum 

Error(cm) 

Time to 

Complete (s) 

User1 2839.8 18.44 29.92 76.5 
User2 2215.7 12.17 30.73 90.5 

User3 917.3 10.31 29.01 44 

User4 1677.5 6.55 34.45 127.5 
User5 1324.6 10.86 59.01 60.5 

User6 1154.1 85.48 57.61 67 

 

 
 

Fig. 8 Identified actions and intensity using EEG for User 4  



 

also major factor in correctly identifying the intended 

action of the user. More training time may lead to a better 

classification and thus better control of the robot. 

Furthermore, the highly varied results show that certain 

individuals perform better compared to others. This may be 

due to different levels of concentration, or that the thought 

patterns of certain individuals are easier to classify 

VI. CONCLUSION 

A BCI setup that uses a low cost widely available EEG 

device was implemented in this paper. Five different 

actions were identified using the thought patterns of the 

users. These actions were used to control a differential 

wheeled robot. Several performance measures were 

recorded to investigate the feasibility and limitations of a 

BCI interface. 

It was shown that although the presented BCI system 

using a low cost EEG device is possible, significant 

improvements to the detection and classification algorithms 

need to be made to make the system more usable. 

Furthermore, it was observed that the intense concentration 

required to operate the system was taxing on the users and 

even minor distractions may lead to unwanted behavior. 

As future work a more improved method of classifying 

intended actions using advanced machine learning 

techniques is suggested. Furthermore, a BCI system that 

complements conventional HMI techniques, that may 

increase the accuracy and responsiveness, will be 

investigated.  
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Fig. 9 Distance travelled by the robot for User 4 
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