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ABSTRACT 
 

Computational intelligence techniques (CITs) traditionally 

consist of artificial neural networks (ANNs), fuzzy systems and 

genetic algorithms. This article overviews diverse 

implementations of ANNs, which are the most prominent in 

nuclear engineering problems, especially for small modular 

reactors (SMRs). Advanced computational intelligence-based 

tools will allow data to be transformation into knowledge, thus 

improving understanding, predictability (can be seen from the 

two case studies for thermal-hydraulic prediction), 

sustainability, and performance of SMRs with real time analysis 

and monitoring. 

 

I  INTRODUCTION 
 

Next generation reactor designs of small modular reactors 

(SMRs) include light water reactors, gas cooled reactors, liquid 

metal fast reactors, and molten salt reactors. Potential major 

markets for small to medium sized reactors are in areas where 

there is (1) a demand for energy in the form of electricity or 

process heat, (2) no access to a main power grid, and (3) not 

enough power required to make a larger reactor economical. 

Compared with larger reactors, small to medium sized reactors 

are safer, more economical, easier to operate, can be modularly 

constructed, provide a faster return on investment, and have a 

lower capital investment, thereby encouraging a variety of 

potential users. Irrespective of the design type, SMRs will have 

nonlinearities and challenges similar to large reactors, maybe 

even more. Thus, a tool that would provide and enhance 

predictive capabilities, such as ANNs, could further improve 

user understanding of the physical processes. 
ANNs are known as universal approximators and 

classifiers because they have unique capabilities in dealing with 

high-dimension, highly-nonlinear data. ANNs have several 

advantageous features. When the number of modeled inputs of 

a system increases, the ANN architectural solution remains the 

same, i.e. the computational complexity of the system, memory 

storage requirements, and computational time does not 

increase. ANNs are data-driven and can “mimic” the system 

behavior by adaptively learning input/output interrelationships 

among system variables through gradient search. By capturing 

nonlinear interrelationships. ANNs exhibit highly accurate 

predictive capabilities that can improve understanding of 

physical processes.  These advantages make ANNs a valuable 

and viable tool for predicting, optimizing, and controlling SMR 

design problems.  

As powerful, universal, multidimensional approximators, 

ANNs are a valuable and viable tool in nuclear engineering and 

design problems that may include optimization, prediction, 

classification, and nonlinear control. Examples of predictive 

features of ANNs include thermal-hydraulic performance 

analysis of the printed circuit heat exchangers (PCHE) [Kim 

09, Ridluan 2009], and prediction of key safety parameters in 

nuclear research reactors [Mazrou 2009].  ANNs have been 

used to optimally design compact heat exchangers (CHE) [Jia 

2003] and to optimize plate elements or plate-fin heat 

exchangers (PFHE) of reactors [Waheda 2010, Peng 2007]. 

Control modeling and simulation related ANN applications 

include feedwater controllers in pressurized water reactors 

(PWRs) [Jia 2003].  

Computational intelligence techniques (CITs) will employ 

state-of-the-art data mining techniques built upon established 

paradigms of pattern recognition, high performance computing, 

and data visualization. The data-mining component is focused 

on discovering knowledge and extracting significant historical 

patterns. The extracted significant patterns and mined root-

cause information will provide vital clues to understanding and 

detecting symptoms before instrumentation and control systems 

fail. 

Section II of this paper gives a high-level introduction to 

artificial neural networks and Section III overviews 

applications of computational intelligence, followed by two 

case studies. 
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II ARTIFICIAL NEURAL NETWORKS 
This section presents a high level introduction to artificial 

neural networks. 

 

A. NEURAL NETWORKS, BASICS 
A single biological neuron (Fig. 1a) connects to other 

neurons via its interconnections (synapses), and receives the 

stimulated input via its inputs (dendrites).  A weighted sum of 

input signals (net value) is then compared against the threshold 

or certain activation function. An output signal produced in 

such a way is further transmitted via other synapses to other 

neurons. Artificial neurons are biologically inspired 

computational structures that can be viewed as summation 

threshold elements (Fig. 1b). ANNs can be composed of several 

layers of neurons, fully or partially connected, with optional 

feedback connections (Fig. 1c). Such ANNs represent 

computational architecture credited with powerful features such 

as universal approximators and classifiers. 

Artificial neurons represent summation-threshold elements 

(Fig. 2). Weighted sum of the neuron inputs (xi) is referred to as 

net. When net exceeds predefined threshold value, the neuron 

produces an output, i.e., “fires” (1): 

net = 
i=1

n

å iw ix  + n+1w
,   out =

1 if net ³ 0

0 f net < 0

ì

í
ï

îï

 (1) 

The weight (wi+1) with default input +1 is called bias, and 

can be understood as the threshold (T), but with the opposite 

sign (Fig. 2c).  

