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Abstract— Data mining techniques are becoming 

indispensable as the amount and complexity of available data is 

rapidly growing. Visual data mining techniques attempt to 

include a human observer in the loop and leverage human 

perception for knowledge extraction. This is commonly allowed 

by performing a dimensionality reduction into a visually easy-

to-perceive 2D space, which might result in significant loss of 

important spatial and topological information. To address this 

issue, this paper presents the design and implementation of a 

unique 3D visual data mining framework – CAVE-SOM. The 

CAVE-SOM system couples the Self-Organizing Map (SOM) 

algorithm with the immersive Cave Automated Virtual 

Environment (CAVE). The main advantages of the CAVE-SOM 

system are: i) utilizing a 3D SOM to perform dimensionality 

reduction of large multi-dimensional datasets, ii) immersive 

visualization of the trained 3D SOM, iii) ability to explore and 

interact with the multi-dimensional data in an intuitive and 

natural way. The CAVE-SOM system uses multiple 

visualization modes to guide the visual data mining process, for 

instance the data histograms, U-matrix, connections, 

separations, uniqueness and the input space view. The 

implemented CAVE-SOM framework was validated on several 

benchmark problems and then successfully applied to analysis 

of wind-power generation data. The knowledge extracted using 

the CAVE-SOM system can be used for further informed 

decision making and machine learning. 

I. INTRODUCTION 

ATA MINING is becoming more and more important and 

useful as the amount and complexity of required data 

processing in various fields are rapidly increasing [1]. The 

available massive datasets have created a high demand for 

faster and more efficient data analysis methods. Data mining 

techniques constantly evolve benefiting from theories and 

techniques from many fields, including pattern recognition, 

high performance computing, and data visualization [2]. 

The effectiveness of the data mining process can be 

further increased by including humans in the data analysis 

process [3], [4]. Visual data mining is the process of 

exploration, interaction and reasoning with abstract data 

using natural human perception. The users of visual data 

mining tools are allowed to incorporate human intelligence 

in the data mining process. This is achieved via utilizing 

visual perception and thus combining flexibility, creativity 
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and general knowledge of the human brain with the 

computational and storage capability of modern computers 

[5], [6]. The desired outcome is a visual discovery of 

important patterns and trends in the data. This knowledge 

and information can then be utilized in informed decision 

making [7].  

Since humans are inherently accustomed to perceiving 2D 

or 3D spaces, visual data mining must first employ tools for 

dimensionality reduction of the multi-dimensional datasets. 

Such dimensionality reduction should preserve important 

features from the original input space. Intuitively, the higher 

the dimensionality of the desired output space, the more 

important features can be preserved through the 

transformation. Thus, visual data mining performed in 3D 

space should be superior to visual data mining in 2D spaces, 

as it allows for preserving richer information from the 

original data. 

In order to successfully leverage the capabilities of the 

human observer, complex visualization methods and display 

environments have been proposed for visual data mining in 

the past [1]. As 3-dimensional (3D) visualization technology 

is advancing, more and more 3D visualization techniques are 

becoming available to users. Such advances have lead to the 

creation of Cave Automatic Virtual Environment (CAVE). 

CAVE is an immersive visualization technology that allows 

users to completely immerse themselves in the virtual 

environment. In this way, the virtual environment can be 

approached in an interactive and natural way. The CAVE 

and other virtual reality environments have been used in 

immersive visual data mining effectively in the past [3]-[11]. 

Artificial neural networks have been widely applied in the 

data mining field [12]. This can be attributed primarily to 

their capabilities to process, filter, model, and generalize 

based on multi-dimensional input datasets. The Self 

Organizing Map (SOM) algorithm is commonly used in 

visual data mining as dimensionality reduction and feature 

extraction tool [13]-[16]. SOM has the ability to translate 

features, trends, tendencies and spatial distributions existing 

in multi-dimensional data into spaces with lower 

dimensionality. In this manner, visualization of multi-

dimensional data in human-perceivable spaces can be 

achieved. In addition, SOM can reduce the size of large 

datasets via mapping the input data onto a small set of 

neurons. Applications of SOM in visual data mining can be 

found in [17]-[20].  

