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Abstract-This paper presents a new dynamic programming 

method called the Iterative Learning Heuristic Dynamic 
Programming (ILHDP). The ILHDP is an Iterative Learning 
Control (ILC) based Neural Dynamic Programming (NDP) 

algorithm. The NDP aspect of the ILHDP algorithm is borrowed 
from traditional Adaptive Critic Design (ACD) algorithms. 
Typical NDP algorithms in the ACD class of algorithms train a 

Model Network beforehand and use a Critic Network, as the 
gradient approximator, trained back-and-forth with the Action 
Network in each iteration to converge the Action Network 

towards the optimal control policy. The proposed ILHDP 
algorithm updates the Model Network continually based on 
newly obtained data sampled during each Action Network 

optimization step on the same experiment. This process of Model 
Network updation ensures better gradient approximation 
presented by the Model Network itself. The presented ILHDP is 

used for the design of a Steam Power Plant controller with 
respect to the Active-Power-to-Frequency droop characteristics. 
Test results indicated that the ILHDP designed controller was 

capable of stabilizing the output power of the Steam Power 
Plant to track the load with a maximum tracking error of 0.011 
for abrupt load changes as fast as 15s. The Steam Power Plant 

was also subjected to large transient spikes for which the 
designed controller proved to recover the system back to 
stability. 

 

I. INTRODUCTION 

Power Grid optimization is a growing field in the realm of 

Smart Grid Research and Development. The demand for 

optimal control has heightened as the Electric Power Grid has 

become more complex and unmanageable under harsh load 

conditions. Examples of work done in the field of optimal 

control for Smart Grids can be found in [1] – [3]. Beyond the 

realm of Smart Grids, optimal control is also becoming 

popular in the field of Robotics, Industrial Processes, Engine 

Control, etc, such as in [4] – [6].  

The most popular optimal controller design methods 

belong to a class of Adaptive Critic Design (ACD) algorithms 

introduced by Werbos in [7]. The reason for their popularity 

is that they are neural network based and hence the complex 

mathematics behind dynamic programming can be 

approximated using simple neural network properties. In a 

typical ACD setup, three neural networks are used that are 

connected in cascaded fashion starting with an Action 

Network followed by a Model Network and then a Critic 

Network. The Action Network is the approximation of the 

optimal control policy, while the Model Network is the 

approximation of the concerned system dynamics and the 

Critic Network is the approximation of the Hamilton-Jacobi-

Bellman (HJB) equation, or its gradient, typically found in 

dynamic programming literature [8] – [9]. 

In typical ACD algorithms, the Model Network is trained 

beforehand from previously sampled data after which the 

Critic and Action Network are trained back-and-forth 

optimizing the Action Network in the process. The training of 

the neural networks is performed using the Error-

Backpropagation (EBP) algorithm introduced by Werbos in 

1974 [10]. The theoretical details of the different ACD 

dynamic programming algorithms can be found in [11]. Other 

developments in ACD include greedy HDP iteration method 

to optimize the Action Network. Examples of work published 

using the greedy HDP iteration method can be found in [12] – 

[14]. 

Iterative Learning Control (ILC) is also a popular optimal 

control design method. Its principle is based on improvising 

the controller using previously learned information about the 

system iteratively. While ACD is purely neural network 

based, ILC is more analytical. Examples of work published in 

this field can be found in [15] – [16]. 

The proposed ILHDP is a purely neural network optimal 

control design algorithm based on the principle of ILC. In the 

proposed ILHDP algorithm, the Model Network is 

continuously updated from newly obtained data sampled 

during the Action Network optimization process. This process 

of continual Model Network updation ensures better gradient 

approximation presented by the Model Network itself. 

The ILHDP algorithm was applied to the design of an 

optimal Steam Power Plant neural controller. The Steam 

Power Plant is modeled as a third order linear system that 

converts power from the boiler to mechanical power on the 

turbine. The neural controller acts as an Automatic 

Generation Controller (AGC) that regulates the output power 

to track the load. 

The rest of this paper proceeds as follows: Section II 

discusses the background overview of Iterative Learning 

Control (ILC) and Adaptive Critic Design (ACD) followed by 

the introduction the ILHDP algorithm in Section III.  The 

Steam Power Plant model and its associated Grid model for 

loading conditions are introduced in Section IV along with 

the ILHDP design implementation of the Steam Power Plant 

controller. Test results are discussed in Section V and the 

paper finally concludes with future work in Section VI. 