 

 
 

 
 

The output is calculated via so called activation (transfer or 

threshold) function. Typically, used threshold functions are 

sinusoidal threshold functions, both unipolar and bipolar 

(Fig. 2a). They exhibit behavior typical in biological systems in 

that they respond to the sensory inputs until saturation 

(observed for pain or taste for example; maximum is reached at 

some point). In other words, for any combination of inputs (net 

value), activation function constrains output to values between 

0 and 1 (unipolar), and -1 and +1 (bipolar). In this way, neurons 

exhibit the range of net values for which learning occurs, and 

range of net values where saturation occurs (incremental 

changes of large +/- values of net do not yield response change 

of a neuron). The typically used bipolar sinusoidal activation 

functions can be defined as (Fig. 2b) 

obip = fbip (k × net) = tanh(k × net) =
2

1+ exp(-2 ×k ×net)
-1

.

 (2) 

The graphical representation of a single neuron operation 

can be described easily via analytic geometry. For example, a 

simple two-dimensional (2-D) neuron represents a separation 

line (Fig. 3), so a single, two input neuron represents a linear 

classifier where the neuron definition is × +3y – 3 > 0, where 

values 1 and 3 are the weights used for inputs x and y. The 

neuron divides the xOy space into two areas, by selecting the 

upper one. In this example, the neuron correctly classifies the 

rectangular pattern producing the output of +1, identical to the 

desired output of +1. Further, by deselecting the lower part of 

xOy space, the neuron produces -1 on the output, again 

matching the desired output of -1. Similarly, a 3-D neuron 

represents a separation plane, while neurons with n dimensions 

k

b)
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out
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+1
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Fig 2.  a) Typically used threshold functions: unipolar and bipolar sigmoidal; b) Artificial neuron as weighted threshold element. 
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represent a hyperplane in n-dimensional space Rn. It is already 

obvious that a single neuron can be a very powerful 

computational element. 

 
One of the most used ANN algorithms is Error Back 

Propagation (EBP), proposed by Werbos [1994] and Rumelhart 

[1986]. Other popular algorithms include modification of EBP 

(Quickprop, RPROP, Delta-Bar-Delta, Back Percolation), 

Levenberg-Marquardt (LM), Adaptive Resonance Theory, 

Counter Propagation Networks, and Cascade Correlation 

Networks. 

 

B. TWO WIDELY USED ALGORITHMS (EBP, LM) 
 

Error Back Propagation Algorithm 

The fundamental principles of neural networks design is 

explained by EBP, one of the most frequently used approaches. 

The EBP represents one of the seminal algorithms in neural 

networks design research. Although not without concerns when 

it comes to robustness to parameter initialization and 

convergence, it was historically the first algorithm to introduce 

multiple layer neural networks activated by sigmoid (tanh) 

transfer function. Hence, it enabled the solving of linearly 

nonseparable problems.  

Introduced by Werbos [1974, 1994] and later by Rumelhart 

and McClelland [1986], EBP represented a real breakthrough in 

the ANN by offering a modern algorithm capable of solving a 

plethora of problems of universal functional learning and 

clustering and other complex and highly nonlinear 

multidimensional problems. 

As the original name of the algorithm implies, EBP is 

composed of two phases: the forward phase (when inputs are 

propagated through the network), and the backward phase 

(where errors between expected and actual outputs of the 

network are propagated back through the network). During the 

backward propagation of errors, weights of neurons that 

produced the error are modified accordingly, going backwards 

from one layer to another, as illustrated in Fig. 4 [Manic (i) 

2011].  

The weight set of a neural network is typically updated as: 

wk+1 =wk +Dw     (3) 

where weight matrix in current, k+1th iteration, wk+1, is 

calculated based on the matrices from previous kth iteration, 

weight matrix wk and weight increment Dw . 

In order to minimize the output error, the weight increment 

in equation (3) is calculated against the gradient change as 

wk+1 =wk -a g, where Dwi = -a ×gradient  (4) 

 
 

 
Equation (4) is also known as the Steepest Descent 

Method. The gradient search typically expresses search for a 

weight set that would minimize the total error defined as 

TE = dp - op
éë ùû

2

p=1

np

å     (5) 

where output (op), i.e., output from the pth neuron of output 

layer is defined as function composition—function F (nonlinear 

signals propagation through layers as shown in Fig. 5) of 

function f (activation function) of net  

op = F f w1xp1 + w2xp2 + + wnxpn( ){ }
. (6) 

Hence, the gradient becomes: 

gradient =
d TE( )

dwi

=

              = - 2 dp - op( )
dop

dzp

dzp

dnetp

dnetp

dwi

é

ë
ê
ê

ù

û
ú
úp=1

np

å
  (7) 

and the weight increment  becomes:  

 
Fig. 5. Error-Back Propagation algorithm—individual neuron vs. 

output layer schematics. 