Various other methodologies such as PCA [21], Sammon 

mapping [22], Isomap [23], LLE [24] and manifold sculpting 

[25] are used in data mining for dimensionality reduction. 

However, the SOM was preferred in the presented work as a 
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suitable algorithm for visual data mining due to the following 

reasons: i) fast convergence of the learning process, ii) 

ability to learn on-line, iii) ability to compress the input 

dataset into a set of neurons, and iv) ability to fix the number 

of output dimensions (e.g. 3 for the presented CAVE-SOM 

system).   

This paper describes the development and implementation 

of a 3D SOM visualization developed for the CAVE system, 

with emphasis on interactive immersive visual data mining – 

the CAVE-SOM system. The primary advantage of using a 

3D SOM over its traditional 2D implementation is the ability 

to preserve richer volume of information through the 

dimensionality reduction process. In order to allow the user 

to intuitively work with the complex 3D data visualization, 

the CAVE system is utilized. The CAVE-SOM provides a 

range of visualization modes, e.g. U-matrix [20], [26], 

histogram view [19], [27], connections [28], [29], 

separations, neuron uniqueness and input space view. 

The developed CAVE-SOM system proved to be a 

powerful and intuitive visual data mining tool that can be 

used for visualization of high-dimensional large data sets. 

Furthermore, the CAVE-SOM system allows users to 

immersively interact and work with the data using advanced 

interfaces such as head tracking and a 6 Degrees-Of-

Freedom (DOF) motion tracking tools. The proposed visual 

data mining framework was validated on benchmark datasets 

as well as on experimental data for wind power generation 

analysis.  

The rest of the paper is organized as follows: Section II 

provides background review of the SOM algorithm. Section 

III introduces the CAVE visualization facility and the 

implemented CAVE-SOM data mining system. Section IV 

presents the experimental results, and Section V concludes 

the paper. 

II. SELF-ORGANIZING MAPS 

The Self-Organizing Map (SOM) algorithm was 

developed in 1981 [30]. SOM uses unsupervised winner-

takes-all competitive learning method together with 

cooperative adaptation to adjust itself to the topological 

properties of the input dataset. The SOM consists of a 

topological grid of neurons typically arranged in 1D or 2D 

lattice [31]. The fixed grid defines the spatial neighborhood 

of each neuron.  

Each neuron maintains a synaptic weight vector 

}...,,{ 1 mwww 


, where m is the dimensionality of the input 

space. The input dataset consists of input patterns that can be 

denoted as }...,,{ 1 mxxx 


. The structure of a 2D SOM is 

depicted in Fig. 1(a). All neurons are first randomly 

initialized and then iteratively adapted based on the training 

set of input data. The training process can be described in 

several steps as follows [31]:  

 

Step 1 - Initialization: Randomly initialize all synaptic 

weight vectors in the input domain. 

 

Step 2 - Sampling: Select a random input pattern x


from 

the training dataset. 

 

Step 3 – Competitive Learning: Find the Best Matching 

Unit (BMU) for the current input pattern x


. The BMU is 

found by minimizing the Euclidean distance between the 

input pattern x


 and the synaptic weight vectors w


: 
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Here, )(xBMU


is the best matching unit for input pattern 

x


, operator  denotes the Euclidian distance norm, and N 

is the number of all the neurons in the SOM. 

Step 4 – Cooperative Updating: Update the synaptic 

weight vectors of all neurons in SOM using the cooperative 

update rule: 
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Here, n denotes the iteration, )(n is the learning rate and 

)()(, nh xBMUj
 is the value of the neighborhood function for the 

neuron j centered at )(xBMU


. 

 

Step 5 – Convergence Test: Until a specified 

convergence criterion is met go to Step 2. 

      
(a) (b) 

Fig. 1 Self-Organizing Map displayed in the output space (a) and in the input space adapted to 2D distribution of input points (b). 



