
 

 

Abstract—Current developments in autonomous vehicle 

systems typically consider solutions to single problems like road 

detection, road following and object recognition individually. The 

integration of these individual systems into a single package 

becomes difficult because they are less compatible. This paper 

introduces a generic Integrated Neural System for Autonomous 

Vehicles (INSAV) package solution with processing blocks that 

are compatible with each other and are also suitable for 

hardware implementation. The generic INSAV is designed to 

account for important problems such as road detection, road 

structure learning, path tracking and obstacle detection. The 

paper begins the design of the generic INSAV by building its two 

most important blocks: the Road Structuring and Path Tracking 

Blocks. The obtained results from implementing the two blocks 

demonstrate an average of 92% accuracy of segmenting the road 

from a given image frame and path tracking of straight roads for 

stable motion and obstacle detection. 

I. INTRODUCTION 

UTONOMOUS Vehicular Navigation is a broad field of 

research aimed at developing unmanned vehicle 

maneuvering. By the definition of autonomous, the system 

must learn its apparent surroundings without the supervision 

of the passengers. A variety of autonomous navigation 

techniques exist involving different types of vision sensors. 

Dickmanns in [1] investigates the development of such 

machine vision sensors for road vehicles. The paper concludes 

that the camera type sensor is the most suited vision for 

vehicular systems as it provides lot more information about 

the surroundings. The challenge then lies in processing this 

load of information into useful information that aids the 

autonomous vehicle in making critical decisions. Examples of 

work done with this type of vision, so far, are in [2]-[13].The 

problem primarily involves road recognition, path tracking 

and obstacle detection. There are, however, other types of 

problems associated with camera sensors alone and these are 

highlighted in [14]. To accomplish a system with the 

capability of learning and adapting autonomously, neural 

network approaches are generally utilized.  

Neural networks or neural computing involve algorithms 

that enable the system to train, learn and adapt according to its 

environment. The algorithms are generally classified as 

supervised or unsupervised learning. Supervised learning 

algorithms implement a teacher-student model, i.e. learning 

based on known outcomes, while unsupervised learning 

algorithms implement a researching model, i.e. outcomes are 

unknown and are yet to be discovered. Examples of 

supervised learning algorithms are the Error Back 

Propagation, Bisecting, Least-Mean-Square, etc. Unsupervised 

learning algorithms are typically data mining algorithms.  

Neural networks have been implemented in the field of 

autonomous vehicles [4]-[8] and in other related fields such as 

Driver Assistance Systems [9]-[11] and Mobile Robots [15]-

[20]. In autonomous vehicles, solutions to only individual 

problems such as road detection, road following, obstacle 

detection and motion detection were presented. Leibe et al, in 

[7], and Bertozzi et al, in [13], however couple two issues in 

their solution. Some of them, such as in [12] and [13], don’t 

use neural networks.  

Integrated solutions have instead been implemented in 

Driver Assistance Systems (DAS), [9] and [11]. Here, the 

assumption is that there exists a human driver to maneuver the 

vehicle. Therefore, although these systems perform some 

autonomous processing, they rely only on certain issues that 

are of importance in driver assistance, e.g. analyzing critical 

motions of nearby vehicles [9].  

In an autonomous driving scenario in the real world, the 

vehicle is subjected to uncertainty in varying conditions, 

conditions that are also unknown during the vehicular system 

design phase. These issues can be overcome by designing a 

system that is trained to do certain things like road 

recognition, path tracking, obstacle detection, etc, in one 

package. Also, since the human control is eliminated in this 

type of system, the system should instead mimic human 

responses.  

In humans, there exists a high level of computational 

parallelism when analyzing the surroundings. In electronics, 

computational parallelism can be realized only in the hardware 

design. The only problem with parallelism is that it introduces 

bulkiness. For a camera sensor, this bulkiness will depend 

directly on the camera’s resolution. Hence algorithms must be 

more simplistic to reduce the bulkiness to some extent. The 

algorithms developed in this paper have a simplistic approach 

in solving the problems assuming that there exists such 

parallelism. 

This paper introduces a generic INSAV that aims to solve 

multiple problems, such as road detection, road structure 

learning, path tracking and obstacle detection, in one package. 

The INSAV has processing blocks that are compatible with 

other blocks thereby simplifying the tasks of each block. In the 

attempt to build the generic INSAV, the paper then focuses on 

the design of its two most important blocks, the Road 

Structuring and Path Tracking Blocks. Each of these blocks 

combine the attributes of neural computing and hardware 

implementation.  