 

Fig. 4. Error-Back Propagation algorithm, forward and backward 

phase. 
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Fig. 3. Graphical representation of single neuron operation. 
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  (8) 

where 

   

x p
 represents network input pattern, while dop

, zp
, and 

oop
 are desired, neuron, and network outputs, respectively. 

Here 

  

f '(netp ) is the derivative of activation function f  with 

respect to the neuron net value ( netp
), while F '{zp} is the 

derivative of nonlinear function F{zp}  describing the 

propagation of nonlinear mapping through the multiple network 

layers, and (zp ) is the individual neuron output (other than 

output layer neuron).  

 

Levenberg-Marquardt Algorithm 
LM is another frequently used algorithm [Levenberg 1994; 

Marquardt 1994]. The process is similar to the Equations (1)–

(5) of EBP approach, except that (4) becomes Newton’s 

method: 

wk+1 =wk -Ak

-1
g , Dwk = -Ak

-1
g ,  (7) 

i.e., process is accelerated by replacing learning constant alpha 

with the Hessian, the 2nd order derivative matrix. 

After applying the following substitutions to (7), 

A @ 2JT
J, g = 2JTe    (8) 

the steepest descent becomes the LM algorithm 

wk+1 =wk - (Jk

T Jk +mI)-1Jk

Te.  (9) 

The LM algorithm combines the speed of the Newton 

algorithm with the stability of the steepest descent method. It is 

important to note that the parameter  “drives” the LM 

algorithm. For , the LM algorithm becomes the Gauss-

Newton method, while for very large  the LM algorithm is 

reduced to the steepest decent [Manic (i) 2011]. 

 

III APPLICATIONS OF COMPUTATIONAL 
INTELLIGENCE TECHNIQUES IN NUCLEAR 
ENGINEERING AND DESIGN 

 

This section briefly overviews recent advances in CITs in 

nuclear engineering and design.  

 

A. NEURAL NETWORKS IN THERMAL-HUDRAULIC 
PREDICTION (BRIEF OVERVIEW) 
The U.S. Department of Energy is leading a number of 

initiatives such as the Next Generation Nuclear Plant [Schultz 

2004], also known as the very high temperature (gas-cooled) 

reactor. The key to overall plant efficiency for this initiative, 

like any other higher temperature energy system, is the power 

conversion system based on an efficient heat exchanger. The 

typical tradeoff that occurs in design requirements of heat 

exchangers are compactness (to minimize material costs) versus 

thermal efficiency, resulting in nonlinear and multidimensional 

exercises in parametric design optimization. The traditional 

design engineering in nuclear industry has been relying upon 

trial-and-error iterative methods with design constraints 

typically conservatively observing margins of safety in 

operation and off-normal anticipated and unanticipated 

scenarios.  

The multidimensional and nonlinear behaviors observed 

during the process enhance the interest in ANNs as a universal, 

powerful, and multidimensional approximator that can advance 

these practices in terms of efficient system performance design 

and optimization, all the while meeting regulatory (licensing) 

compliance [Ridluan 2009]. 

The ANN approach has been considered in limited nuclear 

science and technology literature. For example, Eryurek and 

Upadhyaya studied the possibility of employing neural 

networks to model signals from a commercial power plant and 

the Experimental Breeder Reactor-II (EBR-II) at Idaho 

National Laboratory [Eryurek 1990]. Roh et al. [1991] 

developed a system of thermal power prediction in nuclear 

power plant by combining a neural network with a signal 

validation model. Further, Guo and Uhrig applied a hybrid type 

of neural networks to predict the heat rate, as linked to nuclear 

power plant performance [Guo  1992]. 

Boroushaki et al. [2005] applied cellular neural network to 

simulate reactor core kinetics. Guanghui et al. trained artificial 

neural networks to predict the critical heat flux under low 

pressure and oscillating conditions for both natural and forced 

circulation [Guanghui 2003]. Garg et al. [2007] applied 

multilayer perceptron and radial basis function neural networks 

to predict thermal-hydraulics of natural circulation boiling-

water reactor. Finally, Vaziri et al. [2007] applied radial basis 

function and multilayer perceptron neural networks to also 

predict the critical heat flux. ANN is evidently receiving 

consideration as a suitable in-reactor analysis tool. 