 

 

 

The learning process is controlled by the dynamic learning 

rate and the neighborhood function. The neighborhood 

function is typically implemented as a Gaussian function 

centered at the selected wining neuron. Its amplitude applied 

to neuron j can be calculated as follows: 
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The size of the Gaussian neighborhood function is 

determined by parameter  . In order to enforce a 

convergent behavior the size of neighborhood is reduced by 

decreasing the parameter  . Typically, the exponential 

decay rule is applied. The learning rate   controls the rate of 

adaptation of individual neurons. Like the size of the 

neighborhood function, its value also exponentially decays 

with the elapsed training time. 

The learning process described in steps 2-5 is repeated 

until a specific convergence criterion is met. This criterion is 

typically defined as the average weight change of all the 

neurons after every training cycle. Once the average weight 

change drops below a predefined value the training is 

terminated. An illustrative example of a 2D SOM in the 

input space adapted to a 2D distribution of data is shown in 

Fig. 1(b). 

III. CAVE-SOM 

A Cave Automatic Virtual Environment (CAVE) is an 

immersive virtual environment. CAVE uses multiple 

stereoscopic projections to project a 3D environment in a 

room sized cube [32]. It allows the user to immersively 

interact with a 3D environment using head tracking system 

and a 6 Degrees-Of-Freedom (DOF) motion tracking tools. 

The CAVE itself consists of three walls and a floor with 

stereoscopic image projection (optionally a fifth projection 

wall can be added on top). The user is able to step inside the 

CAVE and interact with the virtual environment in a 

seamless way. 3D motion tracking is used to track the head 

movement of the user and the environment is updated 

accordingly. In addition, the user has a 6DOF interaction 

tool called the wand, which allows the user to further interact 

with the CAVE environment (e.g. pointing, highlighting, 

zooming or menu selection). A schematic view of the CAVE 

system is depicted in Fig. 2. 

The presented CAVE-SOM system utilizes the CAVE to 

visualize and interact with a 3D SOM structure. The system 

can display large multi-dimensional datasets in an immersive 

virtual environment that allows visual data mining using 

natural human perception. The CAVE-SOM combines 

powerful dimensionality reduction and feature extraction 

capability of the SOM algorithm with the immersive 3D 

visualization capability of CAVE. Fig. 3 shows two sample 

views of the developed system.  

In addition, the application takes advantage of the 

available vision and motion tracking devices provided by 

CAVE to allow for interaction with the displayed datasets. 

The CAVE-SOM system thus allows real-time interactive 

visual discovery of clustering tendencies, differences 

between datasets or feature correlations. The system also 

provides a dynamically constructed Graphical User Interface 

(GUI) (see Fig. 4). This GUI is anchored directly in the 3D 

space. The software was implemented based on the VRUI 

library [33]. 

The implemented functionalities of the CAVE-SOM 

system can be further divided into several areas: SOM 

construction, neurons visualizations, connections 

visualizations and selection tools. 

A. SOM Construction and Training  

The architecture of the SOM can be dynamically created in 

the application. The number of neurons in each dimension 

can be specified.  

In addition, the user has access to all control parameter of 

the learning process. Here, the initial size of the 

 
Fig. 2 The CAVE setup with 4 stereo-projection enabled walls. 

 

   
 

Fig. 3 CAVE-SOM visual data-mining system. 

 



 

 

 

neighborhood, the initial learning rate, and the rate of 

exponential decay of these parameters can be adjusted. The 

learning process of SOM is visualized in real-time. 

B. Neurons Visualizations 

The fundamental building unit of the 3D SOM structure is 

a neuron. Basic properties of 3D geometric neuron objects 

such as shape, size, color or transparency are utilized in the 

CAVE-SOM system to enhance the visual data mining 

process. 

The CAVE-SOM system displays neurons as cubes. The 

position of each neuron is determined by its position in the 

3D SOM grid. The size of each neuron can encode valuable 

information about the distribution of the input data 

throughout the SOM and about the relative importance of 

each neuron. In case of unlabeled data, the size of each 

neuron simply shows the frequency of patterns having 

particular neuron as their BMU. The size is thus proportional 

to the significance of the neurons. Neurons that were more 

frequently selected as BMUs are enlarged and they naturally 

attract more users’ attention.  