Since the type of sensor used is the digital color camera, the 

Canny Edge Detection Algorithm (CEDA) is used to structure 

the focused scene. The CEDA was introduced by Canny in 
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1986 to solve the weaknesses of earlier algorithms in detecting 

weaker edges which are typical in outdoor scene images [21]. 

Hence the CEDA was selected because of its robustness on 

outdoor scene images. The structure of the focused scene aids 

the Road Structuring Block which in turn aids the Path 

Tracking Block. 

The rest of the paper goes as follows: Section II elaborates 

on the generic INSAV design followed by the elaboration of 

the Road Structuring and Path Tracking Blocks in Section III. 

Section IV shows the obtained results from experimentation. 

The paper finally concludes in Section V with future work. 

 

II. THE INTEGRATED NEURAL SYSTEM FOR AUTONOMOUS 

VEHICLES (INSAV) 

The system is designed based on the Psychophysical 

Evidences highlighted in [9]. These systems involve 

Hierarchical Processing, Neural Configurability, Adaptive 

Response and Attention Models.  

Hierarchical Processing allows the system to have different 

levels of analysis and processing. These levels typically 

include Sensory, Perceptual, Syntactic and Semantic 

analyzers. Neural Configurability, enables the system to use 

previously learned or stored information to understand its 

current environment. To implement this, a memory block is 

required from where it can retrieve or store information. 

Adaptive Response provides perceptual ability for the system. 

It involves structural analysis and motion analysis working 

interactively together. For vehicular systems, the Adaptive 

Response enables the vehicle to perceive any forthcoming 

obstacles ahead in time. Lastly, Attention Models guide the 

system to focus on anticipated areas for faster responsivity 

(not considered in the INSAV).  

The INSAV system is shown in Fig.1. The designed 

INSAV, like the one in [9], utilizes three analyzers namely the 

Sensory, Perceptual and Conceptual Analyzers. The Sensory 

Analyzer consists of an Edge Detection Block and a Road 

Structuring Block (RSB). Since the vehicle must know the 

road at all times, the RSB has its place in the Sensory 

Analyzer. Its main goal is the provide the INSAV information 

regarding the current road structure. 

The Perceptual Analyzer implements the Adaptive 

Response feature mentioned earlier. It consists of a Path 

Tracking Block (PTB), a Motion Classifier Block and an 

Obstacle Detection Block. The latter two blocks depend on a 

Motion Computation Block. The PTB takes the road boundary 

points as inputs from the RSB. Its main goal is to locate the 

Vanishing Point (VP) on the image. This VP aids in 

classifying the motions of the objects in the scene in terms of 

hazardous and non-hazardous motions. From this 

classification, the system will be able to perceive obstacles in 

the near future and adapt accordingly. 

Assuming a vehicle is moving along a straight road, all 

other vehicles, moving on the same road, tend to move along 

the VP, either away from it or towards it. The perceived 

expansion and contraction of these moving vehicles, too, 

follow along the VP. Therefore, once the system identifies the 

VP, it can create line segments on the image, to map the 

motions of the objects in sight. Any deviations from these line 

segments can alert the system’s attention on those motions. 

The line segments also help in understanding the nature of 

object motion in the scene from which it can identify highly 

probable obstacles. 

The Conceptual Analyzer consists of blocks that enable the 

system to learn new road structures and create road patterns 

that tell the system about how the road is bending or about any 

approaching cross-road or T-junction. This ability allows the 

system to prepare for making the required turns. 

As mentioned earlier, the PTB takes inputs from the RSB. 

Therefore, like the eye that has cells that do structure analysis 

and motion analysis in parallel but interactively at a higher 

level [22], [23], the designed system too, performs road 

structuring and motion computation in parallel and then 

classifies the motions based on the VP obtained from PTB.  

 

III. THE ROAD STRUCTURING & PATH TRACKING NEURAL 

ALGORITHMS 

This section elaborates on the algorithms implemented for 

the two most important blocks of the INSAV, i.e. the RSB and 

PTB. 

A. Neural Road Detection and Training (Road Structuring) 

This block assumes that the Memory Block of the INSAV 

contains data pre-mined on road colors into a road color 

sphere in the RGB space during, say, a factory training stage. 

Hence, this algorithm utilizes a supervised learning approach. 