In the last decade, artificial neural networks have been 

introduced to evaluate, design, and optimize thermal-hydraulics 

performance of compact heat exchangers. Diaz and Sen [1999] 

developed four layers of artificial neural networks with sigmoid 

activation function to predict the heat transfer rates for 1-D 

conduction, 1-D convection with one and two heat transfer 

coefficients, and single-row PFHE. The algorithm used EBP to 

yield maximum error less than 3.7%. Pacheco-Vega [2001] 

applied feed forward structure with sigmoid function to fin-

plate type heat exchanger analysis for refrigeration application. 

Again, the algorithm of choice was EBP, and the root-mean 

square error estimation indicated predictions by ANN to be at 

the level of the uncertainty of experiment (the details on 

experimental correlation and the ANN model for steady-state 

performance of plat fin-tube heat exchanger can be found in 

Pacheco-Vega’s dissertation [2002]. Recently, Ping and Ling 

proposed the combination of GA and BP ANN to optimize the 

PFHE size and capital cost [Peng 2007]. Ermis [2007] applied 

ANN to estimate heat transfer coefficient, pressure drop, and 

Nusselt number. Here, the 15-channel-configuration compact 

heat exchangers with staggered cylindrical and triangular rib 

were chosen for testing the neural net approach. The algorithm 

of choice was the a Feed-Forward Back-Propagation algorithm.  
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These documented ANN-based heat exchanger analyses 

are targeting extended surface-type, traditional heat exchangers 

with heat transfer media at conventional thermophysical 

conditions. Only very recent literature addresses compact heat 

exchangers with microchannels using supercritical fluids.  

Ridluan et Al. [2009] demonstrated the predictive ability of 

an ANN-based approach to assess PCHE thermal hydraulics 

with the heat transfer medium near or at critical conditions. The 

application focused on supercritical CO2, which has been 

identified as a suitable fluid for both convective heat transfer 

through a single tube and a heat exchanger with multiple zigzag 

microchannels (PCHE). 

 

B. NEURAL NETWORKS IN THERMAL-HYDRAULIC 
PREDICTION, CASE STUDY 

This section summarizes two case studies of ANN design 

and optimization applied to thermal-hydraulic prediction based 

on work by Ridluan et al. [2009] and Wijayasekara et al. 

[2011]. 

 

Case Study 1 

The experimental datasets used in this study were based on 

work by He [2005] and Ishizuka [2005]. He’s group conducted 

experiments and simulations of convective heat transfer in a 

vertical microchannel with SCO2 as the heat transfer medium. 

They validated the simulations with experimental data (excerpt 

provided in Table 1). He’s experiments were carried out in a 

stainless steel (1CR189NT) vertical tube with internal and 

external diameters of 0.948 and 1.729 mm respectively. The 

critical pressure range of SCO2, is 8.5–9.5 MPa. The test 

section, 55 mm in length, was heated by passing a low voltage 

alternating current. The experimental uncertainty was reported 

to be 11.3%. In this case study, He’s work considered the 

following parameters: inlet pressure (Pi), inlet temperature (Ti), 

mass flow rate ( m ),Reynolds number (Re), and Buoyancy 

parameter (Bo). 

The second dataset used in this study was taken from 

Ishizuka et al. [2005]; an excerpt is presented in Table 2. The 

PCHE load capacity in Ishizuka’s experiment was 3 kw, and 

each PCHE plate consists of 12 hot and 11 cold zigzagged flow 

channels, while the configuration of PCHE path was 

semicircular and zigzagged. The hot (Phi) and cold (Pci,) inlet 

pressure, hot (Thi) and cold (Tci) temperature, and mass flow 

rate (G) were considered as input factors that influence three 

outputs: cold-sided pressure drop (DPc), hot-sided pressure 

drop (DPh), and heat transfer (Q).  

 

 
Convective Heat Transfer CO2 through a Single Tube  

The first study refers to the work of Ridluan et. al. applied to a 

heat exchanger using supercritical CO2 as the heat transfer 

medium on the convective heat transfer in a (straight) mini-tube 

[Ridluan 2009]. The presented EBaLM-THP algorithm was 

based on the specific neural network algorithm, which 

combined the best of the EBP and LM algorithms. The 

EBaLM-THP combined that robustness to the parameter 

initialization of EBP and the speed of LM into one algorithm.  

In the first example, EBaLM-THP algorithm was tested on 

the problem of supercritical CO2 flow through a straight tube. 