In case of labeled data, the shape and size of the neurons 

can be used to visualize distribution of patterns throughout 

the SOM for each specific class. In this mode, neurons that 

were assigned to more than one class are visualized as a 

composition of multiple scaled cubes with their size 

proportional to the frequency of patterns from each class (see 

Fig. 5). 

Two additional modes have been implemented in the 

CAVE-SOM system to draw user’s attention to specific 

features of the SOM: uniqueness and similarity of different 

classes for labeled datasets (see Fig. 10(b)). Here, the 

uniqueness and similarity are encoded using the size of 

neurons. The proposed uniqueness measure uj of neuron j 

can be computed based on the histogram of classes’ hits as 

follows: 
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Here, Hj is the number of all hits for neuron j, i

jh is the 

number of hits for class i for neuron j, C is the total number 

of classes and  is the normalization coefficient. The 

similarity sj can be computed as its opposite value sj = 1 – uj. 

Another elementary attribute of each visualized neuron is 

its color. The color is used in several visualization modes. 

Firstly, the distribution of values from a selected original 

input dimension can be projected onto the SOM (see Fig. 6 

and Fig. 11). This view provides valuable information about 

the correlation of input dimensions and the distribution of 

input values in the output feature space. In case of labeled 

input data, the color can encode the provided output class 

(see Fig. 5). 

The transparency of the displayed neurons proved to be 

very important when visualizing 3D SOM. In the CAVE-

SOM system the transparency of neurons encodes the U-

matrix. The U-matrix stores the information about the 

distance between neighboring neurons in the original input 

space (see Fig. 10(a)). The utilization of the advanced 3D 

visualization features of the CAVE system is especially 

important in case of transparency. Here, the CAVE offers 

improved depth-judgment and spatial relationship 

understanding in case of objects occlusion.  

C. Connections Visualizations 

The second important entity of the 3D SOM, which is 

displayed by the CAVE-SOM system, is the connection 

strength between neighboring neurons (see Fig. 8(a) and Fig. 

9). The connections have been previously shown to encode 

valuable information about the input feature space [28], [29]. 

The CAVE-SOM system visualizes the connections as bars 

with variable width and transparency. The width and 

transparency encode the connection strength, which is 

proportional to the distance between the connected neurons 

in the input space. The scaling factor of the connection 

strength can be interactively adjusted, allowing visual 

discoveries of clustering tendencies in the 3D SOM. By 

visualizing the inverse of the connection strength the 

separation between neurons can be emphasized (see Fig. 

8(b)). These separations can be viewed as cluster boundaries. 

D. Selection Tool 

The CAVE-SOM system also implements the selection 

tool, which allows the user to select and focus on a single 

neuron in the 3D SOM (see Fig. 7(b)). In this manner, the 

information about each neuron can be extracted. 

Furthermore, the rest of the SOM can be displayed with 

respect to the selected neuron, for instance color-encoding 

the mutual distances to each neuron. The users are then able 

to identify the topological neighbors of the selected neuron 

in the original input space. 

IV. EXPERIMENTAL RESULTS 

The CAVE-SOM system was tested on two benchmark 

problems and applied to analysis of wind power data. 

A. Benchmark Problem I – Iris dataset 

The CAVE-SOM system was applied to analyze the well-

known iris dataset [34]. The iris dataset is a common 

benchmark problem describing the separation among three 

 
 

Fig. 4 Dynamic Graphical User Interface of CAVE-SOM. 



 

 

 

species of Iris flowers – Setosa, Virginica, and Versicolor. 

Each data point is described using 4 features: the length and 

the width of the sepal and petal. The dataset consists of 150 

patterns, divided into 50 patterns for each class. 