The Canny Edge Detection Algorithm (CEDA), along with 

the frame difference image to enhance the edge detection, 

initially structures the scene provided in the training image 

frame, I. The RSB then initiates a training stage during which 

a road color sphere, S, shown in Fig. 2 is provided. This road 

sphere, S, represents a single type of road color. The sphere, S, 

has a center-of-gravity (COG), COGS, and a radius. In the 

training stage, the pixel colors on I, were matched with S. 

Then the identified road region set, Rreg, defined as the set of 

pixel locations whose colors matched S, is given as, 
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Fig. 1: The presented INSAV 



 

 

Fig. 5: Fired Pixel Neuron (FPN) based Neural Road Structure. 

 

where (i,j) are the pixels locations on I. The set Rreg also had 

pixels that were not the road. Assuming the pixels are neurons 

known as Pixel Neurons (PN), processed in parallel, with 

inputs R, G and B of the RGB color space, the PNs that fired 

in (1), were classified as Fired Pixel Neurons (FPN). These 

FPNs connected themselves to their neighboring FPNs using 

the 8-connected neighborhood technique, diagrammatically 

represented in Fig. 3. In effect, the connection mechanism 

accomplishes an output similar to the one shown in Fig. 4. 

In this region-clustering mechanism, effective edge-

detection algorithms help to separate nearby mutually 

exclusive clusters. The connected FPNs indicate the road 

region to be the one that is closest to a baseline. A baseline is a 

fixed horizontal line below which the image of the camera 

shows information of the vehicle it is attached to (See Fig. 11 

later). This baseline, in images that do not have such 

information, is the last row of the image. From the selected 

road region, the respective region cluster is the final neural 

structure of the RSB from which the INSAV obtains the road 

structure, depicted in Fig. 5. This structure provides other 

information, like the bend of the road or an approaching cross-

road, etc. 

 
 

i-1,j-1 

 

 

i-1,j 

 

i-1,j+1 

 

i,j-1 

 

 

i,j 

 

i,j+1 

 

i+1,j-1 

 

 

i+1,j 

 

i+1,j+1 

 

Fig. 3: The yellow cells are the FPNs which get connected to FPN at (i,j). 

 

          

          

          

          

          

          

          

          

 
Fig. 4: Desired FPN clustering algorithm output. 

 

The road structure obtained is used to learn road colors in later 

stages or environments. Hence the algorithm considers only 

the cases when the vehicle is in close vicinity to a road. Using 

such cases, the new image frame, Inew, is sampled at the 

known road structure. A new road sphere, Snew, is then trained 

using the obtained pixel colors in Inew, based on the initially 

provided sphere, S. First a new COG, COGSnew, is found. This 

COG is calculated as the pixel color closest to the COG of S, 

COGS, by Euclidean Distance (ED). If the road structure is 

defined as a set, Rstruct, of pixel locations that define the 

structure, then 
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The new radius is obtained by initially normalizing all pixel 

colors in Rstruct. This was done to identify like-colors to the 

COGSnew. The normalization is based on the maximum color 

channel R, G or B as this provides a specific intensity 

independent color signature, unlike the method used in [24]. 
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The EDs of these normalized colors are then calculated with 

the normalized COGSnew. A threshold T=0.2, set based on 

~90% of collected ED data, selects all normalized pixel colors 

below it for minimum intensity evaluation. This is based on 

the assumption that the road color is of a lower intensity. The 

ED between the winning pixel’s color and the COGSnew is 

taken to be the radius. This new road sphere, Snew, is 

somewhere close to the initial road sphere, S, on the RGB 

space. The Snew is then used for identifying the road in Inew. 

Equations (1) and (2) are evaluated again. The pseudo code for 

this algorithm is provided in Fig. 6. 
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Fig. 2: Representation of the road sphere S. 
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B. Neural Path Tracking 

Immediately after determining the road structure, Path 

Tracking is done. Assuming the road ahead is straight and not 

curved, the Path Tracking Algorithm (PTA) calculates the 

Vanishing Point (VP) on the image using an unsupervised 

approach, hence no training set. A supervised approach like 

the Least-Mean-Square Algorithm cannot be used because 

there is no separation line required but an alignment on the 

road boundary points from the RSB. As mentioned earlier, the 

VP has uses in motion classification of objects in the scene. 

Typical Path Tracking algorithms use Mobile Robot Dynamics 

[15]-[20]. These typical systems, however, work with laser 

sensors to obtain the environment. 