One half of the data was used for training, the other half for 

testing. Training and testing datasets are illustrated in terms of 

Table 1. Excerpt from thermal-hydraulic database by He et al. [2005] 

Mass Flow Rate  

m   
(kg/h) 

Inlet Temperature  

Ti  

(°C) 

Inlet Pressure  

Pi 

(MPa) Reynolds Number Re 

Buoyancy Number  

Bo 

Wall Heat Flux  

(kW/m2) 

1.48 32.7 9.59 9,237 936 × 10-10 31,534 

1.53 37.8 9.54 11,639 790 × 10-10 31,194 

1.49 39.6 9.5 12,629 796 × 10-10 30,722 

1.37 51 9.43 20,864 208 × 10-10 29,400 

1.49 44 8.48 24,138 174 × 10-10 37,079 

 

Table 2. Excerpt from thermal-hydraulic database by Ishizuka et al. [Ishizuka 2005] 

Mass Flow Rate 

m  
(kg/h) 

Inlet Hot CO2 

Pressure  

Ph,i 

(MPa) 

Inlet Cold CO2 

Pressure  

Pc,i 

(MPa) 

Inlet Hot CO2 

Temperature  

Th,i 

(°C) 

Inlet Cold CO2 

Temperature  

Tc,i 

(°C) 

Cold CO2-sided 

Pressure Drop 

ΔPc 

(kPa) 

Hot CO2-sided 

Pressure Drop 

ΔPh 

(kPa) 

Heat Transfer 

Q 

(kW) 

42.8 2.26 6.59 280.1 107.8 34.93 9.96 2.067 

52.6 2.22 6.53 280.2 107.8 53.52 15.23 2.539 

79.6 2.5 7.34 279.9 107.9 93.07 26.66 3.860 

52.1 3.34 10.08 280.1 108.2 32.83 10.13 2.601 
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heat flux ( ¢¢qw
) versus temperature (T) in Fig. 6. All of values 

are normalized by the corresponding maximum values. That is, 

Ti,max = 51°C and ¢¢qw,max
= 200,000 kw/m2, both as noted by He 

et al. [2005]. As shown, both the training and testing datasets 

fluctuate but are closely matched and bounded.  

The TE was calculated for various three-layered NN 

architectures (architectures with other number of layers 

demonstrated much higher error). A graphical illustration of TE 

versus select neural network architectures is presented in Fig. 7.  

For the architectures ANN 7-n-1 and ANN 8-n-1, the TE versus 

the total number of neurons is nearly identical. 

Fig. 8 depicts the apparent effectiveness of ANN 6-6-1, 

ANN 7-5-1, and ANN 8-4-1 architectures.  In spite of the 

highly fluctuating data, these networks were able to 

successfully learn the behavior of the heat exchanger with 

supercritical CO2. 

 

Convective Heat Transfer through PCHE 

For convective heat transfer through PCHE, the training 

and testing data for the PCHE were plotted against mass flow 

rate (G) as shown in Fig. 9 (please refer to Ridluan [2009] for 

hot-sided pressure (Ph), and cold-sided pressure (Pc)). All of the 

values were normalized by the corresponding maximum values, 

as follows: ΔPcmax=93.07 kPa, Gmax=87 kg/h, ΔPhmax= 26.66 

kPa, Phmax,i=3.34 MPa, and Qmax=4.324 kW. 

 

Comparison of ANN versus Polynomial Fitting (FT) 

To demonstrate the predictive ability of EBaLM-THP, the 

ANN approach was also compared against a 10th order 

polynomial ‘fit’ (Matlab) of the reference conditions. A 

comparison of ANN versus the 10th degree polynomial for first 

example is shown in Fig. 10, while the second example is 

shown in Fig. 11.  

As illustrated the Figs. 10 and 11, the EBaLM-THP was 

superior to the 10th polynomial as the polynomial essentially 

serves as a ‘moving average’ of the nonlinear trend exhibited by 

the reference condition. The polynomial fitting was unable to 

mimic either the fluctuating or oscillatory trend in the data. 

Meanwhile, ANN predicts many to most data points. For the 

first example, the total error of the 10th polynomial fitting was 

2.299016210, while that of ANN 8-4-1 was a smaller 

0.329307030. The computed total errors of 10th polynomial for 

ΔPc, ΔPh, and Q were 0.360642000, 1.645394000, and 

2.056541000 respectively, whereas those of ANN 8-4-3, which 

had the poorest performance, were only 0.088750320, 

0.182462560, and 0.093324986 for the three different output 

variables modeled (ΔPc, ΔPh, and Q, respectively). The ANN 

approach clearly yields more representative results. Thus, if the 

parameter space for an engineered thermal system component 

is designed to work under nonlinear load and/or in conjunction 

with significant changes in the equation of state, the above 

described ANN approach can facilitate the design and analysis 

tasks.  