Fig. 5 shows the histogram view of the trained 3D SOM, 

with color-encoding of the classes as follows: red is Setosa, 

green is Virginica and blue is Versicolor. The neuron size 

encodes the histogram of the best matching units. The 

CAVE-SOM visually confirms the well known distribution 

of classes in the iris dataset. It can be observed that the 

Setosa class (red) forms a well-separated and compact 

cluster. On the other hand, the topological distribution of the 

neurons assigned to Virginica and Versicolor classes 

suggests linearly non-separable input data. In the matter of 

fact, several neurons in Fig. 5 can be seen to be assigned to 

both classes. 

Fig. 6 shows the color-encoding of the input dimension 

values projected on top of the histogram view of the 3D 

SOM. Each figure shows the distribution of particular input 

dimension. By observing Fig. 6, the strong correlation 

between the petal length and the petal width attributes can be 

determined. In addition, by correlating the histogram and the 

inputs views in Fig. 5 and Fig. 6 the attributes of petal length 

and petal width can be seen to provide good separation 

between individual classes. These observations are in 

accordance with the expected results. 

Furthermore, Fig. 7 demonstrates the use of the selection 

tool. The iris dataset is displayed using color encoding of 

classes in Fig. 7(a). However, this view lacks the information 

about the spatial closeness of neurons in the input space. Fig. 

7(b) then shows the color encoding of the distances among 

neurons, when a particular neuron is selected. The green and 

red colors encode the smallest and the largest distance, 

respectively. The selected neuron belongs to the Setosa class, 

and thus the neurons belonging to Setosa class are encoded 

in green and blue due the small distance from the selected 

neuron. This view demonstrates the non-linear mapping 

performed by the 3D SOM. 

B. Benchmark Problem II – Gaussian Clusters 

The second benchmark dataset used was an artificially 

generated dataset consisting of 10,000 data points generated 

in 10-dimensional input space. The data set contained four 

compact clusters with Gaussian distributions.  

 
  

 

Fig. 5 Iris dataset in the CAVE-SOM – histogram view: Setosa (red), 

Virginica (green) and Versicolor (blue). 

   
 (a) (b) 

   
 (c) (d) 

Fig. 6 Iris dataset – input space view of sepal length (a), sepal width (b), petal 

length (c), and petal width (d). 

 
 (a) (b) 

Fig. 7 Iris dataset – histogram view (a) and neuron selection view (b). The selected neuron is highlighted in white. Green and red colors encode the smallest 

and the largest distance in the original input space, respectively. 



 

 

 

Fig. 8 depicts the histogram view together with the color-

encoding of classes in the trained 3D SOM. The 

visualization clearly shows the four compact clusters in the 

dataset. In addition, Fig. 8(a) and Fig.8(b) display the 

connections and the separations among the neurons, 

respectively. It can be seen that displayed connections 

further enforce the understanding of the clustering tendencies 

in the dataset. In order to display compact and well separated 

clusters the correct scaling factor for the connection strength 

must be set. This factor puts a threshold on the minimum 

connection strength to be displayed and further scales the 

width of the connection accordingly. The CAVE-SOM 

system allows the user to adjust this parameter interactively 

and updates the view in real-time allowing for intuitive and 

visual-based process of determining its optimal value. 

Examples of the histogram view with displayed connections 

for different values of the scaling factor are shown in Fig. 9. 

Further, Fig. 10(a) shows the transparency encoding of the 

U-matrix. It can be observed that neurons located at the 

boundaries between classes disappear from the view, 

separating the 3D SOM into compact clusters. Fig. 10(b) 

then shows the size encoding of the uniqueness of each class. 

Again, this view provides good visual understanding of the 

clusters in the original multi-dimensional space. 

C. Wind-Power Data Analysis 

Finally, the CAVE-SOM system was used for analysis of 

wind-power generation dataset. Wind-power generation 

constitutes an active engineering area, which is becoming 

increasingly important with the recent emphases on 

        
 (a) (b) 

Fig. 8 Gaussian dataset – connection view (a) and separation view (b). 