 



II. BACKGROUND OVERVIEW OF ILC AND ACD 

This section provides a brief overview of ILC and ACD 

that form the basis of the proposed ILHDP algorithm. 

 

A. Iterative Learning Control (ILC) 

ILC is an optimal control algorithm that improves the 

tracking response iteratively from previously learned 

information about the system. Assume a discrete-time linear 

dynamic system of the form 

 

              

        (1) 

 

which can be rewritten as 

 

              (2) 

 

In the discrete-domain, i.e. the z-domain, eq. (2) can be 

written as 

 

              (3) 

 

Let yd(t) be the desired tracking signal and the 

corresponding error signal be denoted as e(t) = yd(t) – y(t). 

Then the optimal control signal u
*
(t) is derived as 

 

 

 

  

 

              (4) 

 

It is clear from eq. (4) that the previously learned system 

information plays a vital role in the control signal 

optimization. The iterative equation, derived from eq. (4), can 

be written as 

 

              (5) 

 

 

B. Adaptive Critic Design (ACD) 

ACD is a neural network based optimal control algorithm 

that improves the tracking response iteratively from 

previously learned information about the system. The ACD 

algorithm uses a Model Network to learn the system 

dynamics as a function y(t+1) = fM(y(t),u(t)). Once the Model 

Network is trained, the control policy, u(t) = fA(e(t)), or the 

Action Network is optimized based on a Critic Network that 

approximates the gradient of the cost function with respect to 

the system output y(t). For a tracking control problem, the 

cost function is typically in the form of the HJB equation 

given as                 

 

    (6) 

where Γ(t) = e
2
(t). The control policy update equation for the 

ACD algorithm is then given as 

 

 

        (7) 

  

 

III. ITERATIVE LEARNING HEURISTIC DYNAMIC 

PROGRAMMING (ILHDP) 

From the previous section, both the ILC and ACD 

algorithms utilized previously learned information about the 

system to update the control policies towards optimality. 

Hence modeling the system dynamics is a vital part in 

optimizing the control policy. The more accurate the 

modeling, the better are the chances of reaching the true 

optimal control policy. 

The ILHDP algorithm combines the attributes of the ILC 

and ACD algorithms. The ILHDP algorithm is a gradient-

based optimal control algorithm, like the ACD algorithm, that 

continually updates its knowledge about the system dynamics 

during control policy optimization process. In the following 

subsection, the ILHDP algorithm will be developed for linear 

dynamic systems. 

 

A. ILHDP for Linear Systems 

Continuing from eq. (4), the z-transform of the optimal 

control signal, U
*
(z), 

 

 

 

     

                           (8) 

 

This means that linear dynamic systems do not need high 

orders, r, to optimize the control signal or policy. Using ACD 

approach the optimizing gradient can be written as 
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Pseudo Code of the ILHDP: 
 

Let the Action Network be denoted as a function fA(y(t)) and the Model 

Network as fM(y(t),u(t)). 
 

Phase I: Train Model Network 

 
1) Obtain training data of y(t) and u(t) from simulation of the system 

under consideration. 

2) Create a mapping y(t+1) = fM(y(t),u(t)).  
 

Phase II: Train Optimal Neural Controller 

 
1) Initialize Action Network fA(e(t)) where e(t) is the error state. 

2) Compute the gradient ∂y(t+1)/∂u(t) from the Model Network. 
3) Compute the gradient ∂J(t+1)/∂u(t) according to eq. (9). 

4) Update the control policy u(t) using eq. (7). 

5) Simulate the system with the new control policy. 
6) Sample new data from the simulation. 

7) Update the Model Network with new and previous data. 

8) Repeat 2 to 7 until optimal policy is reached. 
 

Fig. 1.  Pseudo Code for the ILHDP algorithm. 

  



 

               

               (9) 

 

However, since the second term on the right-hand-side of 

eq. (9) is zero, only the first term can be used for the control 

policy optimization. The pseudo-code for the ILHDP 

algorithm is given in Fig. 1. 

 

 

IV. STEAM POWER PLANT AND GRID MODELING 

This section discusses the Steam Power Plant modeling and the 

Grid modeling for control. 