 

 
Fig. 6. Training and testing datasets. 

 

 
Fig. 7. Comparison of total error versus total number of neuron for each 

group of ANN architectures. 

 

 
Fig. 8. Comparison of experimental data versus ANN outputs for ANN 8-4-1. 
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It can be concluded that even though the reference data 

was fluctuating and oscillatory, the neural network was able to 

follow these characteristic changes. It is evident that the 

advantage of neural network approach is the network’s ability 

to learn the dataset. In contrast, a polynomial fit was at best 

able to follow the stepwise average of the oscillatory nature of 

the reference dataset. Thus, at each step, it failed to fully 

capture nature of both the nonlinearity and noise contained in 

experimental data. In fact, the total error of a 10th order 

polynomial fit was one to three orders of magnitude larger than 

that associated with the neural networks.  As illustrated by 

Table 3, ANN 8-4-3 architecture showed two orders of 

magnitude better TE than the 10th order polynomial 

(0.093324986 vs. 2.056541) for the output Q. 

 

Table 3. Total Error comparisons, ANN vs. polynomial fitting 

Network vs. Polynomial Total Error 

ANN 8-4-1 ( wq 
 output) 

0.32930703 

Polynomial Fitting of 10th order ( wq 
 output) 

2.29901621 

  

ANN 8-4-3 (DPc output) 0.08875032 

Polynomial Fitting of 10th order (DPc output) 0.360642 

  

ANN 8-4-3 (DPh output) 0.18246256 

Polynomial Fitting of 10th order (DPh output) 1.645394 

  

ANN 8-4-3 (Q output) 0.093324986 

Polynomial Fitting of 10th order (Q output) 2.056541 

 

Case study 2 

The second study improves EBaLM-THP via EBaLM-

OTR technique for ANN architecture selection for PCHE 

modeling [Wijayasekara 2011].  

The main motivation for the work in this study was the 

frequently overlooked issue of overfitting.  Researchers 

typically focus on minimizing the training (learning) error, 

which may adversely impact generalization capability of the 

model. In addition to main criterion for optimal architecture 

selection, the EBaLM-OTR looks into the testing error, while 

the third criterion ensures the confidence into the chosen 

architecture, i.e., the standard deviation of the training error. 

In order to perform exhaustive data generalization, the 

EBaLM-OTR technique for ANN architecture selection for 

PCHE modeling used flavor of k-fold (5-fold in this case) cross 

validation which divided the dataset into 5 similarly sized folds 

(one fold for testing, one for validating, and three folds for 

training). Thus the dataset Y is divided into three portions 

containing Ptr number of training data patterns (Ytr), Pte number 

of testing data patterns (Yte), and Pva number of validating data 

patterns (Yva), where: 

v at et r PPPP 
    (10) 

}{ v at et r YYYY 
    (11) 

 
Fig. 9. Plots of training data and testing data for cold-sided pressure drop. 

 

 
Fig. 10. The comparisons of ANN 8-4-1 versus 10th order PF. 

 

 
Fig. 11. The comparisons of ANN 8-4-3 versus 10th order PF for (a) cold-sided 

pressure drop. 
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The dataset Y contains P number of data patterns yi and yi 

is an n+m dimensional vector containing n number of inputs 

and m number of desired outputs, i.e., 

},. . .,,,,. . .,,{ 2121 mni dddxxxy    (12) 

where xi are inputs and di are desired outputs. 

After the training was completed, the MSE of the training 

set, MSEtr (similarly for the testing and validation set) was 

calculated using 





trP

p

pptr odMSE
1

2)( .   (13) 

Fig. 12 shows the pseudo code for evaluation of one ANN 

architecture. At step1 the network is initialized using a random 

set of weights. Then at step 2 and 3 the dataset is reordered 

randomly and divided into training, testing and validating sets. 

At step 6 the network is trained using the training dataset (Ytr). 

The training is performed until the network achieves a 

predefined error or reaches a certain number of iterations (step 

5). The number of iterations was set to 500 and the goal error 

was set to 10-5 [Wijayasekara 11]. 

 

 
For each architecture Steps 1 through 13 were repeated Q 

times, and mean and standard deviation MSE for of training, 

testing and validation were calculated. This process was 

repeated for all the architectures tested. Fig. 13 shows the 

complete algorithm in a flow chart format.  