The PTA initiates by selecting the all the Road Boundary 

Points (RBP) from the determined road structure from the 

RSB. These RBPs then form lines with other RBPs in parallel. 

These lines have slopes, mi, and y-intercepts, ci, where the i 

represents the RBP index. Since we are assuming the road is 

straight ahead and not curved, there exists a partition between 

left-side RBPs and right side RBPs. Effectively the left-side 

RBPs connect to only the left-side ones, while the right-side 

RBPs vice versa. Two neurons, i.e. the Left Road Boundary 

Neuron and Right Road Boundary Neuron, learn alignments of 

the road boundaries on the left-side and right side. The point 

of intersection is the VP, as depicted in Fig. 7.  

Although the road is straight, in many cases the RBPs are 

not in a straight line form. This is because other vehicles on 

the road obscure the road boundaries. In order to tackle such 

cases, the PTA initially computes the weighted average form 

of the slope vectors with the slope samples obtained 

previously. These Weighted Average Slope Vectors (WASV) 

eliminate unlikely slopes by bringing them closer to the more 

likely slopes. Fig. 8 shows the effect of WASV on a slope 

vector, S. Because the road boundaries are expected to be 

disfigured, this computation becomes very useful in the faster 

prediction of the Actual Road Boundary Slope (ARBS). It is in 

fact used as an initialization step for the ARBS. The weights 

used in the WASV computation are based on absolute 

differences (AD), or a single dimension ED, between two 

vector scalars. Their range lies between 0 and 1. Usually one 

would quantify this to be an exponential value with negative 

power of the AD, as in Radial Basis Functions. However, in 

order to simplify this for hardware suitability, the weights are 

quantified to be some function of the reciprocal of AD. This 

function avoids the weights from reaching infinity and keeps 

them between 0 and 1.  

A simple model of two parallel resistors, with impedance 

  
    

     
, was used in enclosing the range of the weights. 

The impedance Z always lies below the           . Using 

this model, the smallest resistor for the weight function is 

equal to 1Ω. So if 

                                           (4) 

then, 

                                   (5) 

  

where w is the assigned weight. The WASV is then computed 

as follows. The initiated mean, µ0, is taken as the first value in 

the slope vector, S with samples si, of interest. Then, 
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Referring back to Fig. 8, note that the strong variations on 

the slope values are eliminated. After the WASV computation, 

the slope of the road boundary is predicted. The initial 

predicted slope is the average value of the WASV. The 

updated prediction of the slope is based on the following 

concept. Let the WASV be a vector V. 
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Pseudo Code: 

  

1) Initialize FPN frame                   
2) Using S,                               

3) Cluster pixels in  using 8-connected neighborhood. 

4) The set Rstruct = The cluster nearest to the baseline. 

5) Sample Inew at Rstruct. 

6) Compute COGSnew using (2). 

7) Normalize pixel colors sampled in 5) using (3). 

8) Compute  vector D = ED of normalized colors in 7)  

with the normalized COGSnew.  

9) Create a new vector N, s.t                   
                              
10) Store corresponding intensity values of vector N, in 9),  

  in a vector T. (The intensity value is the denominator  

  of (3).) 

11) Denormalize the color in N with the least intensity. 

12) Compute the radius of Snew as the ED between the  

color in 11) and the COGSnew.  

13) Repeat 2) on Inew with the new sphere Snew. 

14) Repeat 3) and 4). 

 

Fig. 6: Pseudo Code for Road Structuring Algorithm. 
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Fig. 7: Path Tracking Neurons. 

 



 

 

Here  

    = approx. AD weight of predicted slope from the  

   actual slope. 

     = predicted slope at iteration i-1. 

    = cardinality of vector V. 

    = j
th

 element of V. 

    = the actual slope of the road boundary. 

 

Following from (8), the updated predicted slope at iteration 

i, was calculated as follows. 

             
 

   

  

(8) 

Equation (8) says that two values of slopes were predicted. 

The one with the maximum   , calculated using (7), stayed as 

the predicted one for next iteration.  Due to the nature of the 

WASV, the predicted values of the slopes exhibited 

oscillations between iterations. Fortunately they were 

oscillating among a fixed mean value which was the almost 

equivalent to the ARBS. Therefore, predicted slope values for 

four consecutive iterations were taken and averaged. This 

averaged value was reported as the final prediction of ARBS. 

Fig. 9 shows the prediction mechanism of the ARBS. 