  

A. Steam Power Plant Modeling 

The Steam Power Plant model used in this paper was adopted 

from [17]. In this model, the generator turbine has three sections 

namely, the High Pressure (HP), the Intermediate Pressure (IP) and 

the Low Pressure (LP) sections. The steam leaving the boiler 

initially enters the HP section of the turbine. After partial expansion, 

the steam is directed back to the boiler to be reheated from the 

residual energy stored in the boiler, i.e. the boiler heat energy 

remaining after passing the steam into the HP steam chest. The 

reheated steam then flows into the IP section of the turbine where 

the steam is expanded again. On leaving the IP section of the 

turbine, the steam flows into the LP section of the turbine and finally 

to the condenser to complete the cycle. The individual turbine 

sections, i.e. the HP, IP and LP, contribute 30%, 40% and 30% of 

the total turbine torque respectively.  The block diagram of the steam 

system is shown in Fig. 2. Fig. 3 shows the s-domain modeling of 

the steam flow mechanism just described. The Pm denotes the total 

mechanical power on the turbine from the steam flow. The gains α, 

β and γ, equal to 0.3, 0.4 and 0.3 respectively, represent the 

individual percentage contribution to total mechanical power on the 

turbine. The values of TA, TB and TC chosen are 0.1s, 4s and 0.3s 

respectively. 

Typical Automatic Generation Controllers (AGC) control the 

power output of the plant based on droop characteristics. Droop 

characteristics dictate that the Active Power output (P) is related to 

the Frequency output of the plant (ω), while the Reactive Power 

output (Q) is related to the Voltage output of the plant (V). In this 

paper, we consider only the P-ω droop characteristics to control the 

Steam Power Plant. Therefore in addition to the Steam Power Plant 

model, the P-ω droop model was embedded. The total system, i.e. 

the Steam Power Plant model and the Droop model, was closed 

using an Integral (I) controller. This is shown in Fig. 4. All values 

taken in the power plant control model are normalized values with 

respect to the rated power outputs and frequency. In Fig. 4 the 

Droop Model is characterized by a 5% droop generator gain of three 

that outputs the actual frequency output on the transmission lines. 

The input to the Droop Model is the error between the electrical 

power output of the power plant (assuming it is equal to the 

mechanical power, Pm, on the turbine) and the required Active Load 

Power, Pload. The I controller then inputs the error between the actual 

output frequency of the plant and the reference frequency of 60 Hz, 

to output the required boiler power input to the steam chest 

consisting of the HP, IP and LP sections of the turbine.  

 

B. Grid Modeling 

The most important problem of an electric power grid is the 

load disturbance the grid is subjected to. It is this load 

disturbance that drives the grid into instability if not managed 

properly. In the electric power grid, this load does not only 

consist of the consumer loading but also consists of loading 

effects from other generations in the grid. Hence to evaluate 

 
Fig. 5. Grid Model. 
  

 
Fig. 4. Matlab/Simulink model of Steam Power Plant control. 
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Fig. 2.  Block Diagram of the steam flow. [17] 

  

 
Fig. 3. S-domain modeling of the steam flow mechanism. [17] 

  



the controller’s stability performance on its generation unit, it 

is important to subject the generation unit, i.e. the Steam 

Power Plant, to a load disturbance signal. Since a generation 

unit is connected to the grid at some random node, we only 

consider the loading effects from the generation unit to that 

particular node of the grid. The power flowing in and out of 

this node may come from Wind/Solar Generators, other 

adjacent grid islands, consumer load, battery 

generation/charging and etc. This is shown in Fig. 5 

 

C. ILHDP Design of the Steam Power Plant Controller 

The Steam Power Plant neural controller architecture is 

shown in Fig. 6. It is a Multilayer Perceptron with linear 

neurons in the hidden layer and a sigmoidal neuron in the 

output layer. The sigmoidal neuron in the output layer ensures 

that the boiler power input, Pb(t), to the steam power system 

is within the rated limits. The inputs to the neural controller 

are the load-angle, d(t), delta frequency (reference frequency 

minus the actual frequency), dw(t) and the load power, PL(t), 

along with their time-delayed values . The load signal, PL(t),  

is included in the input because this signal acts as an extra 

uncontrollable stimulus to the Steam Power Plant. So the 

neural controller is trained to provide a control signal based 

on the current load state. Modern power grids are now being 

equipped with Phasor Measurement Units (PMU) that 

facilitate the load signal estimation. The Steam Power Plant 

can however estimate the load signal locally using the droop 

model equation as 

 

 

 

 

            (10) 

 

with the droop constant, Mgen, as the generator’s droop inertia. 