The goal of the analysis was to select the architecture that 

can fulfill both Criteria 1, architecture that can model the data 

with highest accuracy, and Criteria 2, architecture that achieves 

the best data generalization.  

For the first goal, Conf, (the architecture that conforms to the 

data best), the authors used the architecture with the lowest sum 

of errors for both training and validating, i.e., the architecture 

that predicts the experimental data with lowest errors. The 

mean MSE of the testing set is used to further evaluate the 

conforming capability of the network.  

 
For the second goal, Gen, (the most generalized 

architecture), the architecture with smallest difference between 

training and validating mean MSE was chosen. Therefore, to 

evaluate the generalization capabilities of the architecture, the 

difference between mean MSE values for training and 

validating were compared.  

While the mean MSE was used to evaluate architectures 

based on conforming capability and generalization capability, 

the standard deviation of MSE was used to evaluate the 

architecture’s stability in producing results (the architectures 

with high standard deviations were eliminated). 

 
 

Fig 13. Flowchart of evaluation of network architecture 

1. initialize the network with a set of random weights 

2. reorder the data points randomly 

3. divide the dataset into k folds 

4. FOR all k 

5. WHILE training error < 10-5 OR 500 iterations 

6. train the network using Ytr 

7. END WHILE 

8. test the network using Yte 

9. validate the network using Yva 

10. calculate training MSE 

11. calculate testing MSE 

12. calculate validating MSE 

13. END FOR 

Fig 12. Pseudo code of evaluation of one network architecture 

 Start 

Select an output.  

Select an architecture. 

 

i = 0 

Initialize the network. 

Reorder data. 

Divide the dataset into k folds. 

p = 0 

iterations = 0 

Train the network using Ptr 

training error 

< 10-5 ? 

iterations 

< 500 ? 

Validate and test the network. 

Calculate training, testing and validating MSE. 

p < k ? 

Calculate mean training, testing and validating MSE 

i < Q ? 

Calculate mean training, testing and validating MSE for n runs. 

Calculate standard deviation of training, testing and validating MSE for n runs. 

 

Has all the architectures 

been selected 

Has all the outputs 

been tested 

End 

Iterations = iterations + 1 

 

p = p + 1 

 

i = i + 1 

 

Select next architecture 

 

Select next output 

 

YES 

YES 

YES 

YES 

YES 

YES 

NO 

NO 

NO 

NO 

NO 

NO 
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In this case study, PCHE analysis was based on the dataset 

by Ishizuka [2005]. Because of different scales and nature of 

the measurements and values of each output dimension, neural 

networks were designed so that each network produced one 

output. Thus, each network had five input and one output 

neuron, and three different architectures were selected, one for 

each output.  

Architectures were labeled as p:q:r:s or p:q:s depending 

on the number of hidden layers, where q and r were numbers of 

neurons in hidden layers, and p and s were numbers of neurons 

in input (output) layers. For example, architecture 5:3:4:1 had 

two hidden layers containing three and four neurons in each, 

with the input layer containing five neurons and the output 

layer with one neuron. Similarly 5:4:1 is an architecture with an 

input layer containing five neurons, one hidden layer with four 

neurons and an output layer with one neuron. 

The architectures that were considered ranged from 5:1:1 

to 5:9:9:1 (pretesting with fewer neurons produced too large 

errors, while the larger architectures were too computationally 

intensive for practical use). Each architecture was tested 10 

times with five-fold cross-validation. 

The improvements of EBaLM-OTR for architecture 

selection compared to EBaLM-THP can be elaborated as 

follows.  

First, since the EBaLM-OTR algorithm introduced the 

validation data set (training validation), it was immune to over-

training (minimized over-training and maximized 

generalizability). Therefore, compared to the EBaLM-THP 

algorithm, architectures derived from EBaLM-OTR are more 

robust and less prone to errors in real-world applications and 

when dealing with noisy data.  

Secondly, since EBaLM-OTR trained and tested each 

architecture multiple times with the standard deviation of MSE 

as a selection criterion, the architecture selected by the 

EBaLM-OTR algorithm was more consistent in producing low 

error outputs, compared to the EBaLM-THP algorithm. 

Thirdly, the dependency of the LM algorithm on the initial 

weight set was alleviated by running the algorithm multiple 

times using different randomly initialized weights each time. 

Such improvements allowed the EBaLM-OTR algorithm to 

be used to derive optimal ANN architecture for any problem 

that requires a noise and initialization resilient algorithm, while 

at the same time featuring consistent prediction. 