 
 (a) (b) (c) (d) 

  

Fig. 9 Gaussian dataset – with decreasing scaling factor for connection strength (a)-(d).  

        
 (a) (b) 

Fig. 10 Gaussian dataset – transparency encoding of U-matrix (a) and the uniqueness view (b). 



 

 

 

renewable energy sources. The CAVE-SOM system was 

used to analyze the differences in wind-power production in 

two geographically distinct areas of USA, namely Idaho 

Falls, Idaho and Gilpin, Colorado.  

The wind-power dataset was acquired through Wind 

Powering America program sponsored by the U.S. 

Department of Energy. This program is committed to 

increase the use of wind energy in the United States. The 

dataset consisted of the generated power, daily energy 

production, RPM of the turbine, wind speed and generated 

volts sampled every 30 seconds throughout June, 2010. The 

data were preprocessed using a sliding window technique, 

computing the average values of the attributes in the 

window. Also the standard deviation of the window speed 

was calculated. The preprocessed dataset then contained 

30,000 6-dimensional data points. 

Fig. 11 shows the input space view of the wind-power data 

projected onto the trained 3D SOM. An expected strong 

correlation between the RPM of the rotor blades and the 

generated volts in Fig. 11(c) and Fig. 11(f) can be observed. 

Similarly, the input dimension of generated power in Fig. 

11(a) and wind speed Fig. 11(d) also feature high positive 

correlation. Using this visualization mode of the CAVE-

SOM system, engineers are easily able to determine the 

correlation between different attributes of wind power 

production.  

The goal of the performed analysis of the wind-power data 

is to obtain an insight into the differences between wind-

power productions in geographically difference regions of 

United States. The results of such analysis can provide 

valuable information for determining the suitability of certain 

geographical area for further wind turbine construction. Fig. 

12(a) shows the uniqueness view of the class color-encoding 

of the wind-power data. Here, the Idaho Falls and the Gilpin 

classes of data are highlighted in red and green, respectively. 

The uniqueness view reduces the size of neurons belonging 

equally to both classes and thus drawing user attention to the 

highlighted neurons that are unique for each class. Focusing 

on such neurons can provide valuable insight into the 

difference between the two classes. Using this visualization 

tool of the CAVE-SOM system users are able to determine 

the preferred location for a wind turbine based on the 

differences in terms of wind profile and desired power 

output. Selected unique behavior of interest can be 

highlighted for further analysis as demonstrated in Fig. 

12(b). 

Another application of the CAVE-SOM system for wind-

power production analysis can be anomaly detection. 

     
 (a) (b) (c) 

     
 (d) (e) (f) 

Fig. 11 Wind-power dataset - input view: generated power (a), accumulated daily energy production (b), turbine blades RPM (c), wind speed (d), standard 

deviation of the wind speed (e), and generated volts (f). 

    
 (a) (b) 

Fig. 12 Wind-power dataset - uniqueness view (a), Idaho Falls (red), Gilpin (green), and neuron selection view (b). 



 

 

 

Training the SOM using known normal behavior of a wind 

turbine and then visualizing the uniqueness view of new 

available data in the SOM can aid fault diagnosis and wind 

turbine maintenance. 

V. CONCLUSION 

This paper presented the design and implementation of an 

immersive visual data-mining system – the CAVE-SOM. 

The 3D SOM algorithm was utilized to learn the spatial and 

topological relationships in the multi-dimensional data. The 

3D SOM structure was then visualized in the immersive 

CAVE environment. The implemented tool allows users to 

explore and interact with the multi-dimensional data in a 

natural and intuitive way. 

The implemented CAVE-SOM system was first validated 

on two benchmark problems, the iris dataset and a multi-

dimensional Gaussian distribution. Next, CAVE-SOM was 

used for analysis of wind-power generation data. It was 

demonstrated that the algorithm successfully identifies data 

separations and clustering tendencies. Furthermore the 

system could be used analyzing important similarities and 

unique features of different data classes.  

The knowledge extracted using the CAVE-SOM can be 

used for further informed decision making and machine 

learning.  
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