As mentioned earlier in Section IV, 5% generator droop was 

used.  

 

V. TEST RESULTS 

This section shows the test results obtained from the 

ILHDP designed controller on the Steam Power Plant system. 

The controller was designed to output the control signals 

within the rated power limits in the per-unit (p.u.) system. 

The real time sampling rate of the system was taken as 0.2s. 

  

A. Controller response under abrupt load changes 

The Steam Power Plant system was subjected to a load 

signal with multiple abrupt changes in the load. The time 

intervals between each abrupt load change were chosen as 

30s, 20s and 15s. The response of the controller under these 

load conditions are shown in Fig.s 7 to 9. 

From Fig.s 7 to 9, it can be noted that the power output 

 
Fig. 8. ILHDP controller under 20s abrupt load change condition. 
  

 
Fig. 9. ILHDP controller response for 15s abrupt load change condition. 

  

 
Fig. 7. ILHDP controller response for 30s abrupt load change condition. 
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Fig. 6. Action Network used for training the optimal policy. 
  



slowly tracks the abrupt load changes. This is due to the 

fourth order characteristic of the Steam Power Plant and 

droop. The maximum tracking errors for the 30s, 20s and 15s 

abrupt load change conditions were 0.007, 0.0095 and 0.011 

respectively.  

 

B. Controller response under Gaussian noisy load 

To simulate the loading effects of the grid on Steam Power 

Plant as shown in Fig. 5, a Gaussian random noise signal was 

added to the abrupt load change signal as discussed in the 

previous subsection. The Gaussian random noise was chosen 

since typical natural systems exhibit such characteristics. The 

probability density function (pdf) of a Gaussian Distribution 

is given by, 

 

(5) 

 

In Eq. (5), µ and σ are the parameters of the Gaussian pdf 

known as the mean and the variance respectively. The mean 

of the Gaussian random noise signal added to the abrupt load 

change signal is zero, but variances of 0.05 and 0.1 were 

chosen. The response of the controller under these load 

conditions are shown in Fig.s 10 and 11. 

 

C. Controller response under transient spikes 

The Steam Power Plant system was subjected to a single 

transient spike within the data window. The transient spike 

magnitudes chosen were 5 and 10 times the rated power of 

the Steam Power Plant. The controller’s response under the 

chosen transient spike conditions are shown in Fig.s 13 and 

14. The transient spike responses are compared with a no 

transient spike case shown in Fig. 12. The purpose of this 

subjection was to study the how well the designed neural 

controller can bring the system back to stability under large 

spikes in the load. In a real electric grid, these transient spikes 

may occur due to lightning strikes or solar flares. 

It can be noted from Fig.s 13 to 15 that when the transient 

spike occurs t=150s the drop in the delta frequency increases 

as the magnitude increases. This increase in delta frequency 

urges the neural controller to boost the boiler power input into 

the system to quickly stabilize it to track the actual load 

reference signal. 
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Fig. 10. DAHDP controller response for 15s abrupt load change and 
Gaussian random noise variance of 0.05. 

  

 
Fig. 11. DAHDP controller response for 15s abrupt load change and 

Gaussian random noise variance of 0.1. 

  

 
Fig. 12. ILHDP controller response for no transient spike in the load. 
  

 
Fig. 13. ILHDP controller response for a transient spike magnitude of 5 

times rated power. 
  

 
Fig. 14. ILHDP controller response for a transient spike magnitude of 5 

times rated power. 
  



VI. CONCLUSION AND FUTURE WORK 

The Iterative Learning Heuristic Dynamic Programming 

(ILHDP) algorithm was introduced in this paper and was 

applied to the design of the Steam Power Plant neural 

controller. The control in this paper considered only the 

Active-Power-to-Frequency (P-ω) droop characteristics. The 

designed controller was able to stabilize the power output of 

the Steam Power Plant with a load tracking error no more 

than 0.011 for abrupt load changes as fast as 15s. The load 

signal was also subjected to Gaussian variance of about 0.1. 

The Steam Power Plant was further tested under the 

subjection of large transient spikes and the designed 

controller proved to bring the power plant back to stability.  

For future work, the Reactive-Power-to-Voltage (Q-V) 

droop characteristics will be tackled using the ILHDP 

algorithm. This completes the control requirements of the 

Steam Power Plant system with the currently designed 

Active-Power-to-Frequency (P-ω) droop neural controller. 

Similar controllers can be built for various other types of 

power plants. 
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