The Graphs in Figs. 14 and 15 document the top 15 

architectures with the highest conforming capability (Conf) and 

generalizing capability (Gen), respectively (cold sided pressure 

drop). The architectures were sorted in the ascending order of 

mMSEva + mMSEtr or “Validating + Training Error” for best 

conforming, or in the ascending order of mMSEva to mMSEtr 

(Validating—Training Error) for best generalization capability. 

In order to select the optimal architecture for cold sided 

pressure drop, the architecture with the best combined score 

should be selected. 

Table 4 lists the top architectures for cold sided pressure 

drop. The “rank” is the sum of the positions of architectures in 

each figure (for example, architecture 5:3:1:1 appears in Fig. 14 

in the 2nd position and in Fig. 15 in the 7th position, thus has a 

rank of 2 + 7 = 9). The positions of the architectures in each 

graph indicate a measure of performance. The table also list the 

training mean standard deviations indicating the stability of the 

architecture. 

While 5:6:1:1 architecture scores the best for the Conf 

feature (Fig. 14), it is only at the 10th place based on the Gen 

(Fig. 15). On the other hand, not so great conforming–wise 

architecture (5:3:1:1), proves to be of much better 

generalization capability, scores overall the best (rank = 9). 

Hence, the best architecture from the point of both criteria, it is 

the optimal architecture, while the best architecture from the 

aspect of generalization, 5:1:5:1, performs so poorly relative to 

conforming criteria, it is off the chart in Fig. 14. 

As mentioned before, EBaLM-OTR looks into testing error 

as the second selection criterion for optimal architecture 

selection. Hence, out of the three top scored architectures, 

5:2:1:1 was selected as the optimal architecture to model cold 

sided pressure drop. Finally, the third criterion, standard 

deviation of training error, was considered for all three 

architectures. This criterion did not produce a significant 

difference, so the 5:2:1:1 architecture remained the best choice. 

The results of the similar procedure, applied to hot sided 

pressure drop and heat transfer, are shown in Table 5, while 

comparisons against the EBaLM-THP algorithm are illustrated 

in Table 6.  

The main instrumentation and control challenge entails 

several sub challenges such as: identification of hidden but 

inherent relationships among nonlinear, highly dimensional 

process variables; knowledge discovery; and relevant data 

identification in massive data sets created by fusion of large 

number of sensors. These challenges are anticipated to be 

successfully tackled using CITs, tailored and enhanced to solve 

diverse, heterogeneous massive data. 

 

IV CONCLUSION 
 

Artificial neural networks in small modular reactor 

modeling present a viable mechanism for modeling and 

optimization. Two case studies based on the previous 

application of hybrid ANN algorithm—EBP and LM—applied 

to PCHE modeling demonstrated the effectiveness of ANNs 

(EBaLM-THP algorithm). Introducing EBaLM-OTR improved 

generalization and alleviated over training while introducing  

testing error and standard deviation of error, which can improve 

modeling error up to two orders of magnitude. Computational 

Intelligence will serve as a research and modeling platform to 

improve the sustainability and performance of next generation 

small modular reactors while maintaining data security for 

sensitive information.  
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Table 4. Selection Criteria for The Optimal Architecture for The Cold Sided Pressure Drop 

Architecture 

Conf 

(Validation +Training) 

Gen 

(Validation -Training) Rank Training mean MSE 

5:3:1:1 0.733 x 10-3 3.31 x 10-4 9 0.0012 ± 0.0072 

5:6:1:1 0.6317 x 10-3 5.903 x 10-4 11 0.0013 ± 0.0067 

5:2:1:1 1.142 x 10-3 2.287 x 10-4 12 0.00069 ± 0.0039 

5:3:1 0.9715 x 10-3 5.014 x 10-4 13 0.00071 ± 0.0039 

5:3:3:1 0.9338 x 10-3 7.78 x 10-4 17 0.0012 ± 0.0042 

5:2:2:1 1.246 x 10-3 3.501 x 10-4 20 0.00084 ± 0.0071 

5:4:1 1.201 x 10-3 7.662 x 10-4 23 0.0013 ± 0.0227 

5:4:2:1 1.153 x 10-3 8.775 x 10-4 23 0.0017 ± 0.0074 

5:2:3:1 1.261 x 10-3 6.257 x 10-4 25 0.001 ± 0.0089 

5:2:1 1.1219 x 10-3 2.838 x 10-4 27 0.00072 ± 0.0044 
 

 
Fig. 15. Generalization capability of network architectures for cold sided pressure drop 

 

 
Fig. 14. Conforming capability of network architectures for cold sided pressure drop 
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