 Its corresponding y-intercept was similarly extracted using 

(7) and (8). But instead of a weighted average vector 

initialization using (6) , the y-intercept scalars, from the y-

intercept vector, were accentuated based on the predicted 

ARBS. In other words, the closer the scalars in the slope 

vector S were to the predicted ARBS, the more their 

corresponding y-intercepts were accentuated. To enhance the 

accentuation, the square of the AD values were taken for 

weight computation. Due to this enhancement, a really strong 

threshold, of about 0.9999, was capable of extracting only the 

significant y-intercept scalars. Fig. 10 provides the pseudo 

code for this algorithm. 

IV. EXPERIMENTAL RESULTS 

The following section will demonstrate the obtained results 

from the implementation of the algorithms explained in the 

previous section. 

A. Neural Road Detection and Training (Road Structuring) 

The road detection for the provided road color sphere, S, 

was robust. The trained Snew, too, provided high percentage of 

accuracy in road detection. The percentage of accuracy was 

measured based on summing Type I and Type II Errors of 

road detection in the Region-Of-Interest (ROI). By definition, 

Type I Errors are false positives when the Null Hypothesis, 

H0, is rejected and Type II Errors are false negatives when H0 

rejection fails. In the road detection accuracy measurement the 

H0 is, 

 

                          

                                
 

Then the total error of detection, e, is, 
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Pseudo Code: 

 

1) Select road boundary points.  
2) Form lines that hold slope and y-intercept scalars.  

3) Calculate the WASV using (6). 

4) Calculate average of WASV as the initial predicted  

 ARBS. 

5) Calculate     from eqn. (7).  

6) Update predicted ARBS from (8) and (7). 

7) Average four predicted ARBS to be final ARBS. 

8) Compute accentuated weight vector C for y-intercept  

 vector using squared AD. 

9) Create new vector Y, s.t                    
10) Repeat 5) – 7) similarly for Y. 

 

Fig. 10: Pseudo Code for Path Tracking Algorithm. 

 

 
Fig. 8: Effect of WASV on vector S. 
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Fig. 9: Prediction of ARBS. 
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Results demonstrated an average of 93 percent accuracy in 

identifying the road on four test sets of 30 video sequence 

frames from one training set of 30 video sequence frames. The 

sample training video sequence is shown in Fig. 11 and the 

four sample test video frames are shown in Fig. 12. The 

sample results of the algorithm on the four test sets are shown 

in Fig. 13. The success of this algorithm proved useful for the 

PTA. The algorithm proved its independence of varying road 

structures of later environments. This makes it less prone to 

false negatives or false positives.  

The tested images depict a single type of environment, i.e. 

snow roads under moderate illumination. During the driving 

period, this type of situation of having similar environments 

occurs most of the time. Therefore the algorithm guarantees 

acceptable performance in such situations. 

B. Path Tracking Algorithm 

Due to the success of the RSB, the PTA too proved 

robustness. The accuracy measure used for this algorithm was 

based on the simple relative error calculations of pixel 

positions. Since the algorithm is an unsupervised type, there 

are no training sets. 
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This algorithm proved an average of 91 percent accuracy of 

vanishing point estimation with high speed of prediction. The 

success of the road structuring algorithm was the key to its 

high performance.  

Fig. 14 shows four tested straight roads that ran independent 

of each other. The blue lines, the neurons, in the figure show 

their alignments on the road boundaries. The point of 

intersection of the lines, marked as a black spot, is the 

estimated vanishing point. The yellow spots in the images of 

the third row show the actual vanishing point of the images 

because of the significant error in the estimated vanishing 

point.     

V. CONCLUSION 

The most important blocks of the generic INSAV, i.e. the 

Road Structuring and Path Tracking Blocks, were successfully 

designed. These blocks also feature simplified computations 

 
 

Fig. 11: Training video sequence frames 1(left) and 30(right). 

 

 
Fig. 12. The four test sets. 

 
 

Fig. 14. Results of the PTA Algorithm 

 
Fig. 13. Test Results on the four test sets. 
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suitable for hardware implementation. The results of the 

current work, presented in this paper, are encouraging towards 

the realization of the whole INSAV for autonomous vehicle 

hardware. 

The next step is to design the Motion Classifier and 

Obstacle Detection Blocks. A further challenge lies in making 

the blocks more interactive with every other block. This type 

of interaction ensures much more robustness to completely 

varying environments. 
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